CN105161558B - 一种太阳能电池封装薄膜 - Google Patents

一种太阳能电池封装薄膜 Download PDF

Info

Publication number
CN105161558B
CN105161558B CN201510478072.1A CN201510478072A CN105161558B CN 105161558 B CN105161558 B CN 105161558B CN 201510478072 A CN201510478072 A CN 201510478072A CN 105161558 B CN105161558 B CN 105161558B
Authority
CN
China
Prior art keywords
film
solar cell
wear
resisting
cell package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510478072.1A
Other languages
English (en)
Other versions
CN105161558A (zh
Inventor
宋鑫
赵伟涛
李丽
霍弘
黄尚鸿
钟新鸣
刘贤豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lucky Huaguang Graphics Co Ltd
Original Assignee
CHINA LUCKY GROUP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA LUCKY GROUP Corp filed Critical CHINA LUCKY GROUP Corp
Priority to CN201510478072.1A priority Critical patent/CN105161558B/zh
Publication of CN105161558A publication Critical patent/CN105161558A/zh
Application granted granted Critical
Publication of CN105161558B publication Critical patent/CN105161558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明公开了一种太阳能电池封装薄膜,包括透明支持体耐磨滤波层和气体阻隔层,所述封装薄膜光学透过率为80%~95%,封装薄膜对于波长为380nm~1200nm的太阳光具有90%~95%透过率,对于波长1400nm~2500nm的太阳光具有30%~80%的透过率,水蒸气透过率为1×10‑4 g/m2·day~1×10‑1 g/m2·day。本发明产品结构简单,便于生产加工;面密度低,有利于安装运输;水气阻隔性和耐候性好,可满足太阳能电池25年以上的寿命需求。同时,本发明兼具耐磨功能和光学滤波功能,可以进一步改善封装后电池组件的实际发电能力。

Description

一种太阳能电池封装薄膜
技术领域
本发明属于薄膜技术领域,特别涉及一种太阳能电池封装薄膜。
背景技术
太阳能电池前侧封装薄膜是一种用于取代太阳能电池前板玻璃的新型封装材料,是轻量化和柔性化太阳能电池组件的必要组成部分。太阳能电池组件在使用时直接暴露于大气环境中,其封装材料的耐候性和稳定性直接影响到太阳能电池组件的使用寿命。因此,太阳能电池前侧封装薄膜除了要满足高光学透过率以外,还应具有耐摩擦性能和高水气阻隔性能。但纵观已有公开专利技术和市场已有的高阻隔产品,研究和开发的对象多为太阳能电池背板,而鲜有太阳能电池前膜封装技术和产品。仅有的也是产品光学透过率不高,表面耐磨性差,并且不易弯折。
同时,太阳能电池多具有温度效应,伴随温度的提升出现电池输出功率下降的现象。而太阳能光谱中并非所有光线被太阳能电池吸收后均能产生电子空穴对,超过太阳能电池吸收截止波长的红外光波只能被太阳能电池吸收后产生热量。但目前对于太阳能电池入射光管理技术重点解决提高太阳光的光程和减少电池表面光反射,对于如何选择性阻隔对于电池本身有害无益的截止波长以外的红外光未见有公开的技术文献。
发明内容
为解决上述技术问题,本发明提供了一种太阳能电池封装薄膜,所述封装薄膜能够选择性透射太阳光,透射能够转化为电能的、同时滤除不能转化为电能只能提高太阳能电池工作温度的特定波长的光,从而降低太阳能电池组件温度,提高发电效率;所述封装薄膜同时还具有高透明性、高耐磨性、耐候性好、柔韧性好,使用寿命长的特点。
解决上述问题所采取的技术方案为:
一种太阳能电池封装薄膜,所述封装薄膜包括:
透明支持体,在透明支持体一侧形成的耐磨滤波层和在透明支持体另一侧形成的气体阻隔层,
所述封装薄膜光学透过率为80%~95%,封装薄膜对于波长为380nm~1200nm的太阳光具有90%~95%透过率,对于波长1400nm~2500nm的太阳光具有30%~80%的透过率,水蒸气透过率为1×10-4 g/m2·day~1×10-1 g/m2·day。
上述太阳能电池封装膜,所述的透明支持体为乙烯-四氟乙烯共聚物(ETFE)薄膜、全氟乙烯丙烯共聚物(FEP)薄膜,氯代全氟乙烯共聚物(PCTFE)或者聚酰亚胺(PI)薄膜中的任意一种。
上述太阳能电池封装膜,所述透明支持体厚度为12μm~250μm。
上述太阳能电池封装膜,所述气体阻隔层为真空镀膜形成的厚度为100nm~1500nm的氧化硅层。
上述太阳能电池封装膜,所述耐磨滤波层厚度0.5μm~5μm,硬度为1~3H。
上述太阳能电池封装膜,所述耐磨滤波层中含有1~10%质量份的光学滤波颗粒。
上述太阳能电池封装膜,所述光学滤波颗粒为锑掺杂氧化锡(ATO)、铟掺杂氧化锡(ITO)、镓掺杂氧化锡(GTO)、铝掺杂氧化锌(AZO)、硼掺杂氧化锌(BZO)或者镓掺杂氧化锌(GZO)纳米颗粒中的一种或几种。
上述太阳能电池封装膜,所述光学滤波颗粒的平均直径为1nm~1000nm。
上述太阳能电池封装膜,所述光学滤波颗粒的平均直径为10nm~50nm。
本发明的有益效果为:
1. 本发明的太阳能电池封装薄膜应用于太阳能电池组件的前封装,结构简单,能够选择性透光,高透明性、高阻隔性、高耐候性、高硬度、寿命长。
2.本发明的封装薄膜采用三层结构,即耐磨滤波层/透明支持体/气体阻隔层,硬化滤波层的硬度在1~3H,具有优异的抗磨与抗划伤性能,在太阳能电池使用过程中减少封装膜损伤,同时有利于太阳能电池组件在生产、运输、封装和使用过程中擦洗维护;同时,硬化滤波层能够选择性滤除不能被太阳能电池转化为电能、而只能提高太阳能电池温度的特定波长的光,从而能够降低太阳能电池组件的温度,提高太阳能电池组件的转化效率;透明支持体选择高耐候透明材料,能够保证有效光的透过,并具有足够长的使用寿命,满足太阳能电池使用25年的要求;本发明的阻隔层为真空镀膜形成氧化硅层,能够保证足够的有效光的透过,同时,能够减少水气渗入太阳能电池带来的电池组件失效,提高封装薄膜的阻水阻氧性能,延长太阳能电池的寿命。
3. 本发明的封装薄膜采用三层结构,即硬化滤波层/透明支持体层/阻隔层,其中硬化滤波层厚度为,透明支持体厚度为,阻隔层厚度为100nm~1500nm,符合当前太阳能电池,特别是柔性太阳能电池对轻量化的要求,同时有利于降低产品运输与安装成本。
附图说明
图1为本发明太阳能电池封装薄膜的结构示意图;
图2为本发明本发明封装薄膜光学透过率测试结果曲线图;
图中的201为实施例1封装薄膜光学透过率的测试曲线图;
202为实施例2封装的薄膜光学透过率的测试曲线图;
203为实施例3封装的薄膜光学透过率的测试曲线图;
204为对比例1封装的薄膜光学透过率的测试曲线图。
图中各标号表示为:101、为耐磨滤波层,102、透明支持体,103、气体阻隔层。
具体实施方式
本发明的太阳能电池封装薄膜的组成为透明支持体102,在透明支持支持体一侧形成的耐磨滤波层101,和在透明支持体102的另一侧形成的气体阻隔层103。
本发明的封装薄膜能够应用于柔性CIGS太阳能电池、薄晶硅太阳能电池、有机聚合物太阳能电池等多种柔性太阳能电池前侧封装。
本发明的封装薄膜采用耐磨滤波层/透明支持体/气体阻隔层三层结构。该封装薄膜对于波长为380nm~1200nm的太阳光具有90%~95%透过率,对于波长1400nm~2500nm的太阳光具有30%~80%的透过率,同时,封装薄膜的光学透过率为80%~95%。能够有效防止不能被电池转化为电能的有害光透过,并能保证能转化为电能的波长为380nm~1200nm的太阳光的透过,从而在保证不降低光电转化效率的前提下,有效降低太阳能电池组件工作温度,提高太阳能电池组件的整体转化效率。
本发明的耐磨滤波层由耐磨涂布液经涂布干燥制得,耐磨滤波涂层的厚度优选0.5μm~5μm。耐磨滤波层提供滤波性能和耐磨性能。通过添加光学滤波材料能实现减少太阳光谱中1400nm~2500nm波长的光的透射到太阳能电池基板上,上述波长的光不能够被太阳能电池转化为电能,但是,被太阳能电池吸收后会增加太阳能电池的工作温度,从而降低太阳能电池效率。
本发明的耐磨滤波层优选具有1H~3H的铅笔硬度,具有优异的抗磨与抗划伤性能,在太阳能电池使用过程中减少封装膜损伤,同时有利于太阳能电池组件在生产、运输、封装和使用过程中擦洗维护。
本发明的耐磨滤波层由耐磨滤波层涂布液涂布干燥而成,耐磨滤波层涂布液由能够形成高硬度透明涂层的涂布液和光学滤波材料组成,所述的光学滤波材料占耐磨滤波层涂布液的质量百分含量为1~10%。耐磨滤波层的硬度为1~3H。耐磨滤波层的光学透过率为80~99%。
本发明中的光学滤波材料为锑掺杂氧化锡(ATO)、铟掺杂氧化锡(ITO)、镓掺杂氧化锡(GTO)、铝掺杂氧化锌(AZO)、硼掺杂氧化锌(BZO)或者镓掺杂氧化锌(GZO)纳米颗粒中的任意一种或者几种组合,所述光学滤波材料为纳米级颗粒,粒径尺寸优选1nm~1000nm,更优选10nm~50nm。通过优选光学滤波材料、并控制光学滤波材料的添加量和颗粒度,使得本发明的封装薄膜对1400~2500nm波长的光的滤除率达20%以上,同时能够保证能够被转化为太阳能的光线的透过。
本发明中高硬度透明涂层涂布液可以为热固化体系,也可以为紫外光固化体系,优选紫外光固化体系。
本发明的封装薄膜的气体阻隔层为厚度100nm~1500nm的氧化硅材料,本发明封装薄膜的水蒸气透过率为1×10-4 g/m2·day~1×10-1 g/m2·day。
本发明的气体阻隔层使用真空镀膜的方法在基膜材料表面制备,其中镀膜的方法可以是蒸发镀膜、电子束辅助蒸发镀膜、磁控溅射镀膜或者化学气相沉积镀膜中任意一种方式。其中阻隔层优选使用等离子体辅助化学气相沉积(PECVD)方法制备氧化硅阻隔膜层,其制备工艺为:选择六甲基二硅醚(HMDSO)和氧气(O2)作为反应的原料气体,二者通入反应腔室的气体体积比例范围为1:5~1:50,控制镀膜气压范围为0.5Pa~50Pa,电源馈入功率为25W~250W。通过调节镀膜时间可以控制阻隔层的厚度,最终获得的阻隔层厚度范围为100nm~1500nm。其中,优选的镀膜工艺条件为HMDSO:O2=1:20,镀膜压强10Pa,镀膜功率150W,最终获得镀膜厚度500nm,阻隔层水蒸气透过率5×10-4 g/m2·day。
本发明的太阳能电池封装薄膜材料中透明支持体要求透光率大于等于85%,优选透光率大于等于90%。支持体为高透光率材料,减小太阳光通过造成的损失,提高太阳光的使用效率。支持体的厚度范围12μm~250μm,其中优选支持体厚度25μm~100μm。若透明支持体厚度小于25μm,则生产难度大,不易于实现,若大于100μm,则面密度高,且材料成本过高不易于产业化生产。
为了保证封装薄膜的使用寿命超过25年,同时拥有足够的光线透过率,适用于本发明的支持体为乙烯-四氟乙烯共聚物(ETFE)薄膜、全氟乙烯丙烯共聚物(FEP)薄膜,氯代全氟乙烯共聚物(PCTFE)或者聚酰亚胺(PI)薄膜中的任意一种。优选乙烯-四氟乙烯共聚物(ETFE)薄膜、全氟乙烯丙烯共聚物(FEP)薄膜或者聚酰亚胺(PI)薄膜。为了实现涂层更牢固,可以对透明支持体表面进行处理,处理方式可以包括底涂层涂布或电晕处理,优选进行电晕处理。
本发明的制备步骤:
步骤一,将透明支持体的双面进行电晕处理;
步骤二,制备耐磨滤波涂布液,将涂布液涂布于透明支持体表面,通过车速和网纹辊的选择控制涂布成膜厚度,烘干后进行紫外光固化,得到耐磨滤波层;
步骤三,在透明支持体的另一面上进行真空镀膜,通过控制车速与成膜工艺,得到气体阻隔层。
以下提供几个实施例对本发明作进一步详细说明。
实施例1
选用厚度为50μm的ETFE薄膜,经过表面清洁与预处理,进行电晕处理;
制备耐磨涂布液,使用网纹辊在ETFE薄膜表面涂布耐磨滤波涂层,涂层厚度控制3μm,经80℃烘干后,使用紫外光固化。
固化后再使用PECVD在未进行涂布的ETFE薄膜表面沉积一层厚300nm的氧化硅薄膜,即可获得所需的太阳能电池前侧封装薄膜材料。
如实施例1所示的涂布液组成为:
用直径为10纳米的ITO纳米粒子和透明耐磨涂布液组成耐磨滤波涂布液,其中ITO在耐磨滤波涂布液中的质量百分含量为10%;
透明耐磨涂布液为固化后硬度为3H的紫外光固化涂布液。
如实施例1所述的太阳能电池前侧封装薄膜,其性能如表1所示,光学透过率如图2所示。
实施例2
在实施例1中,使用ITO纳米粒子在耐磨滤波涂布液中的质量百分含量为5%,沉积氧化硅薄膜厚度为400nm,除此以外,与实施例1同样操作。对所得太阳能电池虔诚封装薄膜进行光学透过率测试表征,结果如图2所示。
实施例3
在实施例1中,使用ITO纳米粒子在耐磨滤波涂布液中的质量百分含量为1%,沉积氧化硅薄膜厚度为100nm,除此以外,与实施例1同样操作。对所得太阳能电池封装薄膜进行光学透过率测试表征,结果如图2所示。
实施例4
在实施例1中,沉积氧化硅薄膜的厚度为500nm,除此以外,与实施例1同样操作。对所得太阳能电池封装薄膜进行测试表征,结果如表1所示。
实施例5
在实施例1中,沉积氧化硅薄膜的厚度为1500nm,除此以外,与实施例1同样操作。对所得太阳能电池封装薄膜进行测试表征,结果如表1所示。
实施例6
在实施例1中,使用厚度50使用的透明PI薄膜作为基膜材料,除此以外,与实施例1同样操作。对所得太阳能电池封装薄膜进行测试表征,结果如表1所示。
对比例1
在实施例1中,使用ITO纳米粒子在耐磨滤波涂布液中的质量百分含量为15%,除此以外,与实施例1同样操作。对所得太阳能电池封装薄膜进行光学透过率测试表征,结果如图2所示。
对比例2
在实施例1中,沉积氧化硅薄膜的厚度为2000nm,除此以外,与实施例1同样操作。对所得太阳能电池封装薄膜进行测试表征,结果如表1所示。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,如改变支持体材料、厚度,改变镀膜方式、工艺和涂布配方,都应当视为属于本发明的保护范围。
所述的封装薄膜光学透过率为80%~95%,封装薄膜对于波长为380nm~1200nm的太阳光具有90%~95%透过率,对于波长1400nm~2500nm的太阳光具有30%~80%的透过率,水蒸气透过率为1×10-4 g/m2·day~1×10-1 g/m2·day。
表1 各实施例、对比例薄膜材料性能
性能测试标准如下:
水蒸气透过率测试标准:GB/T 21529-2008
光学透过率测试标准:GB/T 2410-2008
耐磨性测试标准:GB/T 1768-79(89)
附着力测试标准:GB/T 9286-1998
湿热老化实验标准:GB/T12000-1989
由表1和图2可知,实施例1~6均可满足薄膜设计的性能指标,可以同时兼顾材料的阻隔性、耐磨性和光学滤波性能,特别适用于柔性太阳能电池封装。

Claims (7)

1.一种太阳能电池封装薄膜,其特征在于,所述封装薄膜包括:
透明支持体,在透明支持体一侧形成的耐磨滤波层和在透明支持体另一侧形成的气体阻隔层,
所述封装薄膜光学透过率为80%-95%,封装薄膜对于波长为380nm-1200nm的太阳光具有90%-95%透过率,对于波长1400nm-2500nm的太阳光具有30%-80%的透过率,水蒸气透过率为1×10-4g/m2·day-1×10-1g/m2·day;
所述耐磨滤波层中含有1-10%质量份的光学滤波颗粒;
所述光学滤波颗粒为锑掺杂氧化锡(ATO)、铟掺杂氧化锡(ITO)、镓掺杂氧化锡(GTO)、铝掺杂氧化锌(AZO)、硼掺杂氧化锌(BZO)或者镓掺杂氧化锌(GZO)纳米颗粒中的一种或几种;
制备耐磨滤波涂布液,将耐磨滤波涂布液涂布于透明支持体表面,通过车速和网纹辊的选择控制涂布成膜厚度,烘干后进行紫外光固化,得到耐磨滤波层。
2.如权利要求1所述的太阳能电池封装薄膜,其特征在于,所述的透明支持体为乙烯-四氟乙烯共聚物(ETFE)薄膜、全氟乙烯丙烯共聚物(FEP)薄膜,氯代全氟乙烯共聚物(PCTFE)或者聚酰亚胺(PI)薄膜中的任意一种。
3.如权利要求1或2所述的太阳能电池封装薄膜,其特征在于,所述透明支持体厚度为12μm-250μm。
4.如权利要求3所述的太阳能电池封装薄膜,其特征在于,所述气体阻隔层为真空镀膜形成的厚度为100nm-1500nm的氧化硅层。
5.如权利要求4所述的太阳能电池封装薄膜,其特征在于,所述耐磨滤波层厚度0.5μm-5μm,硬度为1-3H。
6.如权利要求5所述的太阳能电池封装薄膜,其特征在于,所述光学滤波颗粒的平均直径为1nm-1000nm。
7.如权利要求6所述的太阳能电池封装薄膜,其特征在于,所述光学滤波颗粒的平均直径为10nm-50nm。
CN201510478072.1A 2015-08-06 2015-08-06 一种太阳能电池封装薄膜 Active CN105161558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510478072.1A CN105161558B (zh) 2015-08-06 2015-08-06 一种太阳能电池封装薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510478072.1A CN105161558B (zh) 2015-08-06 2015-08-06 一种太阳能电池封装薄膜

Publications (2)

Publication Number Publication Date
CN105161558A CN105161558A (zh) 2015-12-16
CN105161558B true CN105161558B (zh) 2017-08-15

Family

ID=54802371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510478072.1A Active CN105161558B (zh) 2015-08-06 2015-08-06 一种太阳能电池封装薄膜

Country Status (1)

Country Link
CN (1) CN105161558B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107150482A (zh) * 2016-03-06 2017-09-12 深圳格林德能源有限公司 一种封装膜及使用该膜封装的聚合物锂电池
CN106013536A (zh) * 2016-06-08 2016-10-12 中山大学 一种适用于亚热带地区的特朗勃幕墙
CN106129258A (zh) * 2016-08-30 2016-11-16 中国乐凯集团有限公司 柔性太阳能电池封装用多层复合薄膜及其应用
CN107452891A (zh) * 2017-05-22 2017-12-08 茆胜 兼具柔性和耐磨性能的oled封装结构及封装方法
CN108598198A (zh) * 2018-04-26 2018-09-28 上海空间电源研究所 一种耐原子氧柔性高透明导电封装材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI263403B (en) * 2004-01-22 2006-10-01 Murata Manufacturing Co Electronic component manufacturing method
CN103208549B (zh) * 2013-03-15 2015-07-08 苏州福斯特光伏材料有限公司 一种太阳能电池组件背膜材料
CN103794670A (zh) * 2014-02-28 2014-05-14 英利能源(中国)有限公司 一种柔性背板以及光伏组件
CN104362203A (zh) * 2014-10-28 2015-02-18 朱家元 一种高效太阳能光伏板

Also Published As

Publication number Publication date
CN105161558A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
CN105161558B (zh) 一种太阳能电池封装薄膜
CN104134711B (zh) 一种钙钛矿太阳能电池的制备方法
CN102709402B (zh) 基于图形化金属衬底的薄膜太阳电池及其制作方法
EP2717320B1 (en) Preparation method for surface-textured conductive glass and its application for solar cells
Alarifi Advanced selection materials in solar cell efficiency and their properties-A comprehensive review
Meillaud et al. Realization of high efficiency micromorph tandem silicon solar cells on glass and plastic substrates: Issues and potential
CN106966603A (zh) 一种高透光率光伏镀膜玻璃的制备方法
CN105098082A (zh) 一种钙钛矿太阳能电池的制备方法
CN101497992A (zh) 用等离子体轰击制备绒面氧化锌透明导电镀膜玻璃的方法
Kong et al. Progress in flexible perovskite solar cells with improved efficiency
CN103779499A (zh) 一种Ag纳米粒子点缀石墨烯复合薄膜材料及制备
CN104681662A (zh) 一种高反射率太阳能薄膜的制备方法
CN102544177A (zh) 用于太阳电池的等离子体激元增强上转换器及其制备方法
CN101567396A (zh) 用于太阳能电池的透明导电基板
Chanta et al. Development of anti-reflection coating layer for efficiency enhancement of ZnO dye-sensitized solar cells
CN102916057B (zh) 一种晶硅太阳能电池梯度折射率减反膜及其制备方法
CN202523741U (zh) 太阳能电池封装用增透玻璃
Bu Self-assembled, wrinkled zinc oxide for enhanced solar cell performances
JP5696667B2 (ja) 有機光電変換素子
CN109192800B (zh) 一种含氟的薄膜太阳能电池前膜及其制造工艺
TW201403832A (zh) 薄膜太陽能電池用層合體、及使用此之薄膜太陽能電池之製造方法
CN103280466B (zh) 基于AlOx/Ag/ZnO结构的高反射高绒度背电极
CN103963387B (zh) 一种高吸热低反射蓝膜镀膜玻璃及其制造方法
CN103183480A (zh) Azo镀膜玻璃的制备方法
CN103204633B (zh) 一种具有多种刻蚀模式的刻蚀系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181212

Address after: 473003 No. 718 South Station Road, Nanyang City, Henan Province

Patentee after: Lucky Huaguang Graphics Co., Ltd.

Address before: 071054 No. 6 Lekanan Street, Baoding City, Hebei Province

Patentee before: China Lucky Group Corporation