CN105161578B - Si衬底上GaN薄膜的生长方法及复合GaN薄膜 - Google Patents

Si衬底上GaN薄膜的生长方法及复合GaN薄膜 Download PDF

Info

Publication number
CN105161578B
CN105161578B CN201510504913.1A CN201510504913A CN105161578B CN 105161578 B CN105161578 B CN 105161578B CN 201510504913 A CN201510504913 A CN 201510504913A CN 105161578 B CN105161578 B CN 105161578B
Authority
CN
China
Prior art keywords
gan
layer
aln
growth
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510504913.1A
Other languages
English (en)
Other versions
CN105161578A (zh
Inventor
刘波亭
马平
郭仕宽
甄爱功
张烁
吴冬雪
王军喜
李晋闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201510504913.1A priority Critical patent/CN105161578B/zh
Publication of CN105161578A publication Critical patent/CN105161578A/zh
Application granted granted Critical
Publication of CN105161578B publication Critical patent/CN105161578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Abstract

一种Si衬底上GaN薄膜的生长方法及复合GaN薄膜,所述复合GaN薄膜自下而上依次包括Si衬底、AlN缓冲层、GaN缓冲层、第一GaN层、AlN插入层和第二GaN层,其中所述GaN缓冲层包括2‑3个三维和二维GaN子层,其中三维GaN子层厚度为50‑150nm,二维GaN子层厚度为100‑200nm。所述生长方法包括以下步骤:首先在Si衬底上生长AlN缓冲层,然后在AlN缓冲层上生长三维GaN子层,接着生长二维GaN子层,重复生长该GaN三维和二维子层2‑3次;最后生长厚的GaN层,在GaN层中有AlN或者SiNx插入层。本发明通过采用GaN的三维和二维生长有效弛豫掉后续GaN层中的张应力,能够生长较厚的GaN层而不出现裂纹。

Description

Si衬底上GaN薄膜的生长方法及复合GaN薄膜
技术领域
本发明涉及薄膜材料技术领域,更具体地涉及一种Si衬底上GaN薄膜的生长方法及复合GaN薄膜。
背景技术
GaN材料由于具有大的禁带宽度、高的热导率、高电子饱和漂移速度和大的临界击穿电压等特点而得以在光电子器件和高温大功率电子器件等领域有着广阔的应用前景,其研究与应用是目前全球半导体领域研究的前沿和热点。
目前GaN主要在蓝宝石、SiC和Si衬底上进行外延生长。在蓝宝石和SiC衬底上已经生长出了质量相对较高的GaN材料并实现了光电子器件和高频高功率器件的应用,实现了产品的商业化。但是目前存在的问题是蓝宝石和SiC衬底尤其是SiC衬底价格昂贵,并且难以实现大尺寸的外延生长,使得器件制作成本增加。对于蓝宝石衬底,其材料导电导热性能差,对器件性能会产生不利影响。Si作为目前最成熟的半导体材料,具有价格便宜,可以大尺寸生产,晶体质量高,导热性能好等优点,在外延生长中作为衬底使用可以大幅降低生产成本,改善器件性能,并且有利于和目前已有的Si基半导体工艺集成。但是在Si衬底上外延生长GaN,二者之间存在着较大的晶格失配(17%)和热失配(56%),在外延生长过程中GaN外延层中会产生很大的张应力,引起GaN薄膜的龟裂,以及外延片的翘曲等现象,导致材料无法用于器件制作。目前,Si基GaN生长主要采用AlN缓冲层结合应力调控插入层来解决GaN开裂问题。其中应力调控插入层主要包括Al组分渐变的AlGaN插入层、低温AlN插入层、AlN/GaN超晶格插入层、富Ga的GaN层或者几种插入层结构结合使用等。但是采用上述方法实现GaN薄膜的外延生长,生长工艺相对复杂,实现相对困难。
发明内容
有鉴于此,本发明的主要目的在于提供一种Si衬底上GaN薄膜的生长方法及由此得到的复合GaN薄膜,从而在Si衬底上生长出高质量、无裂纹的GaN薄膜。
为了实现上述目的,作为本发明的一个方面,本发明提供了一种Si衬底上的复合GaN薄膜,其结构自下而上依次包括Si衬底、AlN缓冲层、GaN缓冲层、第一GaN层、AlN插入层和第二GaN层,其特征在于,所述GaN缓冲层包括2-3个交错堆叠的三维GaN子层和二维GaN子层。
作为本发明的另一个方面,本发明还提供了一种Si衬底上GaN薄膜的生长方法,包括以下步骤:
步骤1:在Si衬底上生长一层AlN层;
步骤2:在所述AlN层上生长GaN缓冲层,其中所述GaN缓冲层包括2-3个交错堆叠的三维GaN子层和二维GaN子层;
步骤3:在所述GaN缓冲层上生长第一GaN层,在所述第一GaN层上生长20-40nm厚的AlN或SiNx插入层,在所述AlN插入层上继续生长超过1μm厚的第二GaN层。
作为本发明的再一个方面,本发明还提供了一种根据如上任意一项所述的Si衬底上GaN薄膜的生长方法制备得到的复合GaN薄膜。
本发明的方法通过GaN缓冲层的三维和二维生长模式的交替生长,利用GaN的三维生长模式有效的弛豫掉由于Si衬底和GaN外延层之间的晶格失配和热失配引起较大的张应力,能够生长出较厚的GaN外延层而不出现裂纹,且生长出来的GaN薄膜表面光滑平整;本发明利用GaN缓冲层的三维和二维生长模式来弛豫应力,用MOCVD系统进行生长,生长方法与现有的应力调节方法相差较大,且结合后续结构中低温AlN插入层过滤位错,能够生长出厚度超过1μm而不开裂,晶体质量较高的表面光亮平整的GaN外延层;本发明利用GaN缓冲层作为应力调控层,不需要额外引入其他材料,且通过控制生长温度和生长V/III比就可实现GaN的三维和二维生长,工艺实现相对容易;利用本发明的方法为目前Si衬底上生长GaN较厚外延层提供了一种简单有效的实现方法。此外,用以上方法生长的GaN外延层在厚度接近2μm时仍然没有发现裂纹。GaN表面光亮平整,晶体生长质量较高。
附图说明
图1是本发明方法得到的Si基上复合GaN薄膜的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明公开了一种Si衬底上生长的复合GaN薄膜,其结构自下而上包括Si衬底、AlN缓冲层、GaN缓冲层、第一GaN层、AlN插入层、第二GaN层。其中,GaN缓冲层具有2-3个三维和二维GaN生长模式循环,三维GaN的厚度为50-150nm,二维GaN的厚度100-200nm。
上述Si衬底上GaN薄膜的生长方法,采用MOCVD(金属有机化学气相沉积)方法实现,具体包括以下步骤:
步骤1:在Si衬底上生长一层高温AlN;
步骤2:在高温AlN上生长GaN缓冲层,具体生长过程为:首先在1020℃-1050℃、NH3流量为30-40L/min的条件下进行GaN的三维生长,得到粗糙的表面;接着在1040℃-1080℃、NH3流量为20-35L/min的条件下进行GaN的二维生长,得到平整的表面。
步骤3:按常规方法在该GaN缓冲层上生长第一GaN层;在该第一GaN层上生长20-40nm厚的低温AlN或SiNx插入层,在该低温AlN或SiNx插入层上继续生长超过1μm厚的第二GaN层。
其中,生长该高温AlN的温度为1050℃-1100℃,该高温AlN的厚度为100nm-150nm;生长该GaN缓冲层的温度为1020℃-1080℃;该GaN缓冲层三维生长的厚度为50-150nm,该GaN缓冲层二维生长的厚度为100-200nm;三维生长和二维生长的循环次数为2-3次。
其中,生长第一和第二GaN层的温度为1030℃-1050℃,第一GaN层生长厚度为200-300nm,第二GaN层厚度超过1μm;生长该低温AlN或SiNx插入层的温度为700℃-800℃。
下面结合附图对本发明的技术方案作进一步的详细阐述说明。
如图1所示,本发明利用GaN的三维和二维生长模式来进行应力调控,在Si衬底上自下而上的结构包括Si衬底、高温AlN缓冲层、GaN缓冲层、GaN层、低温AlN插入层、GaN层。其中GaN缓冲层具有2-3个三维和二维GaN生长模式循环,三维GaN的厚度为50-150nm,二维GaN的厚度100-200nm。采用金属有机化学气相沉积MOCVD法进行生长,具体生长过程为:
步骤1:将Si衬底放入MOCVD生长室中,在1050℃-1100℃下在Si衬底上生长一层100nm-150nm的高温AlN。
步骤2:将生长温度降低到1020℃-1080℃,在AlN缓冲层上生长GaN缓冲层,具体生长过程为:首先在1020℃-1050℃、NH3流量为30-40L/min的条件下进行GaN的三维生长,生长厚度为50-150nm,得到粗糙的表面;接着在1040℃-1080℃、NH3流量为20-35L/min的条件下进行GaN的二维生长,生长厚度为100-200nm,得到平整的表面。这样三维生长和二维生长循环2-3次。
步骤3:调节反应室生长温度和V/III比,按常规方法在1030℃-1050℃生长200-300nm厚GaN层、在700℃-800℃生长20-40nm的低温AlN插入层、继续生长超过1μm厚的GaN层。
以上所述生长方法中的铝源、镓源、氮源分别为三甲基铝、三甲基镓、氨气。
通过光学显微镜、AFM、XRD进行材料表征,GaN表面光滑平整无裂纹,晶体质量相对较好。并且在GaN总厚度接近2μm时没有发现裂纹。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种Si衬底上的复合GaN薄膜,其结构自下而上依次包括Si衬底、AlN缓冲层、GaN缓冲层、第一GaN层、AlN插入层和第二GaN层,其特征在于,所述GaN缓冲层包括2-3个交错堆叠的三维GaN子层和二维GaN子层。
2.如权利要求1所述的Si衬底上的复合GaN薄膜,其中所述三维GaN子层的厚度为50-150nm,二维GaN子层的厚度为100-200nm。
3.一种Si衬底上GaN薄膜的生长方法,包括以下步骤:
步骤1:在Si衬底上生长一层AlN层;
步骤2:在所述AlN层上生长GaN缓冲层,其中所述GaN缓冲层包括2-3个交错堆叠的三维GaN子层和二维GaN子层;
步骤3:在所述GaN缓冲层上生长第一GaN层,在所述第一GaN层上生长20-40nm厚的AlN或SiNx插入层,在所述AlN插入层上继续生长超过1μm厚的第二GaN层。
4.如权利要求3所述的Si衬底上GaN薄膜的生长方法,其中所述各层通过金属有机化学气相沉积法来实现生长。
5.如权利要求3所述的Si衬底上GaN薄膜的生长方法,其中步骤1中所述在Si衬底上生长一层AlN层的步骤的温度控制在1050-1100℃,生长的AlN的厚度为100-150nm。
6.如权利要求3所述的Si衬底上GaN薄膜的生长方法,其中步骤2中所述在AlN层上生长GaN缓冲层的步骤包括:首先在1020-1050℃、NH3流量为30-40L/min的条件下进行GaN的三维生长,生长厚度为50-150nm;接着在1040-1080℃、NH3流量为20-35L/min的条件下进行GaN的二维生长,生长厚度为100-200nm,重复所述GaN的三维生长和二维生长2-3次。
7.如权利要求3所述的Si衬底上GaN薄膜的生长方法,其中步骤3中所述第一和第二GaN层的生长温度为1030-1050℃,所述第一和第二GaN层的厚度为200-300nm;所述AlN或SiNx插入层的生长温度为700-800℃。
8.如权利要求4所述的Si衬底上GaN薄膜的生长方法,其中所述步骤1-3中金属有机化学气相沉积法所使用的铝源、镓源、氮源分别为三甲基铝、三甲基镓、氨气。
9.根据权利要求3至8任意一项所述的Si衬底上GaN薄膜的生长方法制备得到的复合GaN薄膜。
CN201510504913.1A 2015-08-17 2015-08-17 Si衬底上GaN薄膜的生长方法及复合GaN薄膜 Active CN105161578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510504913.1A CN105161578B (zh) 2015-08-17 2015-08-17 Si衬底上GaN薄膜的生长方法及复合GaN薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510504913.1A CN105161578B (zh) 2015-08-17 2015-08-17 Si衬底上GaN薄膜的生长方法及复合GaN薄膜

Publications (2)

Publication Number Publication Date
CN105161578A CN105161578A (zh) 2015-12-16
CN105161578B true CN105161578B (zh) 2018-03-23

Family

ID=54802389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510504913.1A Active CN105161578B (zh) 2015-08-17 2015-08-17 Si衬底上GaN薄膜的生长方法及复合GaN薄膜

Country Status (1)

Country Link
CN (1) CN105161578B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390577B (zh) * 2015-10-26 2018-05-22 华灿光电股份有限公司 一种发光二极管外延片及其制作方法
CN105762063B (zh) * 2016-02-06 2019-09-17 上海新傲科技股份有限公司 一种硅基氮化物外延生长的方法
CN105720159B (zh) * 2016-03-09 2018-01-09 太原理工大学 一种高发光效率氮化镓基led外延片的制备方法
CN105742416B (zh) * 2016-03-09 2017-10-24 太原理工大学 一种高发光效率氮化镓基led外延片的制备方法
CN108598234A (zh) * 2018-04-26 2018-09-28 吉林大学 一种降低SiC衬底上GaN薄膜内张应力的外延结构及其制备方法
CN109671816B (zh) * 2018-11-21 2021-01-19 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
CN109545926A (zh) * 2018-11-30 2019-03-29 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法
CN116093226B (zh) * 2023-04-10 2023-06-20 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302648A (zh) * 2008-01-28 2008-11-12 中国电子科技集团公司第五十五研究所 氮化镓薄膜外延生长结构及方法
CN101515543A (zh) * 2008-02-20 2009-08-26 中国科学院半导体研究所 在硅衬底上生长的氮化镓薄膜结构及其生长方法
CN101807523A (zh) * 2010-03-17 2010-08-18 中国科学院半导体研究所 在大失配衬底上生长表面无裂纹的GaN薄膜的方法
CN103828019A (zh) * 2011-06-30 2014-05-28 Soitec公司 在硅或类似的基材上制造氮化镓的厚的外延层的方法以及使用所述方法获得的层
CN104392900A (zh) * 2014-10-22 2015-03-04 上海世山科技有限公司 一种氮化镓厚膜生长所需的缓冲层结构的形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302648A (zh) * 2008-01-28 2008-11-12 中国电子科技集团公司第五十五研究所 氮化镓薄膜外延生长结构及方法
CN101515543A (zh) * 2008-02-20 2009-08-26 中国科学院半导体研究所 在硅衬底上生长的氮化镓薄膜结构及其生长方法
CN101807523A (zh) * 2010-03-17 2010-08-18 中国科学院半导体研究所 在大失配衬底上生长表面无裂纹的GaN薄膜的方法
CN103828019A (zh) * 2011-06-30 2014-05-28 Soitec公司 在硅或类似的基材上制造氮化镓的厚的外延层的方法以及使用所述方法获得的层
CN104392900A (zh) * 2014-10-22 2015-03-04 上海世山科技有限公司 一种氮化镓厚膜生长所需的缓冲层结构的形成方法

Also Published As

Publication number Publication date
CN105161578A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
CN105161578B (zh) Si衬底上GaN薄膜的生长方法及复合GaN薄膜
US8835988B2 (en) Hybrid monolithic integration
TWI707975B (zh) 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
TWI584378B (zh) 於矽基板上形成iii/v族共形層之方法
CN113206003B (zh) 一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法
CN101847578B (zh) 基于m面Al2O3衬底上半极性GaN的生长方法
CN104576714B (zh) 一种硅上高迁移率GaN基异质结构及其制备方法
US8956952B2 (en) Multilayer substrate structure and method of manufacturing the same
CN111188090A (zh) 一种高质量氮化铝薄膜的同质外延生长方法
WO2017077989A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
Severino et al. 3C-SiC film growth on Si substrates
CN101381891A (zh) 一种制备MgZnO单晶薄膜的方法
JPWO2017077805A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
EP2737521B1 (en) Manufacturing of wafers of wide energy gap semiconductor material for the integration of electronic and/or optical and/or optoelectronic devices
CN105810725A (zh) 硅基氮化镓半导体晶片及其制作方法
CN108039321A (zh) 以SiC为衬底GaN基HEMT器件外延生长方法
CN101901758B (zh) 基于m面SiC衬底的非极性m面GaN薄膜的MOCVD生长方法
KR20150107104A (ko) 탄화 규소 에피택셜층의 성장 방법 및 전력 소자
JP3671215B2 (ja) サファイア基板上への窒化インジウム積層方法
Nurfahana et al. Growth and characterization of AlN thin film deposited by sol-gel spin coating techniques
Yu et al. Control and improvement of crystalline cracking from GaN thin films grown on Si by metalorganic chemical vapor deposition
CN110670138A (zh) 用于氮化铝单晶生长的复合籽晶及其制备方法
CN103094421A (zh) 一种利用AlInN自图形化模板提高a面AlN质量的方法
JP3762992B2 (ja) 単結晶窒化インジウム膜の取得方法
CN212209534U (zh) 一种氮化镓外延芯片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant