CN105140464A - 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法 - Google Patents

碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN105140464A
CN105140464A CN201510482682.9A CN201510482682A CN105140464A CN 105140464 A CN105140464 A CN 105140464A CN 201510482682 A CN201510482682 A CN 201510482682A CN 105140464 A CN105140464 A CN 105140464A
Authority
CN
China
Prior art keywords
composite material
nano composite
nio
carbon
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510482682.9A
Other languages
English (en)
Other versions
CN105140464B (zh
Inventor
王雄伟
张泽汇
武培怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510482682.9A priority Critical patent/CN105140464B/zh
Publication of CN105140464A publication Critical patent/CN105140464A/zh
Application granted granted Critical
Publication of CN105140464B publication Critical patent/CN105140464B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于储能材料技术领域,具体为一种碳包NiO纳米片负载在石墨烯上的纳米复合材料及其制备方法。本发明通过简单的一步溶剂热法制备得到无定形碳包覆的氧化镍纳米片原位均匀生长在石墨烯上的纳米复合材料。这种纳米复合材料具有高的比表面积以及孔隙率,可用作锂电池的负极材料,在200mA/g电流密度下表现出高的储能密度和良好的多次充放电稳定性;此外,这种复合材料在高电流密度下依然能够保持较高的储能密度,当电流密度回复到低值时储能密度同样可以回复到较高水平。本发明方法,操作简单,生产成本较低,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。

Description

碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法
技术领域
本发明属于储能材料技术领域,具体涉及一种锂电池负极材料及其制备方法和应用。
背景技术
在今天世界,能源的转化与储存正变得越来越重要。因此人们迫切希望开发各类高性能的储能器件来存储产生的能量。在这些储能器件中,锂离子电池作为一种快速发展起来的可以用来存储电能的储能器件,由于它具有高的储能密度、长的循环寿命以及环境友好的优点受到了广泛的关注。但是,目前商用的石墨负极材料的理论容量低(372mAhg-1)、倍率性能差,很难满足在通讯设备、电动汽车、航空航天等领域日益增加的储能需求。因此发展下一代同时具有高性能和长寿命的锂电池负极材料就变得至关重要。
目前,在发展下一代高性能的锂电池负极材料中,过渡金属氧化物如NiO、SnO2、Fe3O4、TiO2以及Co3O4等由于较传统的石墨电极具有更高的比容量和单位体积能量而受到了广泛的研究。在这些过渡族金属氧化物中,NiO具有在自然界中含量丰富、成本较低、环境友好以及较高的理论容量(718mAhg-1)的优点,故而在过渡金属氧化物中又受到了更多的关注和研究。然而,单纯的NiO用作锂电池的负极材料时,由于低的电子传导能力和充放电过程中大的体积变化往往导致储能密度快速衰竭和很糟糕的倍率性能。为解决单纯的NiO作为锂电负极材料存在的这些问题,人们主要通过两种方案:一是制备具有各种微纳结构的NiO电极材料,比如《应用材料与界面》(ACSappliedmaterials&interface,2014,6,127)报道的NiO纳米晶、《动力源杂志》(Journalofpowersources,2013,227,284;Journalofpowersources,2006,159,254)报道的NiO纳米纤维和中空纳米管以及《材料化学杂志A》(JournalofmaterialschemistryA,2014,2,7904;JournalofmaterialschemistryA,2014,2,7337)报道的介孔NiO纳米片和中空NiO纳米微球等,通过构建这些微纳结构可以不仅有效地增加材料的比表面积还可以有效地缓冲充放电过程中的体积变化;二是将NiO与具有优异电子传导性能的碳材料如石墨烯、碳纳米管或无定形碳进行复合,从而改善NiO作为电极材料的电子传导能力,此外碳材料的加入也能有效抑制NiO的团聚,如《科学报道》(Scientificreport,2014,4,2)报道Ni掺杂NiO纳米颗粒负载在石墨烯上的复合材料较原始的Ni掺杂NiO纳米颗粒具有更优异的锂电综合性能和《应用材料与界面》(ACSappliedmaterials&interface,2014,6,7346)报道对NiO纳米颗粒表面包覆一层氮掺杂碳后锂电性能显著提高。
近来,设计和合成在导电碳材料表面上原位生长具有三维多层次结构的纳米金属氧化物引起了研究者的兴趣。通过构建这种三维多层次的结构,不仅可以增大电极材料与电解液之间的接触面积来促进锂离子的传输,而且纳米结构之间的空隙还可以有效地缓冲充放电过程中金属氧化物的体积变化。目前,虽然已经有很多工作报道了在导电碳材料表面原位生长各种结构的NiO纳米复合材料,但对于碳包NiO的纳米颗粒原位负载在导电基板上的材料还鲜有人报道,主要是由于这种材料制备过程较为复杂,而且很难获得均匀的结构。
本发明创造性地以双(环戊二烯)镍作为NiO和碳的前驱体,通过简单的一步溶剂热制备具有三维多层次结构的碳包NiO多孔纳米片原位负载在石墨烯上的复合材料。此外,这里的碳包NiO纳米片进一步由尺寸更小的碳包NiO纳米颗粒组成。这种材料用作锂离子电池的负极材料具有以下优点:高导电性的石墨烯基板可以显著增强材料的电子传导能力;三维多层次的结构不仅可以增大与电解液接触面积,而且还可以缓冲NiO在充放电过程的体积变化;NiO纳米颗粒表面包覆的无定形碳可以有效抑制充放电过程中NiO纳米颗粒之间的团聚。因此这种材料表现出高的储能密度、良好的充放电循环稳定性以及突出的倍率性能。
发明内容
本发明的目的在于提供一种性能优异的碳包NiO纳米片负载在石墨上的纳米复合材料及其制备方法和应用。
本发明提供的碳包NiO纳米片负载在石墨上的纳米复合材料,是把碳包NiO纳米片原位生长在石墨烯上,引入了无定形碳壳层,可有效地抑制NiO纳米颗粒在充放电过程中的团聚,从而获得优异的锂电性能。
本发明提供的碳包NiO纳米片负载石墨烯的纳米复合材料制备方法,具体步骤为:
(1)将400~700ml溶剂倒入1000ml的烧瓶中,加入5~20g氢化钙,室温下搅拌6~36h,然后在50~120℃下蒸出溶剂,得到无水溶剂;
(2)将(改进Hummers法制备的)氧化石墨烯(GO)水分散液,通过2~10次加上一步骤得到的无水溶剂,离心洗涤,得到GO的无水溶剂分散液,GO的浓度为2~15mg/ml;
(3)称取0.01~0.3g双(环戊二烯)镍加入到8ml无水溶剂中,超声5~60min使双(环戊二烯)镍充分溶解;然后加入1~5mlGO的无水溶剂分散液,超声10~120min助分散;随后将混合液转移到压力釜(如容积为25ml)中,置于100~250℃烘箱中反应2~36h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤3~10次;然后将反应物置于50~180℃烘箱中2~24h烘干;
(4)取0.1-1.0g烘干的粉末置于管式炉中;在气体保护下加热缓慢升温到250~700℃,保温1~6h,在气体保护下冷却,得到最终的纳米复合材料,记为grapheneNiOCarbon。
本发明中,步骤(1)中所用的溶剂为,丙酮,四氢呋喃,N,N-二甲基甲酰胺中的一种,或其中几种的混合物;
本发明中,步骤(4)中所用的保护气体为氩气、氮气、空气中的一种,或其中几种的混合气体;管式炉升温速率小于10℃/min,一般升温速率为3-10℃/min。
本发明制备的碳包NiO负载在石墨烯上的纳米复合材料,是通过简单的一步溶剂热法实现。同时创造性地以双(环戊二烯)镍作为氧化镍与碳的前驱体,不仅实现了在石墨烯表面原位构建三维多层次的结构,而且实现了无定形碳对NiO纳米颗粒的原位包覆。三维多层次的结构可以缓冲充放电过程中NiO的体积变化,提高电极材料与电解液之间的接触面积来促进锂离子的扩散。此外,NiO纳米颗粒表面无定形碳的包覆又可以有效抑制NiO在充放电过程中的团聚。这种纳米复合材料具有高的比表面积以及孔隙率,可用作锂电池的负极材料,不仅具有高的储能密度和良好的充放电循环稳定性,而且具有突出的倍率性能,在200mA/g电流密度下表现出高的储能密度和良好的多次充放电稳定性(经50次充放电循环后的储能密度依然高于氧化镍的理论储能密度)。此外,这种复合材料在高电流密度下依然能够保持较高的储能密度,当电流密度回复到低值时储能密度同样可以回复到较高水平。
本发明制备方法,操作过程方便,制备条件简单,生产成本低,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。
附图说明
图1.双(环戊二烯)镍用量0.105g得到的grapheneNiOCarbon纳米复合材料的扫描电子显微镜图。
图2.双(环戊二烯)镍用量0.105g得到的grapheneNiOCarbon纳米复合材料的透射电子显微镜图。
图3.双(环戊二烯)镍用量0.105g得到的grapheneNiOCarbon纳米复合材料的高倍透射电子显微镜图。
图4.双(环戊二烯)镍用量0.105g得到的grapheneNiOCarbon纳米复合材料在200mA/g电流密度下充放电循环稳定性图。
图5.双(环戊二烯)镍用量0.105g得到的grapheneNiOCarbon纳米复合材料在不同电流密度下的倍率性能图。
图6.NiOCarbon纳米复合材料的扫描电子显微镜图、200mA/g电流密度下充放电循环稳定性图以及不同电流密度下的倍率性能图。
图7.双(环戊二烯)镍用量0.045g得到的grapheneNiOCarbon纳米复合材料的扫描电子显微镜图。
图8.双(环戊二烯)镍用量0.075g得到的grapheneNiOCarbon纳米复合材料的扫描电子显微镜图。
图9.双(环戊二烯)镍用量0.135g得到的grapheneNiOCarbon纳米复合材料的扫描电子显微镜图。
具体实施方式
以下通过实施例进一步详细说明本发明碳包NiO纳米片负载石墨烯的锂电负极材料的制备方法及其锂电池充放电性能,该实施例仅仅是作为提供说明而不是限定本发明。
实施例1
(1)将600ml市售的四氢呋喃倒入1000ml的烧瓶中,加入15g氢化钙,然后室温下搅拌24h,然后在70℃下蒸出溶剂,得到无水四氢呋喃;
(2)将改进Hummers法制备的氧化石墨烯(GO)水分散液通过6次加上一步骤得到的无水溶剂离心洗涤得到GO的无水四氢呋喃分散液,GO的浓度为7.5mg/ml;
(3)称取0.105g双(环戊二烯)镍加入到8ml无水四氢呋喃中,超声10min使双(环戊二烯)镍充分溶解;然后加入2mlGO的无水溶剂分散液,超声30min助分散;随后将混合液转移到25ml的压力釜中,置于210℃烘箱中反应24h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤5次;然后将反应物置于60℃烘箱中12h烘干;
(4)取0.5g烘干的粉末置于管式炉中;在空气气氛中以5℃/min的升温速率升温到320℃保温2.5h,然后自然冷却得到最终的grapheneNiOCarbon纳米复合材料。
从图1中可以看到碳包NiO的纳米片致密均匀地负载在石墨烯表面,形成三维结构。图2进一步证实石墨烯表面碳包NiO纳米片均匀致密的负载。图3中的高倍透射电子显微镜图进一步表明碳包NiO的纳米片由更小尺寸的碳包NiO纳米颗粒构建而成,而且纳米片上还存在一些介孔结构。图4表明graphnenNiOCarbon纳米复合材料用作锂电池的负极材料具有高的初始容量(1042mAhg-1)以及良好的充放电循环稳定性,经50次充放电后依然具有较高的容量(754mAhg-1)。图5显示graphnenNiOCarbon纳米复合材料在高电流密度依然能够保持较高的储能密度,而且当电流回复到低值时,储能密度也能回复到较高水平(954mAhg-1)。
实施例2
(1)将600ml市售的四氢呋喃倒入1000ml的烧瓶中,加入15g氢化钙,然后室温下搅拌24h,然后在70℃下蒸出溶剂,得到无水四氢呋喃;
(2)称取0.150g双(环戊二烯)镍加入到10ml无水四氢呋喃中,超声10min使双(环戊二烯)镍充分溶解;随后将混合液转移到25ml的压力釜中,置于210℃烘箱中反应24h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤5次;然后将反应物置于60℃烘箱中12h烘干;
(4)取0.5g烘干的粉末置于管式炉中;在空气气氛中以5℃/min的升温速率升温到320℃保温2.5h,然后自然冷却得到最终的NiOCarbon纳米复合材料。
从图6可以看到,仅加入双(环戊二烯)镍得到的NiOCarbon形成聚集的花状形貌。用作锂电池的负极材料,其充放电循环稳定性和倍率性能均较实施例1得到的材料差。
实施例3
(1)将600ml市售的四氢呋喃倒入1000ml的烧瓶中,加入15g氢化钙,然后室温下搅拌24h,然后在70℃下蒸出溶剂,得到无水四氢呋喃;
(2)将改进Hummers法制备的氧化石墨烯(GO)水分散液通过6次加上一步骤得到的无水溶剂离心洗涤得到GO的无水四氢呋喃分散液,GO的浓度为7.5mg/ml;
(3)称取0.045g双(环戊二烯)镍加入到8ml无水四氢呋喃中,超声10min使双(环戊二烯)镍充分溶解;然后加入2mlGO的无水溶剂分散液,超声30min助分散;随后将混合液转移到25ml的压力釜中,置于210℃烘箱中反应24h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤5次;然后将反应物置于60℃烘箱中12h烘干;
(4)取0.5g烘干的粉末置于管式炉中;在空气气氛中以5℃/min的升温速率升温到320℃保温2.5h,然后自然冷却得到最终的grapheneNiOCarbon纳米复合材料。
从图7可以看到,加入0.045g双(环戊二烯)镍得到的grapheneNiOCarbon纳米复合材料中石墨烯上的碳包NiO纳米片分布比较稀疏。
实施例4
(1)将600ml市售的四氢呋喃倒入1000ml的烧瓶中,加入15g氢化钙,然后室温下搅拌24h,然后在70℃下蒸出溶剂,得到无水四氢呋喃;
(2)将改进Hummers法制备的氧化石墨烯(GO)水分散液通过6次加上一步骤得到的无水溶剂离心洗涤得到GO的无水四氢呋喃分散液,GO的浓度为7.5mg/ml;
(3)称取0.075g双(环戊二烯)镍加入到8ml无水四氢呋喃中,超声10min使双(环戊二烯)镍充分溶解;然后加入2mlGO的无水溶剂分散液,超声30min助分散;随后将混合液转移到25ml的压力釜中,置于210℃烘箱中反应24h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤5次;然后将反应物置于60℃烘箱中12h烘干;
(4)取0.5g烘干的粉末置于管式炉中;在空气气氛中以5℃/min的升温速率升温到320℃保温2.5h,然后自然冷却得到最终的grapheneNiOCarbon纳米复合材料。
从图8可以看到,加入0.075g双(环戊二烯)镍得到的grapheneNiOCarbon纳米复合材料中石墨烯上的碳包NiO纳米片较加入0.045g双(环戊二烯)镍显得更为致密。
实施例5
(1)将600ml市售的四氢呋喃倒入1000ml的烧瓶中,加入15g氢化钙,然后室温下搅拌24h,然后在70℃下蒸出溶剂,得到无水四氢呋喃;
(2)将改进Hummers法制备的氧化石墨烯(GO)水分散液通过6次加上一步骤得到的无水溶剂离心洗涤得到GO的无水四氢呋喃分散液,GO的浓度为7.5mg/ml;
(3)称取0.135g双(环戊二烯)镍加入到8ml无水四氢呋喃中,超声10min使双(环戊二烯)镍充分溶解;然后加入2mlGO的无水溶剂分散液,超声30min助分散;随后将混合液转移到25ml的压力釜中,置于210℃烘箱中反应24h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤5次;然后将反应物置于60℃烘箱中12h烘干;
(4)取0.5g烘干的粉末置于管式炉中;在空气气氛中以5℃/min的升温速率升温到320℃保温2.5h,然后自然冷却得到最终的grapheneNiOCarbon纳米复合材料。
从图9可以看到,加入0.135g双(环戊二烯)镍得到的材料中不仅存在碳包NiO纳米片全包覆石墨烯的纳米复合材料,此外还出现了由于双(环戊二烯)镍过量引起的游离的碳包NiO的团聚体。

Claims (5)

1.一种碳包NiO纳米片负载石墨烯的纳米复合材料制备方法,其特征在于具体步骤为:
(1)将400~700ml溶剂倒入1000ml的烧瓶中,加入5~20g氢化钙,室温下搅拌6~36h,然后在50~120℃下蒸出溶剂,得到无水溶剂;
(2)将GO水分散液,通过2~10次加上一步骤得到的无水溶剂,离心洗涤,得到GO的无水溶剂分散液,GO的浓度为2~15mg/ml;这里GO为氧化石墨烯;
(3)称取0.01~0.3g双(环戊二烯)镍加入到8ml无水溶剂中,超声5~60min使双(环戊二烯)镍充分溶解;然后加入1~5mlGO的无水溶剂分散液,超声10~120min助分散;随后将混合液转移到压力釜中,置于100~250℃烘箱中反应2~36h;待自然冷却到室温后,将料液取出用无水乙醇离心洗涤3~10次;然后将反应物置于50~180℃烘箱中2~24h烘干;
(4)取0.1-1.0g烘干的粉末置于管式炉中;在气体保护下加热升温到250~700℃,保温1~6h,在气体保护下冷却,得到最终的纳米复合材料,记为grapheneNiOCarbon。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所用的溶剂为、丙酮、四氢呋喃、N,N-二甲基甲酰胺中的一种,或其中几种的混合物。
3.根据权利要求1所述的制备方法,其特征在于步骤(4)中所用的气体为氩气、氮气、空气中的一种,或其中几种的混合气体;管式炉升温速率小于10℃/min。
4.一种由权利要求1-3之一制备方法制备得到的碳包NiO纳米片负载石墨烯的纳米复合材料。
5.如权利要求4所述的碳包NiO纳米片负载石墨烯的纳米复合材料作为锂电池负极材料的应用。
CN201510482682.9A 2015-08-10 2015-08-10 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法 Expired - Fee Related CN105140464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510482682.9A CN105140464B (zh) 2015-08-10 2015-08-10 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510482682.9A CN105140464B (zh) 2015-08-10 2015-08-10 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105140464A true CN105140464A (zh) 2015-12-09
CN105140464B CN105140464B (zh) 2017-07-07

Family

ID=54725739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510482682.9A Expired - Fee Related CN105140464B (zh) 2015-08-10 2015-08-10 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105140464B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562005A (zh) * 2016-02-29 2016-05-11 复旦大学 碳包裹Ni纳米晶颗粒负载在石墨烯上的纳米复合材料及其制备方法
CN106848338A (zh) * 2017-01-16 2017-06-13 济南大学 一种石墨烯负载Ni基氧化物的催化剂的制备方法
CN109301198A (zh) * 2018-09-18 2019-02-01 台州学院 一种镍纳米片阵列负载氧化锌复合电极及制备方法
CN109728264A (zh) * 2018-12-06 2019-05-07 复旦大学 碳基架负载纳米片组装的中空开口微球的复合薄膜及其制备方法和应用
CN111348689A (zh) * 2020-02-12 2020-06-30 杭州电子科技大学 一种Ni(OH)2石墨烯复合材料及制备方法
CN113745485A (zh) * 2021-09-08 2021-12-03 哈尔滨工业大学(威海) 一种氮掺杂碳管负载Ni@C微米花锂离子电池负极材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769124A (zh) * 2012-07-12 2012-11-07 上海大学 一种石墨烯负载八面体氧化镍复合材料及其制备方法
US20150064560A1 (en) * 2013-08-30 2015-03-05 Samsung Electronics Co., Ltd. Electrode active material, electrode including the same, and lithium battery including the electrode
CN104701490A (zh) * 2015-04-02 2015-06-10 北京师范大学 一种三明治结构石墨烯基碳包覆金属氧化物的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769124A (zh) * 2012-07-12 2012-11-07 上海大学 一种石墨烯负载八面体氧化镍复合材料及其制备方法
US20150064560A1 (en) * 2013-08-30 2015-03-05 Samsung Electronics Co., Ltd. Electrode active material, electrode including the same, and lithium battery including the electrode
CN104701490A (zh) * 2015-04-02 2015-06-10 北京师范大学 一种三明治结构石墨烯基碳包覆金属氧化物的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEOK-HU BAE等: "Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery", 《CARBON》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562005A (zh) * 2016-02-29 2016-05-11 复旦大学 碳包裹Ni纳米晶颗粒负载在石墨烯上的纳米复合材料及其制备方法
CN105562005B (zh) * 2016-02-29 2019-05-31 复旦大学 碳包裹Ni纳米晶颗粒负载在石墨烯上的纳米复合材料及其制备方法
CN106848338A (zh) * 2017-01-16 2017-06-13 济南大学 一种石墨烯负载Ni基氧化物的催化剂的制备方法
CN106848338B (zh) * 2017-01-16 2019-12-13 济南大学 一种石墨烯负载Ni基氧化物的催化剂的制备方法
CN109301198A (zh) * 2018-09-18 2019-02-01 台州学院 一种镍纳米片阵列负载氧化锌复合电极及制备方法
CN109301198B (zh) * 2018-09-18 2021-02-26 台州学院 一种镍纳米片阵列负载氧化锌复合电极及制备方法
CN109728264A (zh) * 2018-12-06 2019-05-07 复旦大学 碳基架负载纳米片组装的中空开口微球的复合薄膜及其制备方法和应用
CN109728264B (zh) * 2018-12-06 2021-03-30 复旦大学 碳基架负载纳米片组装的中空开口微球的复合薄膜及其制备方法和应用
CN111348689A (zh) * 2020-02-12 2020-06-30 杭州电子科技大学 一种Ni(OH)2石墨烯复合材料及制备方法
CN113745485A (zh) * 2021-09-08 2021-12-03 哈尔滨工业大学(威海) 一种氮掺杂碳管负载Ni@C微米花锂离子电池负极材料的制备方法
CN113745485B (zh) * 2021-09-08 2022-11-29 哈尔滨工业大学(威海) 一种氮掺杂碳管负载Ni@C微米花锂离子电池负极材料的制备方法

Also Published As

Publication number Publication date
CN105140464B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
Liu et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries
Luo et al. Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries
Yuan et al. Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application
Li et al. Synthesis of ordered mesoporous NiCo2O4 via hard template and its application as bifunctional electrocatalyst for Li-O2 batteries
CN102013330B (zh) 石墨烯/多孔氧化镍复合超级电容器薄膜及其制备方法
CN105140464A (zh) 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法
Yang et al. High-performance aqueous asymmetric supercapacitor based on spinel LiMn2O4 and nitrogen-doped graphene/porous carbon composite
Zuo et al. Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications
CN103219491B (zh) 一种硫化铜正极及其制备方法
Chen et al. Porous rod-shaped Co3O4 derived from Co-MOF-74 as high-performance anode materials for lithium ion batteries
Zhang et al. Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage
CN104966824A (zh) 一种基于壳聚糖及其衍生物氮掺杂多孔碳球-氧化钴纳米复合负极材料及其制备方法
Zhang et al. Ultrafine Co3O4 Nanoparticles within Nitrogen‐Doped Carbon Matrix Derived from Metal–Organic Complex for Boosting Lithium Storage and Oxygen Evolution Reaction
Yang et al. Cobalt–carbon derived from zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material
CN111009647B (zh) 锂二次电池锂硼硅合金负极活性材料、负极及其制备和应用
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Butt et al. Microwave-assisted synthesis of functional electrode materials for energy applications
Peng et al. Binary tungsten-molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor
Li et al. Coral-like CoMoO4 hierarchical structure uniformly encapsulated by graphene-like N-doped carbon network as an anode for high-performance lithium-ion batteries
Huang et al. Facial preparation of N-doped carbon foam supporting Co3O4 nanorod arrays as free-standing lithium-ion batteries’ anode
CN110957490A (zh) 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法
Ren et al. NiCo2O4 nanosheets and nanocones as additive-free anodes for high-performance Li-ion batteries
Zhang et al. Combining in-situ sedimentation and carbon-assisted synthesis of Co3O4/g-C3N4 nanocomposites for improved supercapacitor performance
Li et al. An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries
Ruan et al. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170707

Termination date: 20200810