CN105184047B - 一种结构高频机械噪声在线预报方法 - Google Patents

一种结构高频机械噪声在线预报方法 Download PDF

Info

Publication number
CN105184047B
CN105184047B CN201510432029.1A CN201510432029A CN105184047B CN 105184047 B CN105184047 B CN 105184047B CN 201510432029 A CN201510432029 A CN 201510432029A CN 105184047 B CN105184047 B CN 105184047B
Authority
CN
China
Prior art keywords
subsystem
energy
model
data
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510432029.1A
Other languages
English (en)
Other versions
CN105184047A (zh
Inventor
盛美萍
马建刚
王敏庆
郭志巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201510432029.1A priority Critical patent/CN105184047B/zh
Publication of CN105184047A publication Critical patent/CN105184047A/zh
Application granted granted Critical
Publication of CN105184047B publication Critical patent/CN105184047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种结构高频机械噪声在线预报方法,属于噪声预报技术领域。该方法包括:针对工程实际结构建立合理有效约束载荷统计能量分析模型;利用所建立统计能量分析模型获取各受激子系统质量数据;通过测试获取各受激子系统振动响应数据;结合质量与响应数据计算各受激子系统能量数据;根据模型获取各受激子系统的辐射声功率能量机械导纳数据;最后计算得到结构辐射声功率,完成在线预报。本发明的有益效果是:利用系统传递导纳不变性,实现了从载荷到辐射声功率的快速计算,解决以往算法耗时较长问题,实现了结构机械噪声的快速预报。本发明精度可观,耗时较短,可应用于在线预报工程实际,有广阔的应用前景。

Description

一种结构高频机械噪声在线预报方法
技术领域
本发明涉及噪声预报技术领域,具体为一种结构高频机械噪声在线预报方法。
背景技术
统计能量分析把研究对象从用随机参数描述的总体中抽取出来,忽略被研究对象的具体细节,关心的是时域、频域和空间上的统计平均值,方法同时采用了能量的观点,为解决复杂系统宽带高频动力学问题提供了一个有力工具。
统计能量分析可用一基本方程表征,即功率流平衡方程,方程给出了方法基本的统计思想,也给出了该思想下系统间的输入输出关系。
经典统计能量分析理论中,系统载荷为子系统外界输入功率。目前,对于激励源输入功率的获取在实验室环境下有一定精度,但也仅仅局限于点源激励。对于工程实际结构,由于受激状况复杂、形式多样,可能是点激励、线激励及面激励,且物理、化学及声振环境恶劣,激励设备与结构间通常没有传感器安装条件,导致受激结构功率输入情况无法获取,结构声振环境预报工作开展遇阻。目前,常用的载荷定义方式主要分为四大类:输入功率、力、声和约束载荷激励。对于输入功率载荷,可直接利用统计能量分析基本公式完成结构声振分析。对于力或声激励,则可通过相关公式直接计算得到受激结构输入功率,然后进一步利用基本公式开展分析计算。而对于约束载荷,其主要包括:加速度、速度及能量等。目前,约束载荷下结构声振环境预报研究比较成熟,且激励设备安装附近区域振动响应提取相对容易,较输入功率、力及声载荷应用更为普遍。现有高频声振环境预报技术精度已相当可观,由于实际模型通常较为复杂,即使现有计算方法耗时较以往有了大幅缩短,但模型求解时间仍远远超出了在线预报的时效性要求,无法实现结构高频辐射噪声的实时监测。
发明内容
为解决现有机械噪声预报耗时过长,不能实现在线预报的问题,本发明在经典统计能量分析原理基础上,提出了一种复杂激励下结构高频机械噪声在线预报方法。
本发明的流程框图如图1所示,框图给出了本发明基本分析流程。本发明技术方案主要包括如下步骤:
步骤1:建立合理有效的约束载荷结构统计能量分析模型。首先,根据统计能量分析子系统划分基本原则,对模型进行合理的子系统划分。进一步,在子系统划分的基础之上,获取各子系统间耦合关系。进而,结合各子系统损耗特性得到功率流平衡方程损耗矩阵。最后,根据实际激励情况在相应子系统施加约束载荷,利用公式
建立结构约束载荷统计能量分析模型,模型包含n个子系统。其中,Ei为子系统i能量响应,i=1…n,ηij(j=1…n,且j≠i)为子系统i与子系统j之间的耦合损耗因子。ηii表示子系统i内损耗因子。
步骤2:获取模型各受激子系统质量数据。在步骤1所建统计能量分析模型中,根据受激子系统几何及材料参数确定其质量。对于考虑流体负载统计能量分析模型,由于流体负载作用效果与频率相关,该情形下各受激子系统质量为一频率相关数组。
步骤3:获取模型各受激子系统振动响应数据。步骤1中模型载荷数据为受激子系统振动响应数据,通过测试获取。将测试数据根据转换关系整理得到各受激子系统平均速度振动响应。
步骤4:获取模型各受激子系统振动能量响应数据。利用公式
E=mv2
将步骤2获取的质量及步骤3获得的速度平方振动响应相乘,得到各受激子系统能量响应。
式中,E、m、v分别为子系统振动能量、质量及速度。
步骤5:获取模型各受激子系统的辐射声功率能量机械导纳数据。设定子系统i受单位能量约束载荷,其它受激子系统j受零能量约束载荷作用,其中,i=1…r,j=1…r且j≠i。利用步骤1公式计算得到子系统k(k=r+1…n)能量响应其中声辐射子系统能量响应(辐射声功率)为由公式
可知,计算得到的结构辐射声功率值即为子系统i受单位能量约束载荷、其它受激子系统受零能量约束载荷下的结构辐射声功率能量机械导纳Hnoise,i。式中Ei,unit=1表示子系统i单位能量约束载荷;Ej,zero=0表示子系统j零能量约束载荷;为子系统i受单位能量约束载荷、其它受激子系统受零能量约束载荷下的结构辐射声功率;Hnoise,i为子系统i受单位能量约束载荷、其它受激子系统受零能量约束载荷下的结构辐射声功率能量机械导纳。
步骤6:完成辐射声功率在线预报。将步骤4中获取的受激子系统振动能量及步骤5中获取的能量机械导纳数据代入预报公式
计算得到结构辐射声功率,完成预报工作。
本发明的有益效果是:本发明以统计能量分析理论为基础,提出了一种在统计能量分析概念下的机械传递导纳概念-能量机械传递导纳。对于给定的分析系统,其能量传递矩阵为一常量。本发明利用系统传递导纳不变性实现了结构受激载荷到辐射声功率之间的快速计算,解决以往算法耗时较长问题,实现了结构机械噪声的快速预报。本发明精度可观,耗时较短,可应用于在线预报工程实际,有广阔的应用前景。
附图说明
图1:本发明的流程框图;
图2:实施例中双层圆柱壳结构示意图;
图3:实施例中受激子系统载荷数据;
图4:实施例中受激子系统能量机械导纳数据;
图5:实施例中结构辐射声功率预报与测试数据。
具体实施方式
下面结合具体实施例描述本发明。
本实施例中以两实际设备激励双层圆柱壳体为模型,图2给出了试验测试用结构示意图,试验中,试件完全浸没于水中,内壳底部受到两激振设备的同时激励,试验中主要完成对壳体结构振动响应的提取,为模型声辐射预报提供载荷数据。本实施例采用以下步骤完成结构辐射声功率预报:
步骤1:根据实际双层结构建立相应统计能量分析模型。首先,根据统计能量分析子系统划分基本原则将模型划分为内壳、外壳,端板、实肋板、内壳声空腔、内外壳间声空腔及外流体场子系统。同时,各子系统定义相应内损耗因子及考虑流体负载作用。进一步,根据各结构间连接关系,建立子系统间耦合关系,如空腔与结构间的面耦合、结构与结构间的线耦合等等。最后,根据实际激振设备安装情况在相应子系统施加约束载荷,其中载荷数据为试验实测加速度数据。至此,完成了对结构统计能量分析模型的建立。图2中标示出了模型激振位置,为方便描述,我们分别称左侧受激结构为子系统1,子系统质量、速度平方振动响应及振动能量分别用m1E1表示。同样,称右侧受激结构为子系统2,对应有参数m2E2。而模型载荷数据如图3所示,该数据为试验实测数据。
步骤2:根据实际模型几何及材料参数,计算得到各受激子系统原始质量。同时,由于模型完全浸没于水中,流体负载作用明显,因此子系统质量还应考虑流体负载影响,称之为附加质量。综合子系统原始质量及流体作用附加质量,最终获取系统各受激子系统质量数据。
步骤3:根据图3中各受激子系统加速度约束载荷数据,利用加速度与速度之间的转换关系,得到系统受激子系统速度平方振动响应数据。
步骤4:利用子系统能量计算式,结合子系统质量及振动响应数据,计算得到模型受激子系统振动能量数据。
步骤5:根据能量机械导纳表达式,将子系统1振动能量约束载荷设置为1J,同时将子系统2振动能量约束载荷设置为0J,利用约束载荷统计能量分析基本公式,计算得到结构辐射声功率完成子系统1的能量机械导纳数据Hnoise,1获取。同样,子系统1加载0J,子系统2加载1J振动能量约束载荷,可得到子系统2的能量机械导纳导纳Hnoise,2。整理子系统1、子系统2的辐射声功率能量机械导纳随频率变化曲线如图4所示。
步骤6:在各受激子系统振动能量及能量传递矩阵已知的情况下,代入声辐射预报公式,得到模型声辐射预报结果表达式为
Pnoise=E1Hnoise,1+E2Hnoise,2
将相应数据代入上式,即可完成结构高频机械噪声预报,预报及测试结果对比如图5所示。

Claims (1)

1.一种结构高频机械噪声在线预报方法,其特征在于包括以下步骤:
步骤1:建立合理有效的约束载荷结构统计能量分析模型:首先,根据统计能量分析子系统划分基本原则,对模型进行合理的子系统划分;进一步,在子系统划分的基础之上,获取各子系统间耦合关系;进而,结合各子系统损耗特性得到功率流平衡方程损耗矩阵;最后,根据实际激励情况在相应子系统施加约束载荷,利用公式
建立结构约束载荷统计能量分析模型,模型包含n个子系统;式中,Ei为子系统i能量响应,i=1…n;ηij(j=1…n,且j≠i)为子系统i与子系统j之间的耦合损耗因子;ηii表示子系统i内损耗因子;
步骤2:获取模型各受激子系统质量数据:在步骤1所建统计能量分析模型中,根据受激子系统几何及材料参数确定其质量;对于考虑流体负载统计能量分析模型,由于流体负载作用效果与频率相关,该情形下各受激子系统质量为一频率相关数组;
步骤3:获取模型各受激子系统振动响应数据:步骤1中模型载荷数据为受激子系统振动响应数据,通过测试获取;将测试数据根据转换关系整理得到各受激子系统平均速度振动响应;
步骤4:获取模型各受激子系统振动能量响应数据:利用公式
E=mv2
将步骤2获取的质量及步骤3获得的速度平方振动响应相乘,得到各受激子系统能量响应;式中,E、m、v分别为子系统振动能量、质量及速度;
步骤5:获取模型各受激子系统的辐射声功率能量机械导纳数据:设定子系统i受单位能量约束载荷,其它受激子系统j受零能量约束载荷作用,其中,i=1…r,j=1…r且j≠i;利用步骤1公式计算得到子系统k(k=r+1…n)能量响应其中声辐射子系统能量响应(辐射声功率)为由公式
可知,计算得到的结构辐射声功率值即为子系统i受单位能量约束载荷、其它受激子系统受零能量约束载荷下的结构辐射声功率能量机械导纳Hnoise,i,式中Ei,unit=1表示子系统i受单位能量约束载荷,Ej,zero=0表示其它受激子系统j受零能量约束载荷,为子系统i受单位能量约束载荷、其它受激子系统受零能量约束载荷下的结构辐射声功率,Hnoise,i为子系统i受单位能量约束载荷、其它受激子系统受零能量约束载荷下的结构辐射声功率能量机械导纳;
步骤6:完成辐射声功率在线预报:将步骤4中获取的受激子系统振动能量及步骤5中获取的能量机械导纳数据代入预报公式
计算得到结构辐射声功率,完成预报工作。
CN201510432029.1A 2015-07-17 2015-07-17 一种结构高频机械噪声在线预报方法 Active CN105184047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510432029.1A CN105184047B (zh) 2015-07-17 2015-07-17 一种结构高频机械噪声在线预报方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510432029.1A CN105184047B (zh) 2015-07-17 2015-07-17 一种结构高频机械噪声在线预报方法

Publications (2)

Publication Number Publication Date
CN105184047A CN105184047A (zh) 2015-12-23
CN105184047B true CN105184047B (zh) 2018-09-28

Family

ID=54906125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510432029.1A Active CN105184047B (zh) 2015-07-17 2015-07-17 一种结构高频机械噪声在线预报方法

Country Status (1)

Country Link
CN (1) CN105184047B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108875243A (zh) * 2018-06-29 2018-11-23 航天东方红卫星有限公司 一种基于能量灵敏度分析的声振模型修正方法
CN110470380B (zh) * 2019-04-13 2020-11-06 西北工业大学 一种考虑基座影响的隔振器机械阻抗测试方法
CN115586251B (zh) * 2022-09-01 2023-06-02 哈尔滨工程大学 一种船舶典型结构连接耦合损耗因子测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114496A1 (en) * 2006-11-15 2008-05-15 Thorsten Bartosch Methods of analyzing the vibro-acoustic optimization potential and optimizing the vibro-acoustic behavior of a structure
CN102411673A (zh) * 2011-08-18 2012-04-11 西北工业大学 一种计算声振系统中高频动力学响应的方法
CN102880767A (zh) * 2012-10-19 2013-01-16 西南交通大学 轨道交通桥梁结构噪声仿真预测方法
EP2620884A2 (en) * 2012-01-27 2013-07-31 Fujitsu Limited Predicted value calculation method and design support apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114496A1 (en) * 2006-11-15 2008-05-15 Thorsten Bartosch Methods of analyzing the vibro-acoustic optimization potential and optimizing the vibro-acoustic behavior of a structure
CN102411673A (zh) * 2011-08-18 2012-04-11 西北工业大学 一种计算声振系统中高频动力学响应的方法
EP2620884A2 (en) * 2012-01-27 2013-07-31 Fujitsu Limited Predicted value calculation method and design support apparatus
CN102880767A (zh) * 2012-10-19 2013-01-16 西南交通大学 轨道交通桥梁结构噪声仿真预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Statistics Based Features For Unvoiced Sound Classification》;Sunit Sivasankaran 等;《2013 IEEE International Workshop On Machine Learning For Signal Processing 》;20131231;全文 *
《航天器基础激励SEA建模方法》;马建刚,盛美萍;《航天器环境工程》;20120630;第29卷(第3期);全文 *

Also Published As

Publication number Publication date
CN105184047A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN105184047B (zh) 一种结构高频机械噪声在线预报方法
Tsouvalas et al. A semi-analytical model for the prediction of underwater noise from offshore pile driving
CN109388886B (zh) 一种多孔材料吸声系数的计算方法
CN103413185B (zh) 一种采煤机摇臂振动传感器优化布置方法
Yang et al. Improved decohesion modeling with the material point method for simulating crack evolution
Chen et al. Localized method of fundamental solutions for acoustic analysis inside a car cavity with sound-absorbing material
Sun et al. Optimization design and reality of the virtual cutting process for the boring bar based on PSO-BP neural networks
CN105004416B (zh) 基于逆边界元法机械噪声远场声压预测方法
Li et al. Simulation on vibration characteristics of fractured rock
CN106484952B (zh) 一种混响场随机面压载荷模型的等效技术
CN103471794B (zh) 一种水工混凝土结构自振频率识别的测试装置及方法
Gubaidullin et al. Nonlinear effects upon vibration action on a cavity filled with perfect gas
Yang et al. Statistical pattern recognition for Structural Health Monitoring using ESN feature extraction method
Yang et al. Predicting wave loads on adjacent cylinder arrays with a 3D model
Cudney et al. Verification of acoustic propagation over natural and synthetic terrain
Akhlaghi et al. Structural Identification of a Five-Story Reinforced Concrete Office Building in Nepal
Schulte et al. A Spectral Element Approach for Modeling of Wave‐Based Structural Health Monitoring Systems
Chen et al. Vibration-based structural damage identification using grey forecasting model
Du et al. Structural topography optimization of engine block to minimize vibration based on sensitivity analysis
Sreejith et al. Influence of compliance, and effective orifice discharge coefficient on performance of a hydroacoustic projector
ZHANG et al. Research on simulation and prediction of internal combustion engine structural acoustic radiation
Meng et al. The vibration radiation noise and optimized analysis of the shell
Perras et al. Determination and optimization of sound insulation capabilities of geometrically complex walls
Riedel et al. S12| Waves and acoustics
Yang Exact solutions of random vibration responses for rectangular thin plate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant