CN105132705A - Method and device for remelting and refining metals by vacuum magnetic-control arc - Google Patents
Method and device for remelting and refining metals by vacuum magnetic-control arc Download PDFInfo
- Publication number
- CN105132705A CN105132705A CN201510550879.1A CN201510550879A CN105132705A CN 105132705 A CN105132705 A CN 105132705A CN 201510550879 A CN201510550879 A CN 201510550879A CN 105132705 A CN105132705 A CN 105132705A
- Authority
- CN
- China
- Prior art keywords
- magnetic field
- vacuum
- metal electrode
- metal
- electrode bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 170
- 239000002184 metal Substances 0.000 title claims abstract description 169
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000007670 refining Methods 0.000 title claims abstract description 30
- 150000002739 metals Chemical class 0.000 title claims description 4
- 238000010313 vacuum arc remelting Methods 0.000 claims abstract description 61
- 238000002844 melting Methods 0.000 claims abstract description 30
- 230000008018 melting Effects 0.000 claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 36
- 229910052802 copper Inorganic materials 0.000 claims description 36
- 239000010949 copper Substances 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 230000009471 action Effects 0.000 claims description 28
- 238000010891 electric arc Methods 0.000 claims description 28
- 230000007246 mechanism Effects 0.000 claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000000498 cooling water Substances 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 230000001276 controlling effect Effects 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000010309 melting process Methods 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 230000001960 triggered effect Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000010314 arc-melting process Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001315 Tool steel Inorganic materials 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims 4
- 230000009514 concussion Effects 0.000 claims 2
- 230000007423 decrease Effects 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 2
- 230000005611 electricity Effects 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 210000001787 dendrite Anatomy 0.000 abstract description 10
- 238000005204 segregation Methods 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 8
- 238000009834 vaporization Methods 0.000 abstract description 5
- 230000008016 vaporization Effects 0.000 abstract description 5
- 230000001934 delay Effects 0.000 abstract description 4
- 238000007711 solidification Methods 0.000 description 14
- 230000008023 solidification Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 229910000601 superalloy Inorganic materials 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910000753 refractory alloy Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种真空磁控电弧重熔精炼金属的方法及装置,通过在真空电弧重熔电极末端和金属熔池位置外围施加一磁场发生器提供轴向磁场,磁场发生器由两组同芯线圈组成,分别通直流电流和交流电流,通直流电流产生的稳恒磁场成分对沿径向运动的带电粒子形成抑制作用,延缓了电极间离子贫乏现象和阳极斑点的产生,降低电弧电压和电弧能量,防止形成集聚形电弧进行重熔导致电极局部温度过高而产生严重熔融汽化影响冶金质量。同时,通交流电流产生的交变磁场成分能够在金属熔池中形成一定压力梯度,产生压力波破碎枝晶。另外,交变磁场和直流电弧电流总会存在一定夹角,因此会形成一定的震荡洛伦兹力,有助于打碎枝晶,细化凝固组织,减少铸锭偏析。
The invention discloses a method and device for vacuum magnetron arc remelting and refining metal. A magnetic field generator is applied at the end of the vacuum arc remelting electrode and the periphery of the metal molten pool to provide an axial magnetic field. The magnetic field generator consists of two sets of same The core coil is composed of DC current and AC current respectively, and the stable magnetic field component generated by the DC current inhibits the charged particles moving in the radial direction, delays the phenomenon of ion poverty between the electrodes and the generation of anode spots, and reduces the arc voltage and Arc energy, to prevent the formation of concentrated arc for remelting, resulting in excessive local temperature of the electrode and severe melting and vaporization, which will affect the metallurgical quality. At the same time, the alternating magnetic field component generated by the alternating current can form a certain pressure gradient in the molten metal pool, and generate pressure waves to break dendrites. In addition, there will always be a certain angle between the alternating magnetic field and the DC arc current, so a certain oscillating Lorentz force will be formed, which will help break dendrites, refine solidified structures, and reduce ingot segregation.
Description
技术领域 technical field
本发明涉及一种炉外精炼方法和装置,特别是涉及一种电磁冶金二次精炼的方法和装置,应用于金属材料电磁冶金制备和金属材料质量控制技术领域。 The invention relates to an out-of-furnace refining method and device, in particular to a method and device for secondary refining of electromagnetic metallurgy, which are applied in the technical fields of electromagnetic metallurgical preparation of metal materials and quality control of metal materials.
背景技术 Background technique
传统真空电弧重熔工艺是把普通冶炼方法制备的金属电极棒,在无渣真空条件下通过直流电弧的高温作用迅速熔化并在水冷铜模结晶器中进行再凝固。当液态金属以薄层形式形成熔滴通过近5000K的电弧区域向结晶器中过渡和凝固过程中,发生一系列的物理化学反应,真空、无渣的条件下熔炼杜绝了外界空气和熔渣等对钢及合金的污染,还可以降低钢中及合金中的气体和低熔点有害金属杂质,提高重熔金属的洁净度,真空电弧重熔过程能够有效地降低金属中氢、铅、铋、银等的含量,并具有一定的脱氮能力。熔炼室内氧分压极低的条件下使得重熔过程中铝、钛等活泼元素的烧损少,由于弧区温度高,故而可以熔炼难熔合金。作为一种理想的特种材料二次精炼技术,真空电弧重熔过程中金属液自下而上的顺序凝固及快速使凝固过程中再生夹杂物尺寸细小、分布均匀。通过对合金凝固结晶过程的合理控制,可以对合金凝固组织进行改善,得到偏析程度低、致密度高的优质锭子。 The traditional vacuum arc remelting process is to quickly melt the metal electrode rod prepared by the common smelting method through the high temperature of the DC arc under the condition of slag-free vacuum and then re-solidify it in the water-cooled copper mold crystallizer. When the liquid metal forms a droplet in the form of a thin layer and passes through the arc region of nearly 5000K to the crystallizer and solidifies, a series of physical and chemical reactions occur. The melting under vacuum and slag-free conditions eliminates external air and slag, etc. The pollution of steel and alloy can also reduce the gas and low melting point harmful metal impurities in steel and alloy, and improve the cleanliness of remelted metal. The vacuum arc remelting process can effectively reduce hydrogen, lead, bismuth, silver in metal and other content, and has a certain denitrification ability. Under the condition of extremely low oxygen partial pressure in the melting chamber, the burning loss of active elements such as aluminum and titanium is small during the remelting process. Due to the high temperature in the arc zone, refractory alloys can be smelted. As an ideal secondary refining technology for special materials, during the vacuum arc remelting process, the sequential solidification of the molten metal from bottom to top and the fast speed make the regenerated inclusions in the solidification process small in size and evenly distributed. Through reasonable control of the solidification and crystallization process of the alloy, the solidification structure of the alloy can be improved, and a high-quality ingot with low segregation degree and high density can be obtained.
真空电弧重熔是冶炼易偏析、难熔的高温合金等特种材料的关键技术之一,在工业生产中取得了较为广泛的应用。然而,传统真空电弧重熔尚存在一些不足,由于真空条件下产生的电弧重按形状划分可分为两种类型:扩散形真空电弧和集聚形真空电弧,前者主要在低电流过程中出现,后者在较高的电流条件下出现。根据相关理论,真空电弧的产生主要由阴极上形成的斑点发射电子和产生金属蒸汽,电子与金属蒸汽碰撞产生新的电子和正离子,从而形成电弧等离子体,真空电弧柱中带电粒子向阳极运动过程中会发生扩散,从而形成锥顶角为60度的圆锥状弧柱。随着电流增大,阴极斑点增多,相邻的椎体发生重叠,不断增多的粒子轰击阳极使其表面温度迅速升高而产生阳极斑点,从而喷射出带正电的金属蒸汽和正离子,使得真空电弧柱中的带电粒子急剧增多,电导率增加,阳极斑点所在的弧柱的弧柱电压下降,导致其他阴极斑点所对应的弧柱电压不能维持而熄灭,阴极表面只剩下与阳极斑点正对面的阴极斑点,因而形成集聚形真空电弧。集聚形真空电弧使得阳极阴极表面局部升温剧烈,导致严重熔融汽化,合金成分损失严重和冶金质量受到严重影响。以镍基高温合金为代表的高温合金,其化学成分复杂,对成分含量的控制非常苛刻。因此,如何强化防止重熔过程中出现集聚形真空电弧,进一步提高冶金质量仍然是真空电弧重熔工艺亟待解决的技术问题。 Vacuum arc remelting is one of the key technologies for smelting special materials such as high-temperature alloys that are easy to segregate and refractory, and has been widely used in industrial production. However, there are still some deficiencies in the traditional vacuum arc remelting. Because the arc remelting generated under vacuum conditions can be divided into two types according to the shape: diffuse vacuum arc and concentrated vacuum arc, the former mainly appears in the process of low current, and the latter The latter occurs under higher current conditions. According to relevant theories, the generation of vacuum arc is mainly caused by the emission of electrons and the generation of metal vapor by the spots formed on the cathode. The electrons collide with the metal vapor to generate new electrons and positive ions, thus forming arc plasma. The charged particles in the vacuum arc column move towards the anode. Diffusion will occur in the middle, thus forming a conical arc column with a cone apex angle of 60 degrees. As the current increases, the number of cathode spots increases, the adjacent cones overlap, and the increasing number of particles bombards the anode, causing the surface temperature to rise rapidly and produce anode spots, thereby ejecting positively charged metal vapor and positive ions, making the vacuum The charged particles in the arc column increase sharply, the conductivity increases, and the arc column voltage of the arc column where the anode spot is located drops, causing the arc column voltage corresponding to the other cathode spots to be extinguished, leaving only the surface of the cathode directly opposite to the anode spot. The cathode spot, thus forming a concentrated vacuum arc. The concentrating vacuum arc makes the surface of the anode and cathode heat up violently locally, resulting in serious melting and vaporization, serious loss of alloy composition and serious impact on metallurgical quality. Superalloys represented by nickel-based superalloys have complex chemical compositions, and the control of the composition content is very strict. Therefore, how to strengthen the prevention of concentrated vacuum arc during the remelting process and further improve the metallurgical quality is still a technical problem to be solved urgently in the vacuum arc remelting process.
发明内容 Contents of the invention
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种真空磁控电弧重熔精炼金属的方法及装置,尤其适合高效二次精炼高温合金,能够有效提高高温合金的精炼效果和减少铸锭偏析。由于传统真空电弧重熔熔炼过程中电弧容易过度发散,导致极间离子匮乏,电弧电压和电弧能量急剧升高,诱发阳极斑点的形成而出现集聚形真空电弧,使得电极表面温度不均匀,局部升温剧烈,导致严重熔融汽化,合金成分损失严重和冶金质量受到极大影响。本发明外加稳恒磁场后,真空电弧电流受到洛伦兹力作用抑制了径向运动的带电粒子,起到了稳弧作用,延缓了电极间离子贫乏的现象和阳极斑点的产生,避免形成集聚形真空电弧而导致电极局部温度过高的“过烧”现象。此外,本发明还通过外加交变磁场对金属熔池产生电磁挤压作用,有效破碎枝晶,起到晶粒细化作用,有利于合金化学成分的均匀化,减少铸锭偏析。 In order to solve the problems of the prior art, the object of the present invention is to overcome the deficiencies of the prior art, and provide a method and device for vacuum magnetron arc remelting and refining metal, which is especially suitable for high-efficiency secondary refining of superalloys, and can effectively improve the quality of superalloys. The refining effect and reduce ingot segregation. Due to the excessive divergence of the arc in the traditional vacuum arc remelting process, resulting in the lack of ions between the electrodes, the arc voltage and arc energy rise sharply, and the formation of anode spots is induced to form a concentrated vacuum arc, which makes the surface temperature of the electrode uneven and local heating. Severe, resulting in severe melting and vaporization, serious loss of alloy composition and great impact on metallurgical quality. After the present invention adds a stable and constant magnetic field, the vacuum arc current is subjected to the Lorentz force to suppress the radially moving charged particles, which plays a role in stabilizing the arc, delays the phenomenon of ion poverty between electrodes and the generation of anode spots, and avoids the formation of agglomeration The "overburning" phenomenon in which the local temperature of the electrode is too high due to the vacuum arc. In addition, the invention also produces electromagnetic extrusion on the molten metal pool through an external alternating magnetic field, effectively breaks the dendrites, and plays a role in grain refinement, which is beneficial to the homogenization of the chemical composition of the alloy and reduces the segregation of the ingot.
为达到上述发明创造目的,本发明构思如下: In order to achieve the above-mentioned invention creation purpose, the present invention is conceived as follows:
在真空电弧重熔水冷铜模结晶器外围施加一磁场发生器提供磁场,利用磁场与电流相互作用产生洛伦兹力,稳恒磁场能够有效避免形成集聚形真空电弧产生电极“过烧”现象。本发明还通过交变磁场在金属熔体中诱导出感生电流,通过电磁力作用对金属熔体形成电磁挤压作用,有利于破碎枝晶,细化金属凝固组织,减少铸锭偏析。 A magnetic field generator is applied to the periphery of the vacuum arc remelting water-cooled copper mold crystallizer to provide a magnetic field, and the interaction between the magnetic field and the current is used to generate the Lorentz force. The stable and constant magnetic field can effectively avoid the phenomenon of electrode "overburning" caused by the formation of a concentrated vacuum arc. The invention also induces an induced current in the metal melt through an alternating magnetic field, and forms an electromagnetic extrusion effect on the metal melt through the electromagnetic force, which is beneficial to breaking dendrites, refining metal solidification structure, and reducing ingot segregation.
根据上述发明构思,本发明采用下述技术方案: According to above-mentioned inventive concept, the present invention adopts following technical scheme:
一种真空磁控电弧重熔精炼金属的方法,采用真空电弧重熔装置,以待重熔精炼的金属电极棒作为自耗电极,在真空电弧重熔装置外围设置磁场发生器,控制磁场发生器向真空电弧重熔装置提供磁场,使自耗电极底部末端区域、结晶器内的金属熔池位置区域以及自耗电极底部和结晶器内的金属熔池之间区域皆处于磁场作用之下,具体包括如下步骤: A method for vacuum magnetron arc remelting and refining metal, using a vacuum arc remelting device, using metal electrode rods to be remelted and refined as self-consumable electrodes, and setting a magnetic field generator around the vacuum arc remelting device to control the generation of the magnetic field The device provides a magnetic field to the vacuum arc remelting device, so that the bottom end area of the consumable electrode, the metal molten pool position area in the mold, and the area between the bottom of the consumable electrode and the metal molten pool in the mold are all under the action of the magnetic field , including the following steps:
a.将待精炼的金属电极棒安装到真空电弧重熔装置的真空室内,在真空电弧重熔装置内设置的结晶器内腔底部放置一层与将待精炼的金属电极棒成分相同的金属垫料,通过真空电弧重熔装置的抽气孔外接真空泵将真空室抽成真空,调节磁场发生器提供磁场,完成真空电弧重熔的准备工作; a. Install the metal electrode rod to be refined into the vacuum chamber of the vacuum arc remelting device, and place a layer of metal pad with the same composition as the metal electrode rod to be refined at the bottom of the inner cavity of the crystallizer set in the vacuum arc remelting device The vacuum arc remelting device is connected with an external vacuum pump to evacuate the vacuum chamber into a vacuum, and the magnetic field generator is adjusted to provide a magnetic field to complete the preparation for vacuum arc remelting;
b.在完成步骤a的真空电弧重熔的准备工作后,通过真空电弧重熔装置的电极送进机构驱动金属电极棒下降,并使金属电极棒的底部与结晶器内腔中底部预先铺设的金属垫料触发,产生电弧,开始真空电弧重熔; b. After completing the preparatory work for vacuum arc remelting in step a, drive the metal electrode rod down through the electrode feeding mechanism of the vacuum arc remelting device, and make the bottom of the metal electrode rod and the pre-laid bottom of the inner cavity of the crystallizer The metal pad is triggered, an arc is generated, and vacuum arc remelting begins;
c.经过步骤b真空电弧重熔开始后,在金属电极棒的真空电弧重熔的后续过程中,通过调整磁场作用区域、金属电极棒和重熔锭之间的相对位置,保持金属电极棒的熔化区、弧区以及重熔锭的固液界面均位于磁场作用区域中,同时控制电弧熔炼电流和金属电极棒送进速度,在金属电极棒底部端头产生稳定的电弧,将金属电极棒持续熔化,随着金属电极棒不断熔化以及重熔锭不断向上生长,使磁场作用区域逐渐上移,保持金属电极棒熔化过程和重熔锭凝固过程均始终处于磁场作用之下,直至完成真空电弧重熔过程,即得到真空电弧重熔锭。 c. After step b vacuum arc remelting starts, in the follow-up process of vacuum arc remelting of metal electrode rods, by adjusting the relative position between the magnetic field action area, metal electrode rods and remelting ingots, keep the metal electrode rods The melting zone, the arc zone and the solid-liquid interface of the remelting ingot are all located in the area where the magnetic field acts. At the same time, the arc melting current and the feeding speed of the metal electrode rod are controlled to generate a stable arc at the bottom end of the metal electrode rod to keep the metal electrode rod continuously Melting, with the continuous melting of the metal electrode rod and the continuous upward growth of the remelted ingot, the area of the magnetic field is gradually moved up, and the melting process of the metal electrode rod and the solidification process of the remelted ingot are always under the action of the magnetic field until the completion of the vacuum arc. The melting process is to obtain the vacuum arc remelting ingot.
作为本发明优选的技术方案,磁场发生器提供磁感应强度为0.01~30T的磁场,磁场发生器能产生恒定磁场、频率为0.01~10000Hz的交变磁场和频率为0.01~10000Hz的脉冲磁场中的任意一种磁场或任意几种磁场成分的混合磁场,磁场方向与金属电极棒轴向方向呈0~180度的夹角。 As a preferred technical solution of the present invention, the magnetic field generator provides a magnetic field with a magnetic induction intensity of 0.01-30T, and the magnetic field generator can generate any one of a constant magnetic field, an alternating magnetic field with a frequency of 0.01-10000 Hz and a pulsed magnetic field with a frequency of 0.01-10000 Hz. A magnetic field or a mixed magnetic field of any several magnetic field components, the direction of the magnetic field and the axial direction of the metal electrode rod form an angle of 0 to 180 degrees.
作为上述技术方案中优选的技术方案,磁场发生器产生生成磁场的方式采用以下任意一种方法或任意几种方法的组合方法:一种是采用永磁体聚磁方式产生,还有一种是采用电磁线圈、电磁铁或铁轭产生磁场,另有一种是采用超导线圈以及Bitter线圈单独或混合产生。 As a preferred technical solution among the above technical solutions, the magnetic field generator generates a magnetic field using any of the following methods or a combination of any of several methods: one is to use permanent magnets to gather magnetism, and the other is to use electromagnetic Coils, electromagnets or iron yokes generate magnetic fields, and another type uses superconducting coils and Bitter coils alone or in combination.
作为上述技术方案中优选的技术方案,磁场发生器由两组同芯线圈组成,分别向线圈中通直流电流和交流电流,两组同芯线圈同时提供次磁力线方向为沿着金属电极棒轴向的稳恒磁场和轴向交变磁场,通过控制磁场强度,利用电磁相互作用产生的震荡洛伦兹力对重熔锭顶部的金属熔池进行电磁搅拌,细化重熔锭的凝固组织。 As the preferred technical solution among the above-mentioned technical solutions, the magnetic field generator is composed of two sets of concentric coils, which pass DC current and AC current respectively into the coils, and the two sets of concentric coils simultaneously provide secondary magnetic field lines along the axial direction of the metal electrode rod. The stable and constant magnetic field and axial alternating magnetic field, by controlling the magnetic field strength, use the oscillating Lorentz force generated by electromagnetic interaction to electromagnetically stir the molten metal pool on the top of the remelting ingot, and refine the solidification structure of the remelting ingot.
作为上述技术方案中优选的技术方案,待重熔精炼的金属电极棒的材料为钛、锆、钼和钨中的任意一种活性金属或任意几种金属的合金。 As a preferred technical solution among the above technical solutions, the material of the metal electrode rod to be remelted and refined is any active metal among titanium, zirconium, molybdenum and tungsten or an alloy of any several metals.
作为上述技术方案中优选的技术方案,待重熔精炼的金属电极棒的材料为耐热钢、不锈钢、工具钢或轴承钢。 As a preferred technical solution among the above technical solutions, the material of the metal electrode rod to be remelted and refined is heat-resistant steel, stainless steel, tool steel or bearing steel.
本发明还提供一种真空电弧重熔装置,包括电极送进机构、真空罩、抽气孔、水冷铜模结晶器、结晶器冷却水套装置和电源,真空罩作为真空电弧重熔装置的外壳密闭形成真空室,抽气孔设置于真空罩上,真空室通过抽气孔连接真空泵,在金属重熔过程中将真空室持续抽真空,以待重熔精炼的金属电极棒作为自耗电极安装于真空室内的电极送进机构的底部固定端,金属电极棒通过电极送进机构进行位置控制和升降速度控制,结晶器冷却水套装置设置于水冷铜模结晶器外壁四周,结晶器冷却水套装置设有循环水的进水口和出水口,进水口接循环水的水源,出水口接外部水槽,通过循环水对水冷铜模结晶器壁进行冷却,在水冷铜模结晶器内,金属电极棒熔化后滴落形成的金属液凝固形成重熔锭,电源的正极和负极分别用电缆与金属电极棒和水冷铜模结晶器壁导电连接,使电弧熔炼过程处于真空室中进行,通过控制电极送进机构和电源保持真空室内电弧稳定,并在真空罩外围设置磁场发生器形成真空磁控电弧重熔系统,控制磁场发生器向真空电弧重熔装置内施加磁场,使金属电极棒底部末端区域、水冷铜模结晶器内的金属熔体位置区域以及金属电极棒底部和水冷铜模结晶器内的金属熔池之间的电弧生成区域皆处于磁场作用之下,进行真空电弧熔炼时,预先在水冷铜模结晶器内腔中底部放置一层与将待精炼的金属电极棒成分相同的金属垫料,通过电极送进机构驱动金属电极棒下降,并使金属电极棒底部末端与水冷铜模结晶器内腔底部预先铺设的金属垫料触发,产生电弧,开始真空电弧重熔,在后续真空电弧重熔过程中,通过调整磁场作用区域、金属电极棒和重熔锭之间的相对位置,保持金属电极棒的熔化区、弧区以及重熔锭顶端固液界面均位于磁场作用区域中,同时控制电源输出的电弧熔炼电流和金属电极棒送进速度,在金属电极棒底部端头产生稳定的电弧,将金属电极棒持续熔化,随着金属电极棒不断熔化以及重熔锭不断向上生长,使磁场作用区域逐渐上移,保持金属电极棒熔化过程和重熔锭凝固过程均始终处于磁场作用之下进行真空电弧重熔过程。 The present invention also provides a vacuum arc remelting device, which includes an electrode feeding mechanism, a vacuum cover, an air extraction hole, a water-cooled copper mold crystallizer, a crystallizer cooling water jacket device and a power supply, and the vacuum cover is used as the outer shell of the vacuum arc remelting device to seal A vacuum chamber is formed, and the pumping hole is set on the vacuum cover. The vacuum chamber is connected to the vacuum pump through the pumping hole. During the metal remelting process, the vacuum chamber is continuously evacuated, and the metal electrode rod to be remelted and refined is installed in the vacuum chamber as a consumable electrode. The bottom fixed end of the electrode feeding mechanism in the room, the metal electrode rod is controlled by the electrode feeding mechanism for position control and lifting speed control, the crystallizer cooling water jacket device is installed around the outer wall of the water-cooled copper mold crystallizer, and the crystallizer cooling water jacket device is set There are water inlet and outlet for circulating water, the water inlet is connected to the water source of circulating water, and the water outlet is connected to the external water tank. The wall of the water-cooled copper mold crystallizer is cooled by circulating water. In the water-cooled copper mold crystallizer, after the metal electrode rod is melted The molten metal formed by dripping solidifies to form a remelting ingot. The positive and negative electrodes of the power supply are electrically connected to the metal electrode rod and the wall of the water-cooled copper mold crystallizer respectively, so that the arc melting process is carried out in a vacuum chamber, and the electrode is sent to the mechanism through the control. And the power supply keeps the arc in the vacuum chamber stable, and a magnetic field generator is installed on the periphery of the vacuum cover to form a vacuum magnetron arc remelting system. The metal melt position area in the mold crystallizer and the arc generation area between the bottom of the metal electrode rod and the metal molten pool in the water-cooled copper mold mold are all under the action of a magnetic field. A layer of metal gasket with the same composition as the metal electrode rod to be refined is placed at the bottom of the inner cavity, and the metal electrode rod is driven down by the electrode feeding mechanism, and the bottom end of the metal electrode rod is connected to the bottom of the inner cavity of the water-cooled copper mold crystallizer. The pre-laid metal pad is triggered to generate an arc, and the vacuum arc remelting starts. During the subsequent vacuum arc remelting process, the relative position of the magnetic field action area, the metal electrode rod and the remelting ingot is adjusted to maintain the metal electrode rod. The melting zone, the arc zone, and the solid-liquid interface at the top of the remelting ingot are all located in the area where the magnetic field acts. At the same time, the arc melting current output by the power supply and the feeding speed of the metal electrode rod are controlled to generate a stable arc at the bottom end of the metal electrode rod. The electrode rod continues to melt, and with the continuous melting of the metal electrode rod and the continuous upward growth of the remelted ingot, the magnetic field action area gradually moves up, keeping the metal electrode rod melting process and the remelting ingot solidification process always under the action of the magnetic field for vacuum arcing remelting process.
作为上述技术方案中优选的技术方案,磁场发生器采用永磁体聚磁方式产生磁场,或者采用电磁线圈、电磁铁或铁轭产生磁场,或者采用超导线圈以及Bitter线圈单独或混合产生磁场。 As a preferred technical solution among the above technical solutions, the magnetic field generator uses permanent magnets to generate magnetic fields, or uses electromagnetic coils, electromagnets or iron yokes to generate magnetic fields, or uses superconducting coils and Bitter coils to generate magnetic fields individually or in combination.
作为上述技术方案中优选的技术方案,磁场发生器由两组同芯线圈组成,分别向线圈中通直流电流和交流电流,两组同芯线圈同时提供次磁力线方向为沿着金属电极棒轴向的稳恒磁场和轴向交变磁场,通过调节磁场发生器控制磁场强度,利用电磁相互作用产生的震荡洛伦兹力对重熔锭顶部的金属熔池进行电磁搅拌,细化重熔锭的初生凝固组织。 As the preferred technical solution among the above-mentioned technical solutions, the magnetic field generator is composed of two sets of concentric coils, which pass DC current and AC current respectively into the coils, and the two sets of concentric coils simultaneously provide secondary magnetic field lines along the axial direction of the metal electrode rod. The stable and constant magnetic field and the axial alternating magnetic field, by adjusting the magnetic field generator to control the magnetic field strength, using the oscillating Lorentz force generated by electromagnetic interaction to electromagnetically stir the molten metal pool on the top of the remelting ingot, refine the remelting ingot primary coagulated tissue.
作为上述技术方案中优选的技术方案,电源采用调压直流电源,为真空电弧重熔过程提供直流电流。 As a preferred technical solution among the above technical solutions, the power supply adopts a voltage-regulated DC power supply to provide DC current for the vacuum arc remelting process.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点: Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
1.相比传统的真空电弧重熔工艺,本发明通过外加磁场控制真空电弧重熔,其中采用混合磁场控制真空电弧重熔的稳恒磁场成分能够稳定电弧,防止电弧过度发散或过度聚集,进而延缓了电极间离子匮乏和阳极斑点的产生,避免形成集聚形真空电弧而导致电极局部温度过高产生的“过烧”现象,从而有效抑制了金属电极局部熔融汽化,防止合金成分损失严重和冶金质量受到影响; 1. Compared with the traditional vacuum arc remelting process, the present invention controls the vacuum arc remelting through an external magnetic field, wherein the mixed magnetic field is used to control the stable magnetic field component of the vacuum arc remelting, which can stabilize the arc and prevent excessive divergence or excessive accumulation of the arc, and then It delays the generation of ion deficiency and anode spots between electrodes, and avoids the "overburning" phenomenon caused by the formation of concentrated vacuum arcs that cause excessive local temperature of electrodes, thereby effectively inhibiting local melting and vaporization of metal electrodes, preventing serious loss of alloy components and metallurgical quality is affected;
2.本发明在真空电弧重熔过程中,电弧长度是影响重熔精炼效果的重要参数,不仅决定供电回路的电参数,还决定金属电极的熔化速率,在保持电弧稳定的前提下,适当进行短电弧重熔有利于提高重熔效率,降低能耗,减少电弧波动,从而提升重熔锭质量,但短电弧重熔时由于金属电极与金属熔池表面间隙较小,容易因熔滴的聚集而造成短路; 2. In the vacuum arc remelting process of the present invention, the arc length is an important parameter affecting the remelting and refining effect. It not only determines the electrical parameters of the power supply circuit, but also determines the melting rate of the metal electrode. Under the premise of maintaining the stability of the arc, proper Short arc remelting is beneficial to improve remelting efficiency, reduce energy consumption, and reduce arc fluctuations, thereby improving the quality of remelted ingots. causing a short circuit;
3.本发明通过外加混合磁场作用于电弧重熔过程,其中交变磁场成分在熔滴中诱发出感生电流,对熔滴形成挤压作用,利用电磁感应原理对熔滴形成电磁激振效应,促使熔滴滴落,防止大颗熔滴的聚集而实现短弧熔炼,提高精炼效果,降低能耗; 3. The present invention acts on the arc remelting process by adding a mixed magnetic field, in which the alternating magnetic field component induces an induced current in the molten droplet to form a squeezing effect on the molten droplet, and uses the principle of electromagnetic induction to form an electromagnetic excitation effect on the molten droplet , promote the dripping of molten droplets, prevent the aggregation of large molten droplets and realize short-arc melting, improve the refining effect and reduce energy consumption;
4.本发明外加混合磁场中的交变磁场成分能够在金属熔内诱导出感生电流,由于电磁复合作用产生电磁力对金属熔体形成电磁挤压作用,有效破碎枝晶,细化金属凝固组织,加速熔池传热,减少铸锭偏析。 4. The alternating magnetic field component in the external mixed magnetic field of the present invention can induce an induced current in the molten metal, and the electromagnetic force generated by the electromagnetic recombination will form an electromagnetic extrusion effect on the molten metal, effectively breaking the dendrites and refining the solidification of the metal structure, accelerate heat transfer in molten pool, and reduce ingot segregation.
附图说明 Description of drawings
图1是本发明优选实施例真空电弧重熔装置的结构示意图。 Fig. 1 is a schematic structural view of a vacuum arc remelting device in a preferred embodiment of the present invention.
图2是本发明优选实施例改善电弧向外分散时施加磁场前后真空电弧的形态示意图。 Fig. 2 is a schematic diagram of the shape of the vacuum arc before and after applying a magnetic field when the arc disperses outward in the preferred embodiment of the present invention.
图3是本发明优选实施例改善电弧过度集中时施加磁场前后真空电弧的形态示意图。 Fig. 3 is a schematic diagram of the shape of the vacuum arc before and after applying a magnetic field when the arc is excessively concentrated in a preferred embodiment of the present invention.
图4是本发明优选实施例外加混合磁场对金属熔体细晶作用的铸锭纵截面凝固原理图。 Fig. 4 is a schematic diagram of the solidification principle of the longitudinal section of the ingot in the preferred embodiment of the present invention when the external mixed magnetic field acts on the fine grain of the metal melt.
图5是沿着图4中A-A向视图。 Fig. 5 is a view along the direction A-A in Fig. 4 .
具体实施方式 Detailed ways
本发明的优选实施例详述如下: Preferred embodiments of the present invention are described in detail as follows:
在本实施例中,参见图1~图5,一种真空电弧重熔装置,包括电极送进机构1、真空罩2、抽气孔4、水冷铜模结晶器6、结晶器冷却水套装置和电源11,电源11采用调压直流电源,真空罩2作为真空电弧重熔装置的外壳密闭形成真空室3,抽气孔4设置于真空罩2上,真空室3通过抽气孔4连接真空泵,在金属重熔过程中将真空室3持续抽真空,以待重熔精炼的金属电极棒5作为自耗电极安装于真空室3内的电极送进机构1的底部固定端,金属电极棒5通过电极送进机构1进行位置控制和升降速度控制,水冷铜模结晶器6内径为Φ500mm,结晶器冷却水套装置设置于水冷铜模结晶器6外壁四周,结晶器冷却水套装置设有循环水的进水口9和出水口10,进水口9接循环水的水源,出水口10接外部水槽,通过循环水对水冷铜模结晶器6壁进行冷却,在水冷铜模结晶器6内,金属电极棒5熔化后滴落形成的金属液凝固形成重熔锭8,电源11的正极和负极分别用电缆与金属电极棒5和水冷铜模结晶器6壁导电连接,使电弧熔炼过程处于真空室3中进行,通过控制电极送进机构1和电源11保持真空室3内生成的电弧12稳定,并在真空罩2外围设置磁场发生器7形成真空磁控电弧重熔系统,控制磁场发生器7向真空电弧重熔装置内施加磁场,使金属电极棒5底部末端区域、水冷铜模结晶器6内的金属熔体位置区域以及金属电极棒5底部和水冷铜模结晶器6内的金属熔池之间的电弧生成区域皆处于磁场作用之下,进行真空电弧熔炼时,预先在水冷铜模结晶器6内腔底部放置一层与将待精炼的金属电极棒5成分相同的金属垫料,通过电极送进机构1驱动金属电极棒5下降,并使金属电极棒5底部末端与水冷铜模结晶器6内腔中底部预先铺设的金属垫料触发,产生电弧12,开始真空电弧重熔,在后续真空电弧重熔过程中,通过调整磁场作用区域、金属电极棒5和重熔锭8之间的相对位置,保持金属电极棒5的熔化区、弧区以及重熔锭8顶端固液界面均位于磁场作用区域中,同时控制电源11输出的电弧熔炼电流和金属电极棒5送进速度,在金属电极棒5底部端头产生稳定的电弧12,将金属电极棒5持续熔化,随着金属电极棒5不断熔化以及重熔锭8不断向上生长,使磁场作用区域逐渐上移,保持金属电极棒5熔化过程和重熔锭8凝固过程均始终处于磁场作用之下进行真空电弧重熔过程。 In this embodiment, referring to Figures 1 to 5, a vacuum arc remelting device includes an electrode feeding mechanism 1, a vacuum cover 2, an air extraction hole 4, a water-cooled copper mold crystallizer 6, a crystallizer cooling water jacket device and Power supply 11, the power supply 11 adopts a voltage-regulated DC power supply, and the vacuum cover 2 is used as the outer shell of the vacuum arc remelting device to form a vacuum chamber 3. The air extraction hole 4 is arranged on the vacuum cover 2. During the remelting process, the vacuum chamber 3 is continuously evacuated, and the metal electrode rod 5 to be remelted and refined is installed on the bottom fixed end of the electrode feeding mechanism 1 in the vacuum chamber 3 as a consumable electrode, and the metal electrode rod 5 passes through the electrode The feeding mechanism 1 performs position control and lifting speed control. The inner diameter of the water-cooled copper mold crystallizer 6 is Φ500mm. The crystallizer cooling water jacket device is installed around the outer wall of the water-cooled copper mold crystallizer 6. The crystallizer cooling water jacket device is equipped with circulating water. The water inlet 9 and the water outlet 10, the water inlet 9 is connected to the water source of the circulating water, and the water outlet 10 is connected to the external water tank, and the wall of the water-cooled copper mold crystallizer 6 is cooled by the circulating water. In the water-cooled copper mold crystallizer 6, the metal electrode rod 5. The molten metal formed by dripping after melting solidifies to form a remelting ingot 8. The positive pole and negative pole of the power supply 11 are electrically connected to the metal electrode rod 5 and the wall of the water-cooled copper mold crystallizer 6 respectively by cables, so that the arc melting process is in the vacuum chamber 3 To carry out, the electric arc 12 generated in the vacuum chamber 3 is kept stable by controlling the electrode feeding mechanism 1 and the power supply 11, and a magnetic field generator 7 is arranged on the periphery of the vacuum cover 2 to form a vacuum magnetron arc remelting system, and the magnetic field generator 7 is controlled to the vacuum A magnetic field is applied in the arc remelting device, so that the metal electrode rod 5 bottom end area, the metal melt position area in the water-cooled copper mold crystallizer 6, and the metal molten pool between the bottom of the metal electrode rod 5 and the water-cooled copper mold crystallizer 6 The arc generation area is all under the action of the magnetic field. When vacuum arc melting is performed, a layer of metal gasket with the same composition as the metal electrode rod 5 to be refined is placed on the bottom of the inner cavity of the water-cooled copper mold crystallizer 6 in advance, and is fed through the electrode. Mechanism 1 drives the metal electrode rod 5 to descend, and triggers the bottom end of the metal electrode rod 5 and the pre-laid metal pad at the bottom of the inner cavity of the water-cooled copper mold crystallizer 6 to generate an arc 12 and start vacuum arc remelting. During the remelting process, by adjusting the relative position between the magnetic field action area, the metal electrode rod 5 and the remelting ingot 8, the melting zone, the arc region of the metal electrode rod 5 and the solid-liquid interface at the top of the remelting ingot 8 are all located in the magnetic field. In the region, the arc melting current output by the power supply 11 and the feeding speed of the metal electrode rod 5 are simultaneously controlled to generate a stable arc 12 at the bottom end of the metal electrode rod 5, and the metal electrode rod 5 is continuously melted. The melting and remelting ingot 8 is continuously growing upwards, so that the magnetic field action area gradually moves upwards, and the melting process of the metal electrode rod 5 and the solidification process of the remelting ingot 8 are always under the action of the magnetic field to carry out the vacuum arc remelting process.
在本实施例中,参见图1~图5,磁场发生器7由两组同芯线圈组成,分别向线圈中通直流电流和交流电流,两组同芯线圈同时提供次磁力线方向为沿着金属电极棒5轴向的稳恒磁场和轴向交变磁场,通过调节磁场发生器7控制磁场强度,利用电磁相互作用产生的震荡洛伦兹力15对重熔锭8顶部的金属熔池进行电磁搅拌,细化重熔锭8的初生凝固组织。在电弧重熔过程中在结晶器外围同时施加轴向稳恒磁场和交变磁场,利用磁场与电流的复合作用,对电弧12起到稳定作用,避免集聚形真空电弧的形成而产生“过烧”现象,对金属熔池形成电磁挤压作用,有效破碎枝晶,细化凝固组织,减少铸锭偏析,提高二次精炼效果。本实施例通过控制磁场强度,抑制集聚形电弧产生,利用电磁挤压效应将枝晶破碎,细化重熔锭凝固组织。 In this embodiment, referring to Fig. 1 to Fig. 5, the magnetic field generator 7 is composed of two groups of concentric coils, which pass DC current and AC current respectively into the coils, and the two groups of concentric coils simultaneously provide the direction of the secondary magnetic force line along the metal The axial constant magnetic field and the axial alternating magnetic field of the electrode rod 5 are controlled by adjusting the magnetic field generator 7 to control the magnetic field intensity, and the oscillating Lorentz force 15 generated by electromagnetic interaction is used to electromagnetically conduct the molten metal pool on the top of the remelting ingot 8 . Stir to refine the primary solidified structure of the remelted ingot 8. During the arc remelting process, an axially constant magnetic field and an alternating magnetic field are applied to the periphery of the crystallizer at the same time, and the combined effect of the magnetic field and the current is used to stabilize the arc 12, avoiding the formation of a concentrated vacuum arc and causing "overburning" "Phenomenon, it forms an electromagnetic extrusion effect on the molten metal pool, effectively breaks dendrites, refines the solidified structure, reduces ingot segregation, and improves the secondary refining effect. In this embodiment, by controlling the intensity of the magnetic field, the generation of concentrated electric arcs is suppressed, and the dendrites are broken by using the electromagnetic extrusion effect, so as to refine the solidified structure of the remelted ingot.
在本实施例中,参见图1~图5,一种真空磁控电弧重熔精炼金属的方法,采用本实施例真空电弧重熔装置,以待重熔精炼的GCr15轴承钢作为自耗电极材料,将GCr15轴承钢铸成将Φ300mm,长度1000mm的金属电极棒5,保持真空电弧重熔装置内生成的电弧稳定,并在真空电弧重熔装置外围设置磁场发生器7,控制磁场发生器7向真空电弧重熔装置内施加磁场,使金属电极棒5底部末端区域、水冷铜模结晶器6内的金属熔池位置区域以及水冷铜模结晶器6底部和水冷铜模结晶器6内的金属熔池之间区域皆处于磁场作用之下,具体包括如下步骤: In this embodiment, referring to Fig. 1 to Fig. 5, a method for vacuum magnetron arc remelting and refining metal, adopting the vacuum arc remelting device of this embodiment, and using the GCr15 bearing steel to be remelted and refined as the consumable electrode The material is to cast GCr15 bearing steel into a metal electrode rod 5 with a diameter of 300 mm and a length of 1000 mm to keep the arc generated in the vacuum arc remelting device stable, and set a magnetic field generator 7 around the vacuum arc remelting device to control the magnetic field generator 7 Apply a magnetic field to the vacuum arc remelting device, so that the metal electrode rod 5 bottom end area, the metal molten pool position area in the water-cooled copper mold crystallizer 6, and the metal at the bottom of the water-cooled copper mold crystallizer 6 and in the water-cooled copper mold crystallizer 6 The areas between the molten pools are all under the action of a magnetic field, which specifically includes the following steps:
a.将待精炼的金属电极棒5安装到真空电弧重熔装置的真空室3内,在真空电弧重熔装置内设置的水冷铜模结晶器6内腔底部放置一层与将待精炼的金属电极棒5成分相同的GCr15轴承钢垫料,通过真空电弧重熔装置的抽气孔外接真空泵将真空室3抽成真空,从进水口9通入冷却水,将金属电极棒5上端和水冷铜模结晶器6用电缆分别连接电源11的正极和负极,分别往磁场发生器7中的两组同芯线圈中通直流电和交流电,使得两组线圈分别同时产生轴向稳恒磁场和交变磁场,调节电流大小,产生的稳恒磁感应强度为0.5T,交变磁场强度为0.8T,方向平行于待精炼金属电极棒5的轴向,完成真空电弧重熔的准备工作; a. Install the metal electrode rod 5 to be refined in the vacuum chamber 3 of the vacuum arc remelting device, place a layer at the bottom of the cavity of the water-cooled copper mold crystallizer 6 provided in the vacuum arc remelting device and the metal to be refined The GCr15 bearing steel gasket with the same composition as the electrode rod 5 is used to evacuate the vacuum chamber 3 into a vacuum through the vacuum pump hole of the vacuum arc remelting device, and the vacuum chamber 3 is evacuated, and the cooling water is introduced from the water inlet 9, and the upper end of the metal electrode rod 5 and the water-cooled copper mold The crystallizer 6 connects the positive pole and the negative pole of the power supply 11 with cables respectively, and passes direct current and alternating current to the two groups of concentric coils in the magnetic field generator 7 respectively, so that the two groups of coils generate the axially constant magnetic field and the alternating magnetic field respectively at the same time, Adjust the magnitude of the current to produce a steady magnetic induction of 0.5T, an alternating magnetic field of 0.8T, and a direction parallel to the axial direction of the metal electrode rod 5 to be refined to complete the preparation for vacuum arc remelting;
b.在完成步骤a的真空电弧重熔的准备工作后,通过真空电弧重熔装置的电极送进机构1驱动金属电极棒5下降,并使金属电极棒5的底部与水冷铜模结晶器6内腔中底部预先铺设的GCr15轴承钢垫料触发,产生电弧,开始真空电弧重熔; b. After completing the preparatory work for vacuum arc remelting in step a, the metal electrode rod 5 is driven down by the electrode feeding mechanism 1 of the vacuum arc remelting device, and the bottom of the metal electrode rod 5 is connected to the water-cooled copper mold crystallizer 6 The pre-laid GCr15 bearing steel pad at the bottom of the inner cavity is triggered to generate an arc and start vacuum arc remelting;
c.经过步骤b真空电弧重熔开始后,在金属电极棒5的真空电弧重熔的后续过程中,通过调整磁场作用区域、金属电极棒和重熔锭之间的相对位置,使待精炼的GCr15轴承钢的金属电极棒5的熔化区、弧区、重熔锭8顶端的固液界面均位于磁场作用区域中,同时控制电弧熔炼电流和金属电极棒5送进速度,在金属电极棒5底部端头产生稳定的电弧,将金属电极棒5持续熔化,控制磁场强度,随着金属电极棒5不断熔化以及重熔锭不断向上生长,使磁场作用区域逐渐上移,保持金属电极棒5熔化过程和重熔锭凝固过程均始终处于磁场作用之下,当电弧重熔结束时,关闭电源11;待凝固结束时,关闭磁场发生器7,当重熔锭8完全冷却后,关闭进水口9和出水口10,从水冷铜模结晶器6中取出重熔锭8,即可得到高纯净度,低偏析度、晶粒细化的GCr15轴承钢真空电弧重熔锭。 c. after step b vacuum arc remelting starts, in the follow-up process of vacuum arc remelting of the metal electrode rod 5, by adjusting the relative position between the magnetic field action area, the metal electrode rod and the remelting ingot, so that the to-be-refined The melting zone, arc zone, and solid-liquid interface at the top of the remelted ingot 8 of the metal electrode rod 5 of GCr15 bearing steel are all located in the magnetic field action area, and the electric arc melting current and the feeding speed of the metal electrode rod 5 are controlled at the same time. A stable arc is generated at the bottom end to continuously melt the metal electrode rod 5 and control the magnetic field strength. With the continuous melting of the metal electrode rod 5 and the continuous upward growth of the remelted ingot, the magnetic field action area is gradually moved up to keep the metal electrode rod 5 melted The process and the solidification process of the remelting ingot are always under the action of the magnetic field. When the arc remelting ends, turn off the power supply 11; when the solidification ends, turn off the magnetic field generator 7, and when the remelting ingot 8 is completely cooled, turn off the water inlet 9 And the water outlet 10, take out the remelting ingot 8 from the water-cooled copper mold crystallizer 6, you can get the GCr15 bearing steel vacuum arc remelting ingot with high purity, low segregation degree and grain refinement.
采用本发明精炼高温合金的方法,在结晶器外围施加一磁场发生器7,在水冷铜模结晶器6外围同时施加轴向稳恒磁场和轴向交变磁场,稳恒磁场产生的磁力线13能够约束真空电弧12,避免电弧发散。如图2~图5所示,未施加磁场时,真空电弧中容易出现带电粒子沿径向向外发散或向内过度集中的现象,这均会导致集聚形电弧的出现而对金属元素产生严重“烧损”,由于在稳恒磁场中受到洛伦兹力作用,迫使带电粒子运动轨迹发生改变,从而以螺旋形轨迹飞向金属熔体,从而使得电弧12较为稳定,比较均匀的分散在金属电极棒5和金属熔体之间。同时,交变磁场产生的磁力线18能够在金属熔体中诱导出感应电流14,感应电流14和稳恒磁场产生的磁力线13相互作用,产生总体向心的交变洛伦兹力15,在交变洛伦兹力15的震荡下金属熔体8中产生压力波16,在交变洛伦兹力15和压力波16的复合作用下,破碎金属熔体凝固界面前沿正在生长的枝晶17。本实施例的线圈中通直流电流产生的稳恒磁场成分对沿径向运动的带电粒子抑制作用,延缓了电极间离子贫乏现象和阳极斑点的产生,降低电弧电压和电弧能量,防止形成集聚形电弧进行重熔导致电极局部温度过高而产生严重熔融汽化影响冶金质量。同时,线圈中通交流电流产生的交变磁场能够在金属熔池中形成一定压力梯度,产生压力波破碎枝晶。另外,交变磁场和直流电弧电流总会存在一定的夹角,因此会形成一定的震荡洛伦兹力15,有助于打碎枝晶,细化凝固组织,减少铸锭偏析。 Adopt the method for refining superalloy of the present invention, apply a magnetic field generator 7 on the periphery of the crystallizer, apply the axial constant magnetic field and the axial alternating magnetic field at the periphery of the water-cooled copper mold crystallizer 6 at the same time, the magnetic field lines 13 that the constant magnetic field produces can be The vacuum arc 12 is constrained to avoid arc divergence. As shown in Figures 2 to 5, when no magnetic field is applied, charged particles tend to diverge radially outward or excessively concentrate inward in the vacuum arc, which will lead to the appearance of concentrated arcs and serious damage to metal elements. "Burning loss" is due to the action of Lorentz force in the steady magnetic field, which forces the trajectory of charged particles to change, so that they fly to the metal melt in a spiral trajectory, so that the arc 12 is relatively stable and evenly dispersed in the metal Between the electrode rod 5 and the metal melt. At the same time, the magnetic force lines 18 generated by the alternating magnetic field can induce an induced current 14 in the molten metal, and the induced current 14 interacts with the magnetic force lines 13 generated by the steady magnetic field to generate an overall centripetal alternating Lorentz force 15. Under the vibration of the variable Lorentz force 15, a pressure wave 16 is generated in the metal melt 8, and under the combined action of the alternating Lorentz force 15 and the pressure wave 16, the growing dendrite 17 at the front of the solidification interface of the metal melt is broken. The stable magnetic field component generated by the direct current in the coil of this embodiment inhibits the charged particles moving in the radial direction, delays the ion impoverishment phenomenon between the electrodes and the generation of anode spots, reduces the arc voltage and arc energy, and prevents the formation of agglomeration The remelting of the arc causes the local temperature of the electrode to be too high, resulting in severe melting and vaporization, which affects the metallurgical quality. At the same time, the alternating magnetic field generated by the alternating current in the coil can form a certain pressure gradient in the molten metal pool, and generate pressure waves to break dendrites. In addition, there is always a certain angle between the alternating magnetic field and the DC arc current, so a certain oscillating Lorentz force15 will be formed, which will help break up dendrites, refine solidified structures, and reduce ingot segregation.
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明真空磁控电弧重熔精炼金属的方法及装置的技术原理和发明构思,都属于本发明的保护范围。 The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and various changes can also be made according to the purpose of the invention of the present invention. The changes, modifications, substitutions, combinations or simplifications should be equivalent replacement methods, as long as they meet the purpose of the invention, as long as they do not deviate from the technical principles and inventions of the method and device for vacuum magnetron arc remelting and refining metals of the present invention design, all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510550879.1A CN105132705B (en) | 2015-09-02 | 2015-09-02 | The method and device of vacuum magnetic control electric arc remelting refining metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510550879.1A CN105132705B (en) | 2015-09-02 | 2015-09-02 | The method and device of vacuum magnetic control electric arc remelting refining metal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105132705A true CN105132705A (en) | 2015-12-09 |
CN105132705B CN105132705B (en) | 2017-12-22 |
Family
ID=54718269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510550879.1A Active CN105132705B (en) | 2015-09-02 | 2015-09-02 | The method and device of vacuum magnetic control electric arc remelting refining metal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105132705B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624419A (en) * | 2016-03-09 | 2016-06-01 | 应达工业(上海)有限公司 | Vacuum arc remelting furnace |
CN106282594A (en) * | 2016-10-18 | 2017-01-04 | 宝鸡正微金属科技有限公司 | Magnetic control arc scan-type cold hearth melting device |
CN106793237A (en) * | 2016-12-22 | 2017-05-31 | 贵州大学 | A kind of method that use electric arc carries out quick heating to workpiece |
CN107214322A (en) * | 2017-04-17 | 2017-09-29 | 上海大学 | Magnetostatic field composite rotating magnetic field homogenizes the method and its device of large-sized casting ingot solidified structure |
CN108796238A (en) * | 2018-07-04 | 2018-11-13 | 上海大学 | A kind of magnetostatic soft contact stirring compound plasma electric arc melting device and method |
CN110499426A (en) * | 2019-08-16 | 2019-11-26 | 河钢股份有限公司 | A kind of device and method of the high-end bearing steel of Electromagnetic Control electroslag refining |
CN110541088A (en) * | 2019-09-06 | 2019-12-06 | 北方民族大学 | A Method for Improving the Microstructure of Cu-Pb Hypermotectic Alloy |
CN110793321A (en) * | 2019-11-27 | 2020-02-14 | 湖南金天钛业科技有限公司 | Arc control device and method for improving surface quality of titanium cast ingot |
CN111247259A (en) * | 2017-10-17 | 2020-06-05 | 钛金属公司 | Compact coil assembly for vacuum arc remelting system |
CN113462913A (en) * | 2021-06-15 | 2021-10-01 | 陕西斯瑞新材料股份有限公司 | Short circuit control method for molten drops in vacuum consumable arc melting |
CN114438338A (en) * | 2022-01-28 | 2022-05-06 | 苏州大学 | Arc Remelting Method for Preventing Ingot Stress Cracking and Improving Ingot Internal Quality |
CN114686691A (en) * | 2020-12-28 | 2022-07-01 | 河北龙凤山铸业有限公司 | Method and system for preparing 4N-grade high-purity iron |
CN114908224A (en) * | 2021-02-08 | 2022-08-16 | 中国航发商用航空发动机有限责任公司 | Material surface composite strengthening device and method |
CN114918387A (en) * | 2022-05-25 | 2022-08-19 | 哈尔滨工业大学 | Device and method for preparing ultra-high temperature alloy bar with low cost and short process |
CN115216847A (en) * | 2022-07-21 | 2022-10-21 | 西北工业大学 | Method and device for preparing metal material by multi-magnetic field assisted directional solidification |
CN118884053A (en) * | 2024-09-29 | 2024-11-01 | 东北大学 | A device and method for in-situ measurement of resistivity of molten metal under strong magnetic field |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101624657A (en) * | 2009-04-30 | 2010-01-13 | 上海大学 | Method for magnetic control electroslag remelting and high-efficiency refining high temperature alloy and device therefor |
-
2015
- 2015-09-02 CN CN201510550879.1A patent/CN105132705B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101624657A (en) * | 2009-04-30 | 2010-01-13 | 上海大学 | Method for magnetic control electroslag remelting and high-efficiency refining high temperature alloy and device therefor |
Non-Patent Citations (2)
Title |
---|
杨永维: ""真空自耗电弧炉数学模型的实验研究及控制策略"", 《中国优秀硕士学位论文全文数据库》 * |
贾申利等: ""真空电弧重熔法制造CuCr触头材料"", 《高压电器》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624419A (en) * | 2016-03-09 | 2016-06-01 | 应达工业(上海)有限公司 | Vacuum arc remelting furnace |
CN106282594A (en) * | 2016-10-18 | 2017-01-04 | 宝鸡正微金属科技有限公司 | Magnetic control arc scan-type cold hearth melting device |
CN106282594B (en) * | 2016-10-18 | 2017-10-20 | 宝鸡正微金属科技有限公司 | Magnetic control arc scan-type cold hearth melting device |
CN106793237B (en) * | 2016-12-22 | 2020-04-21 | 贵州大学 | A method for rapid heating of workpiece by arc |
CN106793237A (en) * | 2016-12-22 | 2017-05-31 | 贵州大学 | A kind of method that use electric arc carries out quick heating to workpiece |
CN107214322A (en) * | 2017-04-17 | 2017-09-29 | 上海大学 | Magnetostatic field composite rotating magnetic field homogenizes the method and its device of large-sized casting ingot solidified structure |
CN107214322B (en) * | 2017-04-17 | 2019-06-25 | 上海大学 | Magnetostatic field composite rotating magnetic field homogenizes the method and device thereof of large-scale casting ingot solidified structure |
US11434544B2 (en) | 2017-10-17 | 2022-09-06 | Titanium Metals Corporation | Compact coil assembly for a vacuum arc remelting system |
CN111247259A (en) * | 2017-10-17 | 2020-06-05 | 钛金属公司 | Compact coil assembly for vacuum arc remelting system |
CN108796238A (en) * | 2018-07-04 | 2018-11-13 | 上海大学 | A kind of magnetostatic soft contact stirring compound plasma electric arc melting device and method |
CN110499426A (en) * | 2019-08-16 | 2019-11-26 | 河钢股份有限公司 | A kind of device and method of the high-end bearing steel of Electromagnetic Control electroslag refining |
CN110541088A (en) * | 2019-09-06 | 2019-12-06 | 北方民族大学 | A Method for Improving the Microstructure of Cu-Pb Hypermotectic Alloy |
CN110793321A (en) * | 2019-11-27 | 2020-02-14 | 湖南金天钛业科技有限公司 | Arc control device and method for improving surface quality of titanium cast ingot |
CN114686691A (en) * | 2020-12-28 | 2022-07-01 | 河北龙凤山铸业有限公司 | Method and system for preparing 4N-grade high-purity iron |
CN114908224B (en) * | 2021-02-08 | 2024-01-16 | 中国航发商用航空发动机有限责任公司 | Material surface composite strengthening device and method |
CN114908224A (en) * | 2021-02-08 | 2022-08-16 | 中国航发商用航空发动机有限责任公司 | Material surface composite strengthening device and method |
CN113462913A (en) * | 2021-06-15 | 2021-10-01 | 陕西斯瑞新材料股份有限公司 | Short circuit control method for molten drops in vacuum consumable arc melting |
CN114438338B (en) * | 2022-01-28 | 2023-08-15 | 苏州大学 | Arc remelting method for preventing stress cracking of cast ingot and improving internal quality of cast ingot |
CN114438338A (en) * | 2022-01-28 | 2022-05-06 | 苏州大学 | Arc Remelting Method for Preventing Ingot Stress Cracking and Improving Ingot Internal Quality |
CN114918387A (en) * | 2022-05-25 | 2022-08-19 | 哈尔滨工业大学 | Device and method for preparing ultra-high temperature alloy bar with low cost and short process |
CN114918387B (en) * | 2022-05-25 | 2023-10-20 | 哈尔滨工业大学 | Device and method for preparing ultrahigh-temperature alloy bar in low-cost short process |
CN115216847A (en) * | 2022-07-21 | 2022-10-21 | 西北工业大学 | Method and device for preparing metal material by multi-magnetic field assisted directional solidification |
CN118884053A (en) * | 2024-09-29 | 2024-11-01 | 东北大学 | A device and method for in-situ measurement of resistivity of molten metal under strong magnetic field |
Also Published As
Publication number | Publication date |
---|---|
CN105132705B (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105132705B (en) | The method and device of vacuum magnetic control electric arc remelting refining metal | |
CN104032151B (en) | EB (electron beam) cold hearth furnace smelting method of TC4 titanium alloy ingot | |
CN104827007B (en) | The continuous casting preparation method of large-scale uniform formation's alloy pig and magnetic control electro-slag continuous casting device | |
CN103056344B (en) | Method for controlling electroslag melting casting by added transient magnetic field and electroslag smelting casting device | |
CN204417564U (en) | A kind of rotary crystallizer of esr | |
CN102912152B (en) | Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb | |
CN101624657A (en) | Method for magnetic control electroslag remelting and high-efficiency refining high temperature alloy and device therefor | |
JP6161533B2 (en) | Titanium continuous casting machine | |
EP0907756A1 (en) | Processing of electroslag refined metal | |
CN212645338U (en) | A single or multi-electrode vacuum consumable arc melting device for titanium and titanium alloys | |
US3723630A (en) | Method for the plasma-ac remelting of a consumable metal bar in a controlled atmosphere | |
CN212778615U (en) | Multi-electrode vacuum non-consumable arc melting device for titanium and titanium alloy | |
TWI527942B (en) | Silicon electromagnetic casting device | |
CN108788040B (en) | A device for producing high-purity metal target blank by continuous casting by hydrogen plasma smelting | |
CN208680474U (en) | A device for electromagnetic energy grain refinement | |
CN114918387B (en) | Device and method for preparing ultrahigh-temperature alloy bar in low-cost short process | |
WO2023016295A1 (en) | Consumable electrode twisted wire arc magnetic spin control welding method | |
JP2011173172A (en) | Method for producing long cast block of active high melting point metal alloy | |
US6219372B1 (en) | Guide tube structure for flux concentration | |
CN211177921U (en) | Multifunctional suspension smelting furnace with clamping and lifting device | |
CN212645345U (en) | A kind of crucible for induction melting titanium and titanium alloy | |
US6358297B1 (en) | Method for controlling flux concentration in guide tubes | |
JP2004522852A (en) | Method for producing metal ingot or billet by melting electrodes in conductive slag bath and apparatus for performing the same | |
CN105624419A (en) | Vacuum arc remelting furnace | |
RU2425157C2 (en) | Procedure for ingot vacuum-arc melting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhong Yunbo Inventor after: Fang Yipeng Inventor after: Zhou Junfeng Inventor after: Wang Huai Inventor before: Zhong Yunbo Inventor before: Fang Yipeng Inventor before: Wang Huai |
|
COR | Change of bibliographic data | ||
GR01 | Patent grant | ||
GR01 | Patent grant |