CN105158514A - 一种重复单元结构tem样品的定位方法 - Google Patents

一种重复单元结构tem样品的定位方法 Download PDF

Info

Publication number
CN105158514A
CN105158514A CN201510460194.8A CN201510460194A CN105158514A CN 105158514 A CN105158514 A CN 105158514A CN 201510460194 A CN201510460194 A CN 201510460194A CN 105158514 A CN105158514 A CN 105158514A
Authority
CN
China
Prior art keywords
unit structure
sample
tem sample
repeat unit
protective seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510460194.8A
Other languages
English (en)
Other versions
CN105158514B (zh
Inventor
陈强
孙蓓瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201510460194.8A priority Critical patent/CN105158514B/zh
Publication of CN105158514A publication Critical patent/CN105158514A/zh
Application granted granted Critical
Publication of CN105158514B publication Critical patent/CN105158514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提出一种重复单元结构TEM样品的定位方法,所述TEM样品由FIB制备完成,所述重复单元结构内部或相邻结构之间没有填充物,其特征在于先对包含观测目标的重复单元结构区域分别叠加淀积不同致密度的第一和第二保护层,实施填充,再根据切割时重复单元结构内部或相邻结构之间填充物的疏密状况定位到观测目标。本发明还提出一种利用上述定位方法实施重复单元结构的定点TEM的制样方法。本发明及相应的制样方法在现有技术上提高了TEM制样效率,改善了重复单元结构TEM样品的定位精准程度,进一步提高了制样的成功率和准确性,降低了制样的难度和成本。

Description

一种重复单元结构TEM样品的定位方法
技术领域
本发明涉及一种集成电路失效分析(FA)中透射电镜(TEM)样品的定位方法,特别涉及重复单元结构TEM样品的定位方法。
背景技术
在集成电路IC制程持续发展的今天,由于器件尺寸不断变小,使得分析其失效原因的难度也随之不断变大,因为物理失效分析(PFA)往往很难找到明显的失效特征或失效点。这时就需要综合使用多种失效分析工具,如光发射显微镜(EMMI)、光诱致电阻变化(OBRICH)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、聚焦离子束显微镜(FIB)、能谱仪(EDS)等。通过多种工具组合寻找器件的真实失效原因。在众多PFA工具中,TEM拥有的次纳米级的高分辨分析能力,能够观察IC芯片的内部结构和晶体缺陷,并能对同一区域进行衍衬成像及电子衍射研究,把形貌信息与结构信息联系在一起,因此已经成为集成电路失效分析中一种不可缺少的重要手段。
由于TEM利用穿透样品的电子束成像,而电子本身穿透能力很弱,所以TEM的样品,尤其是需要观测部位做得很薄,一般为50-500纳米。透射过样品的电子束强度取决于加速电压、样品的厚度,平均原子序数,晶体结构或位相等因素。
为取得上述厚度薄为50-500纳米的样品,集成电路业界有一套由多种工具组合使用的常规的TEM样品制备方法,具体为:首先,通过机械研磨的方法将硅片沿着剖面双向减薄到20um以下,接着再用低能离子束继续减薄样品到TEM可观察的厚度,或者用FIB双面切削的方法来减薄制备TEM样品。
由于目前集成电路已经实现超高集成度,单个IC芯片包含的器件数已经是百万数量级,而TEM制样的观测范围却只有微米量级,需要精确定位,以防止目标落在观测范围之外,目前比较理想的解决方法是通过聚焦离子束显微镜的聚焦离子束刻蚀(FIB-FocusedIonBeam)来进行精细加工。
FIB制备TEM样品的具体方法为:先通过切割、研磨等方法将样品尺寸做到50-100微米左右,再利用FIB去掉TEM样品需要观察的器件所在的特定区域两侧的区域,直至形成0.1微米左右的“薄墙”,该“薄墙”上保留了需要观察的器件结构。为了获得高质量的“薄墙”,并减少因离子束轰击引起的损伤,在样品制备过程中,一般先在样品需要观察的器件所在的保留区域上利用FIB淀积功能淀积一层Pt,用以保护该区域,并随着FIB刻蚀的进行,补助调整FIB束流,减小束斑,实现精细刻蚀。
现有技术的实际操作中,在具有特殊结构的样品上面制备TEM样品,并在所制备的TEM样品后续观察目标结构比较容易,这是因为其特殊结构异于常规结构,显而易见,使用FIB刻蚀制备样品时,容易查找发现。这类样品的定位通常简单且直观。
但是,对于大量重复的相同结构和尺寸的孔洞或沟槽类单元结构,当呈矩阵型块状排列时,比如接触孔CT的密集阵列,如图1所示,或金属M1刻蚀后的沟槽,如图2所示,制样完成后使用TEM观测时就很难确认其失效单元的位置:一方面是由于该类结构完全重复相同,且尺寸随技术发展将进一步日趋减小;另一方面,制样过程可能将部分失效或缺陷特征破坏甚至清除。其结果就是造成该类结构制样效率低下,甚至可能发生所分析单元不是失效点,因而影响分析结果,提供错误的信息。
因此,为进一步改善重复单元结构TEM样品的定位精准程度,提高该类样品的制样效率,快速而准确的利用TEM完成集成电路结构的形貌和失效分析,需要开发一种基于重复单元结构TEM样品的定位方法,以提高制样的成功率和准确性,并能降低制样的难度和成本。
发明内容
本发明所要解决的技术问题在于进一步提高重复单元结构TEM样品的定位精准程度,提高该类样品的制样效率,为快速而准确的完成TEM的形貌和失效分析,降低制样的难度和成本提供帮助。
为解决上述技术问题,本发明提出了一种重复单元结构TEM样品的定位方法。
本发明提出一种重复单元结构TEM样品的定位方法,所述TEM样品由FIB制备完成,所述重复单元结构内部或相邻结构之间没有填充物,其特征在于先对包含观测目标的重复单元结构区域分别叠加淀积不同致密度的第一和第二保护层,实施填充,再根据切割时重复单元结构内部或相邻结构之间填充物的疏密状况定位到观测目标。
可选的,所述重复单元结构为相同尺寸和形貌的孔洞或沟槽图形组成,行列数大于20*20的矩阵;
可选的,所述两层保护层均为Pt或W构成的金属层,厚度均为0.3~1微米;
可选的,步骤S1所述的第一保护层由高电压的电子束沉积而成,电压值为5~10KV;
优选的,以观测目标为中心的第一保护层所覆盖区域的大小为3*3的重复单元矩阵,或0.5*0.5微米的正方形;
可选的,步骤S2所述的第二保护层由低电压的电子束沉积而成,电压值为1~2KV;
优选的,第二保护层整体覆盖第一保护层,呈尺寸为10*2微米的长方形。
本发明提出一种重复单元结构定点制备TEM样品的制样方法,其步骤包括;
步骤S01:以观测目标为中心淀积第一保护层;
步骤S02:在第一保护层上方淀积并覆盖第二保护层;
步骤S03:制备第一切割面,定位目标观测点;
步骤S04:制备第二切割面;
步骤S05:取下样品,移出FIB,完成TEM样品制备;
可选的,步骤S3所述的制备第一切割面为,先使用大电流离子束切割样品到由第一保护层覆盖填充的单元矩阵的第一排结构,再切换为小电流离子束继续切割,经由第二保护层覆盖边缘直至到达观测目标的位置,完成制备第一切割面;
可选的,步骤S4所述的第二切割面在距离第一切割面0.05~0.2微米微米的反面,与第一切割面一起形成薄片TEM样品。
众所周知,通常每个IC电路的孔洞(接触孔)和沟槽(STI)的形貌和尺寸设计都是相同的,而且在芯片日趋超高集成度的今天,每个电路中孔洞和沟槽存在的数量规模也是非常巨大的,往往是几百*几百的矩阵排列。这一点对于SRAM、DRAM和Flash等由相同cell结构组成的memory电路更加明显。在成百上千重复密集排列的相同结构中寻找特定的观测目标,对其进行截面切割,然后在实施TEM观测,其难度主要集中在观测目标的定位上,也就是该类TEM分析成功与否的关键在于对于目标的定位。
按照现有技术的常规做法,先通过平面观测找到观测目标,然后转动样品进行垂直后切割直到找到所需目标的截面;由于样品上存在大量重复单元的排列矩阵,现有技术的制样时也会在切割前,在包含观测目标的平面区域先淀积一层保护金属,一方面是作为垂直切割的初级定位标记,另一方面也可以保护目标结构不会在切割时受到损伤,然后再进行垂直切割。尽管如此,实际操作中,按现有技术的制样方法很难确认观测目标的位置,经常发生观测目标丢失,或者由于相同的单元结构,定位并观测到错误的单元,影响分析结果的情况。
由上述描述可知,本发明提出的TEM样品的定位方法,主要针对存在大量重复单元的结构的集成电路IC,在现有技术的基础上进一步实施改进。本发明方法采用现有技术中TEM制样的常用工具FIB制备完成。利用FIB离子束在加载不同加速电压时能够淀积不同致密度金属膜质的特点,在样品平面上寻找到观测目标后,先以观测目标为中心,实施小范围区域的高致密度金属保护膜-第一保护层淀积填充,然后在上述区域基础上扩大淀积面积,再次淀积致密度低的金属保护膜,使其完全覆盖高致密度金属保护膜区域,使重复单元结构按距离所需观测的目标的远近出现金属保护填充物从低致密度到高致密度的变化,随后从低致密度金属保护区域边缘向中间方向开始垂直切割,观测重复单元结构中填充物的疏密情况就可以确定切割位置离观测目标的远近,并最终定位到观测目标。
由上述方法,本发明还提出了一种重复单元结构定点制备TEM样品的制样方法。
首先,在以观测目标为中心淀积第一保护层,也就是高致密度金属保护膜,接着在第一保护层上方淀积第二保护层,也就是低致密度金属保护膜,然后制备第一切割面,先使用大电流离子束切割样品到由第一保护层覆盖填充的单元矩阵的第一排结构,再使用小电流离子束继续切割到由第二保护层覆盖填充的单元矩阵的第一排结构,可以通过重复单元结构填充物致密度的变化确定所切割位置与观测目标的距离,并继续切割直至到达观测目标的位置,并以此作为第一切割面;然后在距离第一切割面0.02~0.5微米的反面制备第二切割面,并取下样品,移出FIB,完成TEM样品制备。制备第二切割面以及后续步骤与现有技术的常规方法完全相同。
进一步的优化方案为,缩小第一保护层淀积的面积。本发明第一保护层淀积的区域以观测目标为中心,以3*3的重复单元矩阵为大小,或者是淀积一个0.5*0.5微米的正方形区域。根据实际样品中单元重复的尺寸决定第一保护层淀积区域的大小,当切割过程中发现重复单元填充物发生致密度的变化,再根据已知的第一保护层区域大小,能更好的把握的切割速度,快速,精确的找到观测目标,极大地提高重复单元结构的样品定点制备TEM样品的效率和成功率。
本发明提出的TEM样品的定位方法,针对存在大量重复单元的结构的集成电路IC,是在现有技术的基础上进一步实施改进。本发明方法能进一步改善重复单元结构TEM样品的定位精准程度,提高制样的成功率和准确性,并能降低制样的难度和成本。
附图说明
图1a~3b是本发明方法的步骤示意图,其中1a,2a,3a是各步骤的平面俯视图;1b,2b,3b是与各步骤对应的截面图。
图4a~4c是本发明方法实施例的STI沟槽的TEM示意图。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
其次,本发明利用示意图进行详细的表述,在详述本发明实例时,为了便于说明,示意图不依照一般比例局部放大,不应以此作为对本发明的限定。
下面结合说明书附图对本发明的实施例进一步说明。
实施例一
本实施例是利用FIB制备一个定点孔洞的TEM样品,属于沟槽、孔洞类的重复单元结构的大矩阵排列。
主要TEM样品的制样步骤如下:
首先,在FIB中观察样品的平面,寻找目标孔洞A。
接着,以目标孔洞A为中心,使用电压为5~10KV的高电压电子束沉积第一金属保护层P1,面积覆盖目标孔洞A在内的确定个数的孔洞。
本实施例中,第一金属保护层P1使用金属Pt,淀积厚度为1微米,其覆盖的孔洞区域为一个以目标孔洞A为中心的3*3孔洞的矩阵。平面形貌如图1a所示,截面如图1b所示,其中孔洞A为示意位置。
因为淀积使用为高电压,所以所淀积的金属保护层P1较为致密,在切割后的截面图像中显示的孔洞的填充中没有空洞。
然后,在第一金属保护层P1的上方继续沉积第二金属保护层P2。
本实施例中,第二金属保护层P2也使用金属Pt,淀积厚度为2微米,淀积面积为2*10微米。第二金属保护层P2将第一金属保护层P1完全覆盖。本实施例的第二金属保护层P2使用电压为1~2KV的低电压电子束淀积完成。淀积后的平面形貌如图2a所示,截面如图2b所示,其中孔洞A为示意位置。
因为淀积使用为低电压,所以所淀积的金属保护层P2较P1疏松,在切割后的截面图像中显示为,所填充的孔洞沿着孔洞的中心线存在空洞。
接着开始FIB的切割过程。
先使用较大电流的离子束沿着R方向切割样品到由高电压电子束沉积的第一金属保护层P1所覆盖的孔洞第一排,由于高电压电子束填充的孔洞较为密实,而低电压电子束填充的孔洞有空洞,利用这差异可以知道目标的位置。
接着,改用较小电流的离子束继续切割到目标孔洞,完成TEM样品第一切割面的制备;平面形貌如图3a所示,截面如图3b所示。
继续完成后续的TEM样品的制备步骤:
1.从样品第一切割面的背面进行切割,制备样品第二切割面,形成薄膜样品;
2.将薄膜样品取出;
3.将薄膜样品放入TEM观测。
实施例二
本实施例是利用FIB制备一个Flash芯片的定点STI沟槽的TEM样品,属于沟槽、孔洞类的重复单元结构的大矩阵排列。
首先,在FIB中观察样品的平面,寻找目标沟槽。
接着,以目标沟槽为中心,使用电压为5~10KV的高电压电子束沉积第一金属保护层P1,覆盖以目标沟槽在内,0.5*0.5微米的面积。第一金属保护层使用金属Pt,淀积厚度为1微米。
然后,在第一金属保护层的上方继续沉积第二金属保护层。
本实施例中,第二金属保护层也使用金属Pt,淀积厚度为2微米,淀积面积为2*10微米。第二金属保护层将第一金属保护层完全覆盖。本实施例的第二金属保护层使用电压为1~2KV的低电压电子束淀积完成。
接着开始FIB的切割过程。
先使用较大电流的离子束切割样品到由高电压电子束沉积的第一金属保护层所覆盖的沟槽第一排,再切换为小电流离子束继续切割,经由第二保护层覆盖边缘直至到达观测目标的位置。由于高电压电子束淀积的金属保护层填充的沟槽较为密实,而低电压电子束填充的沟槽有空洞,利用这差异可以知道目标的位置。图4a和图4c为仅有第二金属保护层填充覆盖的沟槽及内部填充TEM照片,图4b为第一金属保护层填充覆盖的沟槽及内部填充TEM照片,当然其上还覆盖有第二保护层金属保护层,照片中没有显示。从沟槽填充的情况,很容易可以识别两种保护层的区别,图4a和图4c沟槽中心有空洞,而图4b则没有,因此图4a和图4c所示位置并没有进入第一金属保护层覆盖的包含观测目标的区域,而图4b则已经靠近目标,由此可以进行准确定位。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (10)

1.一种重复单元结构TEM样品的定位方法,所述TEM样品由FIB制备完成,所述重复单元结构内部或相邻结构之间没有填充物,其特征在于先对包含观测目标的重复单元结构区域分别叠加淀积不同致密度的第一和第二保护层,实施填充,再根据切割时重复单元结构内部或相邻结构之间填充物的疏密状况定位到观测目标。
2.如权利要求1所述的一种重复单元结构TEM样品的定位方法,其特征在于,所述重复单元结构由相同尺寸和形貌的孔洞或沟槽图形组成,行列数大于20*20的矩阵。
3.如权利要求1所述的一种重复单元结构TEM样品的定位方法,其特征在于,所述两层保护层均为Pt或W构成的金属层,厚度均为0.3~1微米。
4.如权利要求1所述的一种重复单元结构TEM样品的定位方法,其特征在于,所述第一保护层由高电压的电子束沉积而成,电压值为5~10KV。
5.如权利要求4所述的一种重复单元结构TEM样品的定位方法,其特征在于,以观测目标为中心的第一保护层所覆盖区域的大小为3*3的重复单元矩阵,或0.5*0.5微米的正方形。
6.如权利要求1所述的一种重复单元结构TEM样品的定位方法,其特征在于,所述第二保护层由低电压的电子束沉积而成,电压值为1~2KV。
7.如权利要求6所述的一种重复单元结构TEM样品的定位方法,其特征在于,第二保护层整体覆盖第一保护层,呈尺寸为10*2微米的长方形。
8.一种重复单元结构定点制备TEM样品的制样方法,其步骤为:
步骤S1以观测目标为中心淀积第一保护层;
步骤S2在第一保护层上方淀积并覆盖第二保护层;
步骤S3制备第一切割面,定位目标观测点;
步骤S4制备第二切割面;
步骤S5取下样品,移出FIB,完成TEM样品制备。
9.如权利要求8所述的一种重复单元结构定点制备TEM样品的制样方法,其特征在于,步骤S3所述的制备第一切割面为,先使用大电流离子束切割样品到由第一保护层覆盖填充的单元矩阵的第一排结构,再切换为小电流离子束继续切割,经由第二保护层覆盖边缘直至到达观测目标的位置,完成制备第一切割面。
10.如权利要求8所述的一种重复单元结构定点制备TEM样品的制样方法,其特征在于,步骤S4所述的第二切割面在第一切割面的反面,间距0.05~0.2微米,与第一切割面一起形成薄片TEM样品。
CN201510460194.8A 2015-07-30 2015-07-30 一种重复单元结构tem样品的定位方法 Active CN105158514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510460194.8A CN105158514B (zh) 2015-07-30 2015-07-30 一种重复单元结构tem样品的定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510460194.8A CN105158514B (zh) 2015-07-30 2015-07-30 一种重复单元结构tem样品的定位方法

Publications (2)

Publication Number Publication Date
CN105158514A true CN105158514A (zh) 2015-12-16
CN105158514B CN105158514B (zh) 2018-02-27

Family

ID=54799435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510460194.8A Active CN105158514B (zh) 2015-07-30 2015-07-30 一种重复单元结构tem样品的定位方法

Country Status (1)

Country Link
CN (1) CN105158514B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706386A (zh) * 2016-12-16 2017-05-24 武汉新芯集成电路制造有限公司 透射电镜样品的制备方法及观测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243540A (ja) * 2010-05-21 2011-12-01 Hitachi High-Technologies Corp 透過電子顕微鏡の制限視野絞りプレート、制限視野絞りプレートの製造方法及び制限視野電子回折像の観察方法
CN103021802A (zh) * 2011-09-23 2013-04-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件的检测样本制作方法及检测样本
CN103196713A (zh) * 2013-02-27 2013-07-10 上海华力微电子有限公司 分析样品的制备方法
CN103376217A (zh) * 2012-04-23 2013-10-30 中芯国际集成电路制造(上海)有限公司 Tem样品的精确定位的制作方法
US20140103582A1 (en) * 2012-10-15 2014-04-17 International Business Machines Corporation Nano-Pipet Fabrication
US20140138350A1 (en) * 2011-06-03 2014-05-22 Fei Company Method for preparing samples for imaging
US20150042702A1 (en) * 2013-08-11 2015-02-12 NanoMedia Solutions Inc. Nano-media information carrier based on pixelated nano-structures combined with an intensity control layer
CN104425350A (zh) * 2013-09-10 2015-03-18 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243540A (ja) * 2010-05-21 2011-12-01 Hitachi High-Technologies Corp 透過電子顕微鏡の制限視野絞りプレート、制限視野絞りプレートの製造方法及び制限視野電子回折像の観察方法
US20140138350A1 (en) * 2011-06-03 2014-05-22 Fei Company Method for preparing samples for imaging
CN103021802A (zh) * 2011-09-23 2013-04-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件的检测样本制作方法及检测样本
CN103376217A (zh) * 2012-04-23 2013-10-30 中芯国际集成电路制造(上海)有限公司 Tem样品的精确定位的制作方法
US20140103582A1 (en) * 2012-10-15 2014-04-17 International Business Machines Corporation Nano-Pipet Fabrication
CN103196713A (zh) * 2013-02-27 2013-07-10 上海华力微电子有限公司 分析样品的制备方法
US20150042702A1 (en) * 2013-08-11 2015-02-12 NanoMedia Solutions Inc. Nano-media information carrier based on pixelated nano-structures combined with an intensity control layer
CN104425350A (zh) * 2013-09-10 2015-03-18 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张启华 等: "适用于深沟槽结构观测的TEM样品制备技术", 《封装、测试与设备》 *
杜会静: "纳米材料检测中透射电镜样品的制备", 《理化检验-物理分册》 *
杨卫明 等: "FIB 参数对低介电常数介质TEM 样品制备的影", 《半导体技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706386A (zh) * 2016-12-16 2017-05-24 武汉新芯集成电路制造有限公司 透射电镜样品的制备方法及观测方法

Also Published As

Publication number Publication date
CN105158514B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
US7388218B2 (en) Subsurface imaging using an electron beam
Nikawa Applications of focused ion beam technique to failure analysis of very large scale integrations: A review
US8884247B2 (en) System and method for ex situ analysis of a substrate
CN105158516B (zh) 一种集成电路分析中透射电镜平面样品的制备方法
CN103913358A (zh) Tem样品的制备方法和失效分析方法
US7115865B2 (en) Method of applying micro-protection in defect analysis
US5990478A (en) Method for preparing thin specimens consisting of domains of different materials
US11437217B2 (en) Method for preparing a sample for transmission electron microscopy
CN108010860B (zh) 一种自定位电迁移测试结构及透射电镜样品制备方法
CN103376217A (zh) Tem样品的精确定位的制作方法
CN105158514A (zh) 一种重复单元结构tem样品的定位方法
CN113097090B (zh) 一种三维存储器沟道孔薄膜厚度的测量方法
CN105046007B (zh) 一种集成电路芯片反向工程的定位方法
CN104792585B (zh) 一种tem样品的制备方法
Herlinger et al. TEM sample preparation using a focused ion beam and a probe manipulator
JP4596968B2 (ja) 半導体装置の不良箇所観察のためのシリコン基板加工方法及び不良箇所特定方法
CN105223383B (zh) 一种平面tem样品的制备方法
CN105097580A (zh) 聚焦离子束分析方法
JP2006343101A (ja) 半導体装置の不良箇所観察のためのサンプル作製方法
CN113782461B (zh) 半导体结构的测试方法以及测试样品
KR0139577B1 (ko) 습식식각법을 이용한 평면 투과전자현미경 시편 제작방법
Park et al. FIB overview
Lindsay et al. Practicality of Single Microscope Failure Analysis for Fault Isolation, Analysis, and Advanced TEM Sample Preparation by the Integration EBAC and EDS on FIBSEM
EP0932022B1 (en) Method and apparatus for dimension measurement and inspection of structures
KR100552560B1 (ko) 주사 전자현미경 분석용 시편 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant