CN105119517A - High-voltage pulse power supply for synchronous discharge of multiple spark plasma synthetic jet actuators - Google Patents
High-voltage pulse power supply for synchronous discharge of multiple spark plasma synthetic jet actuators Download PDFInfo
- Publication number
- CN105119517A CN105119517A CN201510578087.5A CN201510578087A CN105119517A CN 105119517 A CN105119517 A CN 105119517A CN 201510578087 A CN201510578087 A CN 201510578087A CN 105119517 A CN105119517 A CN 105119517A
- Authority
- CN
- China
- Prior art keywords
- circuit
- voltage
- module
- switch
- circuit module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 26
- 239000003990 capacitor Substances 0.000 claims description 107
- 238000004146 energy storage Methods 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 238000002955 isolation Methods 0.000 claims description 25
- 230000003068 static effect Effects 0.000 claims description 18
- 230000001105 regulatory effect Effects 0.000 claims description 17
- 238000007600 charging Methods 0.000 claims description 15
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Generation Of Surge Voltage And Current (AREA)
- Plasma Technology (AREA)
Abstract
本发明公开了一种多个等离子体合成射流激励器同步放电的高压脉冲电源,包括:主电路模块,用于产生多路同步负极性高压脉冲;控制电路模块,用于产生IGBT开关驱动信号;供电模块,为主电路模块和控制电路模块供电;保护电路模块,保护主电路模块中的晶闸管开关和控制电路模块中的IGBT开关;供电模块分别与主电路模块和控制电路模块相连;保护电路模块分别与主电路模块和控制电路模块相连;控制电路模块和主电路模块相连。本发明的有益效果为:结构简单,结构紧凑;等离子体合成射流速度高,工作效率高;可同步输出多路10kV负极性高压脉冲对多个等离子体合成射流激励器进行同步激励,能使多个等离子体合成射流激励器同步放电,且单个等离子体合成射流激励器的放电电流超过100A。
The invention discloses a high-voltage pulse power supply for synchronous discharge of multiple plasma synthetic jet exciters, comprising: a main circuit module for generating multiple synchronous negative polarity high-voltage pulses; a control circuit module for generating IGBT switch drive signals; The power supply module supplies power to the main circuit module and the control circuit module; the protection circuit module protects the thyristor switch in the main circuit module and the IGBT switch in the control circuit module; the power supply module is connected to the main circuit module and the control circuit module respectively; the protection circuit module respectively connected with the main circuit module and the control circuit module; the control circuit module is connected with the main circuit module. The beneficial effects of the present invention are: simple structure, compact structure; high speed of plasma synthetic jet, high working efficiency; synchronous output of multiple 10kV negative polarity high-voltage pulses to synchronously excite multiple plasma synthetic jet actuators, enabling multiple The plasma synthetic jet actuators discharge synchronously, and the discharge current of a single plasma synthetic jet actuator exceeds 100A.
Description
技术领域technical field
本发明涉及高压脉冲电源技术领域,具体而言,涉及一种面向多个等离子体合成射流激励器同步放电应用的负极性高压脉冲电源。The invention relates to the technical field of high-voltage pulse power supply, in particular to a negative polarity high-voltage pulse power supply for synchronous discharge application of multiple plasma synthetic jet actuators.
背景技术Background technique
流动控制可分为被动控制和主动控制两大类,主动控制是在流场中直接注入合适的扰动模式和能量,使其与系统内流动发生某种相互作用实现控制,控制效果可根据实际工况进行自适应调节。合成射流作为一种全新的主动流动控制技术,无需气源供应系统,结构简单、响应快、工作频带宽和零质量流率等特点,在流动控制领域具有广泛应用。随着等离子体技术的飞速发展,等离子体合成射流技术在高速流场控制中有着极大的优势。Flow control can be divided into two categories: passive control and active control. Active control is to directly inject appropriate disturbance mode and energy into the flow field to make it interact with the flow in the system to achieve control. The control effect can be determined according to the actual work. self-adaptive adjustment. Synthetic jet, as a new active flow control technology, does not require an air source supply system, has the characteristics of simple structure, fast response, wide operating frequency and zero mass flow rate, and is widely used in the field of flow control. With the rapid development of plasma technology, plasma synthetic jet technology has great advantages in high-speed flow field control.
目前,产生等离子体合成射流的电源主要有以下几种:At present, there are mainly the following types of power sources for generating plasma synthetic jets:
法国宇航局研制了两种脉冲变压器型电感储能型和电容储能型的电源,将其应用于等离子体合成射流实验,实验发现:在间距为1.2mm的条件下,放电电压约为4.7kV,电感储能型电源的放电电流约为30A,电容储能型电源的放电电流约为250A(BelingerA,HardyP,BarricauP,etal.Influenceoftheenergydissipationrateinthedischargeofaplasmasyntheticjetactuator[J].JournalofPhysicsD:AppliedPhysics,2011,44(36):365201.)。其设计的电源在高压侧串联有限流电阻,这会使得电源的重复频率低、能量转换效率低。The French Space Agency has developed two kinds of pulse transformer type inductive energy storage type and capacitive energy storage type power supply, and applied them to the plasma synthetic jet experiment. The experiment found that: under the condition of a distance of 1.2mm, the discharge voltage is about 4.7kV , the discharge current of the inductive energy storage type power supply is about 30A, and the discharge current of the capacitive energy storage type power supply is about 250A (BelingerA, HardyP, BarricauP, et al. .). The designed power supply has a current-limiting resistor connected in series on the high-voltage side, which will result in low repetition frequency and low energy conversion efficiency of the power supply.
德克萨斯大学研制了一套面向等离子体合成射流应用的激励源,该激励源包括高压直流电源、储能电容、限流电阻、MOSFET开关等器件。在5mm间距下,放电点电压约为2.2kV,放电电流约为3A(NarayanaswamyV,RajaLL,ClemensNT.Characterizationofahigh-frequencypulsed-plasmajetactuatorforsupersonicflowcontrol[J].AIAAjournal,2010,48(2):297-305)。该装置结构相对零散,功率较小,产生的等离子体合成射流速度较低。The University of Texas has developed a set of excitation sources for plasma synthetic jet applications. The excitation sources include high-voltage DC power supplies, energy storage capacitors, current-limiting resistors, MOSFET switches and other devices. At 5mm spacing, the discharge point voltage is about 2.2kV, and the discharge current is about 3A (NarayanaswamyV, RajaLL, ClemensNT. Characterization of high-frequency pulsed-plasma jettactuator for supersonic flow control [J]. AIAAjournal, 2010, 48(2): 297-305). The structure of the device is relatively fragmented, the power is small, and the velocity of the plasma synthetic jet generated is low.
国防科技大学利用直流源和脉冲源配合研究三电极等离子体合成射流特性,实验发现利用两种电源的配合可以明显降低等离子体合成射流激励器的击穿电压(WangL,XiaZ,LuoZ,etal.Three-ElectrodePlasmaSyntheticJetActuatorforHigh-SpeedFlowControl[J].AIAAJournal,2013,52(4):879-882.)。但利用两台电源的配合增加了装置的复杂性,不利于实际应用。The National University of Defense Technology used a DC source and a pulse source to study the characteristics of the three-electrode plasma synthetic jet. It was found that the combination of the two power sources can significantly reduce the breakdown voltage of the plasma synthetic jet actuator (WangL, XiaZ, LuoZ, et al.Three -ElectrodePlasmaSyntheticJetActuatorforHigh-SpeedFlowControl[J].AIAAJournal,2013,52(4):879-882.). However, the cooperation of two power supplies increases the complexity of the device, which is not conducive to practical application.
空军工程大学利用磁压缩式纳秒脉冲电源研究等离子体合成射流的气动特性,脉冲源的输出电压最大50kV,频率最大为5kHz,上升沿20ns-30ns,半高宽50ns,实验中放电电压约为4.7kV,放电电流为20A(贾敏,梁华,宋慧敏,等.纳秒脉冲等离子体合成射流的气动激励特性[J].高电压技术,2011,37(6):1493-1498.)。此类电源的放电电流较小,不利于等离子体合成射流激励器腔体的加热。The Air Force Engineering University uses a magnetic compression nanosecond pulse power supply to study the aerodynamic characteristics of plasma synthetic jets. The maximum output voltage of the pulse source is 50kV, the maximum frequency is 5kHz, the rising edge is 20ns-30ns, and the half-height width is 50ns. The discharge voltage in the experiment is about 4.7kV, discharge current 20A (Jia Min, Liang Hua, Song Huimin, et al. Aerodynamic excitation characteristics of nanosecond pulsed plasma synthetic jet [J]. High Voltage Technology, 2011,37(6):1493-1498.). The discharge current of this type of power supply is small, which is not conducive to the heating of the cavity of the plasma synthetic jet actuator.
中国科学院电工研究所对多个等离子体合成射流激励器同步放电进行了研究,专利(申请号2015100580904)公开了多个等离子体合成射流激励器同步放电的装置及方法,其装置包括多个高压模块,通过开关同步触发技术对多个等离子体合成射流激励器进行同步激励,使多个激励器同步放电,但是这种装置采用多个高压模块,增加了装置的复杂性。The Institute of Electrical Engineering, Chinese Academy of Sciences has conducted research on the simultaneous discharge of multiple plasma synthetic jet actuators. The patent (application number 2015100580904) discloses a device and method for synchronous discharge of multiple plasma synthetic jet actuators. The device includes multiple high-voltage modules , synchronously excite multiple plasma synthetic jet exciters through switch synchronous trigger technology, so that multiple exciters are discharged synchronously, but this device uses multiple high-voltage modules, which increases the complexity of the device.
综上所述,国内外大多是在研究单个等离子体合成射流激励器的特性,而且使用的电源装置也存在许多缺点。不能使多个等离子体合成射流激励器同步放电,装置结构复杂,结构不紧凑,放电电流小,等离子体合成射流速度低,工作效率低。To sum up, at home and abroad, the characteristics of a single plasma synthetic jet actuator are mostly studied, and the power supply device used also has many shortcomings. Multiple plasma synthetic jet exciters cannot be discharged synchronously, the structure of the device is complex, the structure is not compact, the discharge current is small, the velocity of the plasma synthetic jet is low, and the working efficiency is low.
发明内容Contents of the invention
为解决上述问题,本发明的目的在于提供一种使多个等离子体合成射流激励器同步放电的高压脉冲电源,该电源可同步输出多路10kV负极性高压脉冲对多个等离子体合成射流激励器进行同步激励,能够使多个等离子体合成射流激励器同步放电,且单个等离子体合成射流激励器的放电电流超过100A。In order to solve the above problems, the object of the present invention is to provide a high-voltage pulse power supply for synchronous discharge of multiple plasma synthetic jet actuators, which can synchronously output multiple 10kV negative polarity high-voltage pulses to multiple plasma synthetic jet actuators Synchronous excitation can make multiple plasma synthetic jet actuators discharge synchronously, and the discharge current of a single plasma synthetic jet actuator exceeds 100A.
本发明提供了一种多个等离子体合成射流激励器同步放电的高压脉冲电源,包括:The invention provides a high-voltage pulse power supply for synchronous discharge of multiple plasma synthetic jet actuators, including:
主电路模块,其分别与控制电路模块、供电模块和保护电路模块连接,所述主电路模块用于产生多路同步负极性高压脉冲;The main circuit module is connected to the control circuit module, the power supply module and the protection circuit module respectively, and the main circuit module is used to generate multiple synchronous negative polarity high-voltage pulses;
控制电路模块,其分别与所述主电路模块、所述供电模块和保护电路模块连接,所述控制电路模块用于产生IGBT开关驱动信号;A control circuit module, which is respectively connected to the main circuit module, the power supply module and the protection circuit module, and the control circuit module is used to generate an IGBT switch driving signal;
供电模块,其分别与所述主电路模块和所述控制电路模块连接,所述供电模块为所述主电路模块和所述控制电路模块供电;a power supply module, which is respectively connected to the main circuit module and the control circuit module, and the power supply module supplies power to the main circuit module and the control circuit module;
保护电路模块,其分别与所述主电路模块和所述控制电路模块连接,所述保护电路模块保护所述主电路模块中的晶闸管开关和所述控制电路模块中的IGBT开关。A protection circuit module is connected to the main circuit module and the control circuit module respectively, and the protection circuit module protects the thyristor switch in the main circuit module and the IGBT switch in the control circuit module.
作为本发明进一步的改进,所述主电路模块包括调压电路、升压电路、整流电路、充电电路、开关电路、负载;As a further improvement of the present invention, the main circuit module includes a voltage regulating circuit, a boosting circuit, a rectifying circuit, a charging circuit, a switching circuit, and a load;
所述调压电路的一端与所述升压电路的一端相连,所述升压电路的另一端与所述整流电路的一端相连,所述整流电路的另一端与所述充电电路的一端相连,所述充电电路的另一端与所述开关电路的一端相连,所述开关电路的另一端与所述负载相连。One end of the voltage regulating circuit is connected to one end of the boosting circuit, the other end of the boosting circuit is connected to one end of the rectifying circuit, the other end of the rectifying circuit is connected to one end of the charging circuit, The other end of the charging circuit is connected to one end of the switch circuit, and the other end of the switch circuit is connected to the load.
作为本发明进一步的改进,As a further improvement of the present invention,
所述调压电路为第一交流调压器,对220V交流市电进行调压,实现电压可调;The voltage regulating circuit is a first AC voltage regulator, which regulates the voltage of 220V AC mains to realize voltage adjustment;
所述升压电路为升压变压器,对所述第一交流调压器的输出电压进行升压;The step-up circuit is a step-up transformer, which boosts the output voltage of the first AC voltage regulator;
所述整流电路由四只高压整流二极管、第一限流电阻和第一储能电容组成,第一整流二极管、第二整流二极管、第三整流二极管和第四整流二极管构成整流桥,所述整流桥的输入端与所述升压变压器的输出端相连,所述升压变压器的输出端经所述第一限流电阻与所述第一储能电容的两端相连,对所述升压变压器输出的交流电压进行整流,经所述第一限流电阻给所述第一储能电容充电,将交流电压变为直流电压;The rectifier circuit is composed of four high-voltage rectifier diodes, a first current limiting resistor and a first energy storage capacitor, the first rectifier diode, the second rectifier diode, the third rectifier diode and the fourth rectifier diode form a rectifier bridge, and the rectifier The input end of the bridge is connected to the output end of the step-up transformer, and the output end of the step-up transformer is connected to both ends of the first energy storage capacitor through the first current-limiting resistor. The output AC voltage is rectified, and the first energy storage capacitor is charged through the first current-limiting resistor to change the AC voltage into a DC voltage;
所述充电电路由限流电感、隔离二极管、多个放电电容和多只续流二极管组成,所述第一储能电容的一端与所述限流电感的一端相连,所述限流电感、所述隔离二极管、多个放电电容、多只续流二极管串联连接,每只续流二极管的一端与所述储能电容的另一端相连并接大地,多个放电电容与多只续流二极管串联构成的支路并联连接;The charging circuit is composed of a current-limiting inductor, an isolation diode, a plurality of discharge capacitors and a plurality of freewheeling diodes, one end of the first energy storage capacitor is connected to one end of the current-limiting inductor, the current-limiting inductor, the The isolation diode, multiple discharge capacitors, and multiple freewheeling diodes are connected in series, one end of each freewheeling diode is connected to the other end of the energy storage capacitor and connected to the ground, and multiple discharge capacitors are connected in series with multiple freewheeling diodes. The branches are connected in parallel;
所述开关电路由电感、十一只晶闸管开关、十一只续流二极管、十一组静态均压电阻构成的静态均压电路和十一组动态均压电阻、十一组动态均压电容串联构成的动态均压电路组成;在单组晶闸管系统电路中,单组晶闸管驱动电路与单组静态均压电路、单组动态均压电路并联连接;十一组晶闸管系统电路串联连接组成晶闸管串联式高压开关,所述高压开关的一端与所述电感的一端相连,所述电感另的一端与所述隔离二极管的阴极相连,所述高压开关的另一端与第一储能电容的一端相连,控制多个放电电容的工作状态;The switch circuit consists of a static voltage equalizing circuit composed of inductors, eleven thyristor switches, eleven freewheeling diodes, eleven groups of static voltage equalizing resistors, eleven groups of dynamic voltage equalizing resistors, and eleven groups of dynamic voltage equalizing capacitors connected in series In the single-group thyristor system circuit, a single-group thyristor drive circuit is connected in parallel with a single-group static voltage-balancing circuit and a single-group dynamic voltage-balancing circuit; eleven groups of thyristor system circuits are connected in series to form a thyristor series type A high-voltage switch, one end of the high-voltage switch is connected to one end of the inductance, the other end of the inductance is connected to the cathode of the isolation diode, the other end of the high-voltage switch is connected to one end of the first energy storage capacitor, and the control Working status of multiple discharge capacitors;
所述负载由多个等离子体合成射流激励器、多只限流二极管组成,单个等离子体合成射流激励器由腔体、带孔盖及穿过腔体两根相对的间距可调节的钨针电极构成,单个等离子体合成射流激励器的一端与单只限流二极管的阳极相连,单只限流二极管的阴极与单个放电电容的一端相连,等离子体合成射流激励器的另一端与所述第一储能电容的接地端相连,多个放电电容、多只续流二极管、多只限流二极管、多个等离子体合成射流激励器的连接方式与上述连接一致。The load is composed of multiple plasma synthetic jet actuators and multiple current-limiting diodes. A single plasma synthetic jet actuator consists of a cavity, a cover with holes, and two tungsten needle electrodes with adjustable spacing between the opposite sides of the cavity. One end of a single plasma synthetic jet actuator is connected to the anode of a single current-limiting diode, the cathode of a single current-limiting diode is connected to one end of a single discharge capacitor, and the other end of the plasma synthetic jet actuator is connected to the first The ground terminal of the energy storage capacitor is connected, and the connection mode of multiple discharge capacitors, multiple freewheeling diodes, multiple current limiting diodes, and multiple plasma synthetic jet actuators is consistent with the above connection.
作为本发明进一步的改进,所述主电路模块的开关保护电路为吸收电阻与吸收电容串联的RC电路,其与高压晶闸管开关并联,吸收高压晶闸管开关在开通及关断时产生的电压尖峰。As a further improvement of the present invention, the switch protection circuit of the main circuit module is an RC circuit in series with a snubber resistor and a snubber capacitor, which is connected in parallel with the high-voltage thyristor switch to absorb voltage spikes generated when the high-voltage thyristor switch is turned on and off.
作为本发明进一步的改进,所述控制电路模块包括脉冲发生器模块和开关驱动电路,所述脉冲发生器模块的一端与所述开关驱动电路的一端相连,所述开关驱动电路的另一端与所述主电路模块中开关电路的一端相连,所述控制电路模块中脉冲发生器模块产生控制信号经所述开关驱动电路控制所述主电路模块的开关电路中晶闸管开关的开通与关断。As a further improvement of the present invention, the control circuit module includes a pulse generator module and a switch drive circuit, one end of the pulse generator module is connected to one end of the switch drive circuit, and the other end of the switch drive circuit is connected to the switch drive circuit. One end of the switch circuit in the main circuit module is connected, and the pulse generator module in the control circuit module generates a control signal to control the opening and closing of the thyristor switch in the switch circuit of the main circuit module through the switch driving circuit.
作为本发明进一步的改进,As a further improvement of the present invention,
所述脉冲发生器模块由脉冲发生器和电-光转换板组成,所述脉冲发生器的输出端与所述电-光转换板相连;所述脉冲发生器由键盘、显示屏、ARM芯片,所述ARM芯片的输出端与所述键盘、所述显示屏相连,经键盘输入、ARM芯片处理、功率放大、电-光转换、显示屏显示,提供脉宽、频率、脉冲个数可调的光信号;所述电-光转换板将电信号转换为光信号,将高压输出电路与控制电路分离开,防止电磁信号对控制电路的干扰,避免高压开关误触发;The pulse generator module is composed of a pulse generator and an electric-optical conversion board, and the output end of the pulse generator is connected with the electric-optical conversion board; the pulse generator is composed of a keyboard, a display screen, an ARM chip, The output terminal of the ARM chip is connected to the keyboard and the display screen, and through keyboard input, ARM chip processing, power amplification, electro-optical conversion, and display screen display, a pulse width, frequency, and pulse number adjustable Optical signal; the electrical-optical conversion board converts the electrical signal into an optical signal, separates the high-voltage output circuit from the control circuit, prevents electromagnetic signals from interfering with the control circuit, and avoids false triggering of the high-voltage switch;
所述开关驱动电路由整流模块、第二储能电容、IGBT开关、IGBT开关驱动模块、光-电转换板、十一路隔离脉冲变压器、十一个分压电阻、十一个限流电阻、十一只续流二极管、十一只限流二极管组成,所述整流模块由四个整流二极管组成;交流市电与所述整流模块的输入端相连,所述整流模块的输出端与所述第二储能电容的输入端相连,产生稳定的直流电压;所述IGBT开关的触发极与所述IGBT驱动模块的输出端相连接,所述IGBT开关驱动模块的输入端与所述光-电转换板的输出端相连,所述光-电转换板与所述电-光转换板相连,控制所述IGBT开关的开通与关断;所述IGBT开关的一端与所述十一路隔离脉冲变压器的原边相连,单个隔离脉冲变压器的副边与单个分压电阻的一端相连,单个分压电阻的另一端与单个晶闸管开关触发极阴极相连,单个限流电阻的另一端与单只限流二极管的阳极相连,单个限流二极管的阴极与单个晶闸管触发极阳极相连,单个分压电阻与单只续流二极管并连,单个分压电阻的一端与单个限流二极管的阳极相连,单个分压电阻的另一端与单个晶闸管开关的触发极阴极相连,十一路隔离脉冲变压器副边的连接方式与上述连接一致,提供电压、电流达到晶闸管开关驱动要求的十一路同步驱动信号。The switch drive circuit consists of a rectifier module, a second energy storage capacitor, an IGBT switch, an IGBT switch drive module, a light-to-electricity conversion board, eleven isolation pulse transformers, eleven voltage dividing resistors, eleven current limiting resistors, Eleven freewheeling diodes and eleven current-limiting diodes, the rectifier module consists of four rectifier diodes; the AC mains is connected to the input end of the rectifier module, and the output end of the rectifier module is connected to the first The input ends of the two energy storage capacitors are connected to generate a stable DC voltage; the trigger pole of the IGBT switch is connected to the output end of the IGBT drive module, and the input end of the IGBT switch drive module is connected to the photoelectric conversion The output end of the board is connected, and the optical-electrical conversion board is connected with the electrical-optical conversion board to control the opening and closing of the IGBT switch; one end of the IGBT switch is connected to the eleven-way isolation pulse transformer The primary side is connected, the secondary side of a single isolated pulse transformer is connected to one end of a single voltage dividing resistor, the other end of a single voltage dividing resistor is connected to the trigger electrode cathode of a single thyristor switch, the other end of a single current limiting resistor is connected to a single current limiting diode The anode is connected, the cathode of a single current-limiting diode is connected to the anode of a single thyristor trigger pole, the single voltage-dividing resistor is connected in parallel with a single freewheeling diode, one end of a single voltage-dividing resistor is connected to the anode of a single current-limiting diode, and the single voltage-dividing resistor The other end is connected to the cathode of the trigger pole of a single thyristor switch, and the connection mode of the secondary side of the eleven-way isolated pulse transformer is consistent with the above connection, providing eleven synchronous driving signals whose voltage and current meet the driving requirements of the thyristor switch.
作为本发明进一步的改进,所述控制电路模块的开关保护电路为吸收电阻与续流二极管并联、再与吸收电容串联的RCD电路,其与IGBT开关并联,吸收IGBT开关在开通及关断时产生的电压尖峰。As a further improvement of the present invention, the switch protection circuit of the control circuit module is an RCD circuit in which the absorbing resistor is connected in parallel with the freewheeling diode, and then connected in series with the absorbing capacitor, which is connected in parallel with the IGBT switch, and the absorbing IGBT switch generates voltage spikes.
作为本发明进一步的改进,所述供电模块包括供电电路,所述供电电路的一端分别与所述主电路模块中调压电路一端、所述控制电路模块中脉冲发生器模块的一端、所述控制电路模块中开关驱动电路的一端相连,所述供电电路为所述主电路模块提供220V交流电压,为所述控制电路模块的开关驱动电路提供220V交流电压,为所述控制电路模块的脉冲发生器模块提供5V直流电压。As a further improvement of the present invention, the power supply module includes a power supply circuit, one end of the power supply circuit is connected to one end of the voltage regulating circuit in the main circuit module, one end of the pulse generator module in the control circuit module, the control One end of the switch drive circuit in the circuit module is connected, the power supply circuit provides 220V AC voltage for the main circuit module, provides 220V AC voltage for the switch drive circuit of the control circuit module, and provides 220V AC voltage for the pulse generator of the control circuit module The module provides 5V DC voltage.
作为本发明进一步的改进,所述保护电路模块包括开关保护电路,所述开关保护电路分别与所述主电路模块中开关电路、所述控制电路模块中开关驱动电路相连,所述开关保护电路为所述主电路模块中开关电路的晶闸管开关提供保护,为所述控制电路模块中开关驱动电路的IGBT开关提供保护。As a further improvement of the present invention, the protection circuit module includes a switch protection circuit, the switch protection circuit is respectively connected to the switch circuit in the main circuit module and the switch drive circuit in the control circuit module, and the switch protection circuit is The thyristor switch of the switch circuit in the main circuit module provides protection for the IGBT switch of the switch drive circuit in the control circuit module.
本发明的有益效果为:The beneficial effects of the present invention are:
1、结构简单,结构紧凑;1. Simple and compact structure;
2、可同步输出多路10kV负极性高压脉冲对多个等离子体合成射流激励器进行同步激励,能使多个等离子体合成射流激励器同步放电,且单个等离子体合成射流激励器的放电电流超过100A。2. It can synchronously output multiple 10kV negative polarity high-voltage pulses to synchronously excite multiple plasma synthetic jet actuators, which can make multiple plasma synthetic jet actuators discharge synchronously, and the discharge current of a single plasma synthetic jet actuator exceeds 100A.
3、等离子体合成射流速度高,工作效率高。3. Plasma synthetic jet has high speed and high working efficiency.
附图说明Description of drawings
图1为本发明实施例所述的一种多个等离子体合成射流激励器同步放电的高压脉冲电源的系统框图;Fig. 1 is a system block diagram of a high-voltage pulse power supply for synchronous discharge of a plurality of plasma synthetic jet actuators according to an embodiment of the present invention;
图2为图1中主电路模块的具体实施电路图;Fig. 2 is the specific implementation circuit diagram of main circuit module in Fig. 1;
图3为图1中控制电路模块的具体实施电路图。FIG. 3 is a specific implementation circuit diagram of the control circuit module in FIG. 1 .
图中,In the figure,
100、主电路模块;101、调压电路;102、升压电路;103、整流电路;104、充电电路;105、开关电路;106、负载;110、控制电路模块;111、开关驱动电路;112、脉冲发生器模块;120、供电模块;121、供电电路;130、保护电路模块;131、开关保护电路;200、第一工频市电;201、第一交流调压器;202、升压变压器;203、第一整流二极管;204、第二整流二极管;205、第三整流二极管;206、第四整流二极管;207、第一限流电阻;208、第一储能电容;209、限流电感;210、隔离二极管;211、电感;212、第一晶闸管驱动电路;213、第二晶闸管驱动电路;214、第十一晶闸管驱动电路;215、第一晶闸管开关;220、第二晶闸管开关;225、第十一晶闸管开关;216、第一续流二极管;221、第二续流二极管;226、第十一续流二极管;217、第一静态均压电阻;222、第二静态均压电阻;227、第十一静态均压电阻;218、第一动态均压电容;223、第二动态均压电容;228、第十一动态均压电容;219、第一动态均压电阻;224、第二动态均压电阻;229、第十一动态均压电阻;230、第一吸收电容;231、第一吸收电阻;232、第一放电电容;236、第二放电电容;240、第三放电电容;233、第一限流二极管;237、第二限流二极管;241、第三限流二极管;234、第一等离子体合成射流激励器;238、第二等离子体合成射流激励器;242、第三等离子体合成射流激励器;235、第十二续流二极管;239、第十三续流二极管;243、第十四续流二极管;244、大地;300、第二工频市电;301、第二交流调压器;302、第五整流二极管;303、第六整流二极管;304、第七整流二极管;305、第八整流二极管;306、第二限流电阻;307、第二储能电容;308、第二吸收电阻;309、第二吸收电容;310、第十五续流二极管;311、IGBT开关;312、IGBT开关驱动模块;313、光-电转换模块;314、电-光转换模块;315、脉冲发生器;316、十一路隔离脉冲变压器;317、第三限流电阻;322、第四限流电阻;327、第十三限流电阻;318、第一分压电阻;323、第二分压电阻;328、第十一分压电阻;320、第十六续流二极管;325、第十七续流二极管;330、第二十六续流二极管;319、第四限流二极管;324、第五限流二极管;329、第十四限流二极管。100. Main circuit module; 101. Regulating circuit; 102. Boosting circuit; 103. Rectifying circuit; 104. Charging circuit; 105. Switching circuit; 106. Load; 110. Control circuit module; 111. Switching drive circuit; 112 , pulse generator module; 120, power supply module; 121, power supply circuit; 130, protection circuit module; 131, switch protection circuit; 200, first power frequency mains; 201, first AC voltage regulator; 202, boost Transformer; 203, first rectifying diode; 204, second rectifying diode; 205, third rectifying diode; 206, fourth rectifying diode; 207, first current limiting resistor; 208, first energy storage capacitor; 209, current limiting Inductance; 210, isolation diode; 211, inductance; 212, first thyristor drive circuit; 213, second thyristor drive circuit; 214, eleventh thyristor drive circuit; 215, first thyristor switch; 220, second thyristor switch; 225, the eleventh thyristor switch; 216, the first freewheeling diode; 221, the second freewheeling diode; 226, the eleventh freewheeling diode; 217, the first static voltage equalizing resistor; 222, the second static voltage equalizing resistor ; 227, the eleventh static equalizing resistor; 218, the first dynamic equalizing capacitor; 223, the second dynamic equalizing capacitor; 228, the eleventh dynamic equalizing capacitor; 219, the first dynamic equalizing resistor; 224, The second dynamic equalizing resistor; 229, the eleventh dynamic equalizing resistor; 230, the first absorbing capacitor; 231, the first absorbing resistor; 232, the first discharging capacitor; 236, the second discharging capacitor; 240, the third discharging Capacitor; 233, the first current-limiting diode; 237, the second current-limiting diode; 241, the third current-limiting diode; 234, the first plasma synthetic jet actuator; 238, the second plasma synthetic jet actuator; 242, The third plasma synthetic jet actuator; 235, the twelfth freewheeling diode; 239, the thirteenth freewheeling diode; 243, the fourteenth freewheeling diode; 244, the earth; 300, the second power frequency mains; 301 , the second AC voltage regulator; 302, the fifth rectifying diode; 303, the sixth rectifying diode; 304, the seventh rectifying diode; 305, the eighth rectifying diode; 306, the second current limiting resistor; 307, the second energy storage Capacitance; 308, second absorbing resistor; 309, second absorbing capacitor; 310, fifteenth freewheeling diode; 311, IGBT switch; 312, IGBT switch drive module; 313, optical-electrical conversion module; 314, electrical-optical Conversion module; 315, pulse generator; 316, eleven-way isolation pulse transformer; 317, third current limiting resistor; 322, fourth current limiting resistor; 327, thirteenth current limiting resistor; 318, first voltage dividing resistor ; 323, the second voltage dividing resistor; 328, the eleventh voltage dividing resistor; 320, the sixteenth freewheeling diode; 325, the seventeenth freewheeling diode; 330, the twenty-sixth freewheeling diode Diode; 319, the fourth current-limiting diode; 324, the fifth current-limiting diode; 329, the fourteenth current-limiting diode.
具体实施方式Detailed ways
下面通过具体的实施例并结合附图对本发明做进一步的详细描述。The present invention will be described in further detail below through specific embodiments and in conjunction with the accompanying drawings.
如图1所示,本发明实施例所述的一种多个等离子体合成射流激励器同步放电的高压脉冲电源,包括主电路模块100、控制电路模块110、供电模块120及保护电路模块130。供电模块120分别与主电路模块100和控制电路模块110相连,保护电路模块130分别与主电路模块100和控制电路模块110相连,控制电路模块110和主电路模块100相连。As shown in FIG. 1 , a high-voltage pulse power supply for synchronous discharge of multiple plasma synthetic jet actuators according to an embodiment of the present invention includes a main circuit module 100 , a control circuit module 110 , a power supply module 120 and a protection circuit module 130 . The power supply module 120 is connected to the main circuit module 100 and the control circuit module 110 respectively, the protection circuit module 130 is connected to the main circuit module 100 and the control circuit module 110 respectively, and the control circuit module 110 is connected to the main circuit module 100 .
其中,in,
主电路模块100包括调压电路101、升压电路102、整流电路103、充电电路104、开关电路105、负载106,用于产生多路同步负极性高压脉冲。调压电路101的一端与升压电路102的一端相连,升压电路102的另一端与整流电路103的一端相连,整流电路103的另一端与充电电路104的一端相连,充电电路104的另一端与开关电路105的一端相连,开关电路105的另一端与负载106相连。The main circuit module 100 includes a voltage regulating circuit 101 , a boosting circuit 102 , a rectifying circuit 103 , a charging circuit 104 , a switching circuit 105 and a load 106 for generating multiple synchronous negative polarity high voltage pulses. One end of the voltage regulating circuit 101 is connected to one end of the boost circuit 102, the other end of the boost circuit 102 is connected to one end of the rectifier circuit 103, the other end of the rectifier circuit 103 is connected to one end of the charging circuit 104, and the other end of the charging circuit 104 It is connected to one end of the switch circuit 105 , and the other end of the switch circuit 105 is connected to the load 106 .
控制电路模块110包括脉冲发生器模块112和开关驱动电路111,用于产生IGBT开关驱动信号。脉冲发生器模块112的一端与开关驱动电路111的一端相连,开关驱动电路111的另一端与主电路模块100中开关电路105的一端相连,控制电路模块110中脉冲发生器模块112产生控制信号经开关驱动电路111控制主电路模块100的开关电路105中晶闸管开关的开通与关断。The control circuit module 110 includes a pulse generator module 112 and a switch driving circuit 111 for generating IGBT switch driving signals. One end of the pulse generator module 112 is connected to one end of the switch drive circuit 111, and the other end of the switch drive circuit 111 is connected to one end of the switch circuit 105 in the main circuit module 100, and the pulse generator module 112 in the control circuit module 110 generates a control signal through The switch drive circuit 111 controls the turn-on and turn-off of the thyristor switch in the switch circuit 105 of the main circuit module 100 .
供电模块120包括供电电路121,为主电路模块100和控制电路模块110供电。供电电路121的一端分别与主电路模块100中调压电路101一端、控制电路模块110中脉冲发生器模块112的一端、控制电路模块110中开关驱动电路111的一端相连,供电电路121为主电路模块100提供220V交流电压,为控制电路模块110的开关驱动电路111提供220V交流电压,为控制电路模块110的脉冲发生器模块112提供5V直流电压。The power supply module 120 includes a power supply circuit 121 for supplying power to the main circuit module 100 and the control circuit module 110 . One end of the power supply circuit 121 is connected to one end of the voltage regulating circuit 101 in the main circuit module 100, one end of the pulse generator module 112 in the control circuit module 110, and one end of the switch drive circuit 111 in the control circuit module 110, and the power supply circuit 121 is the main circuit. The module 100 provides 220V AC voltage, provides 220V AC voltage for the switch driving circuit 111 of the control circuit module 110 , and provides 5V DC voltage for the pulse generator module 112 of the control circuit module 110 .
保护电路模块130包括开关保护电路131,保护主电路模块100和控制电路模块110中的开关。开关保护电路131分别与主电路模块100中开关电路105、控制电路模块110中开关驱动电路111相连,开关保护电路131为主电路模块100中开关电路105的晶闸管开关提供保护,为控制电路模块110中开关驱动电路111的IGBT开关提供保护。The protection circuit module 130 includes a switch protection circuit 131 to protect the switches in the main circuit module 100 and the control circuit module 110 . The switch protection circuit 131 is connected to the switch circuit 105 in the main circuit module 100 and the switch drive circuit 111 in the control circuit module 110 respectively. The IGBT switches in the middle switch driving circuit 111 provide protection.
如图2所示,为主电路模块100的具体实施电路图。以三个等离子体合成射流激励器同步放电为例进行说明。220V交流市电经过主电路模块100中的调压电路101调压、升压电路102升压、整流电路103整流后变为高压直流电,再依次经过充电电路104、开关电路105变为负极性高压脉冲加到负载106上。As shown in FIG. 2 , it is a specific implementation circuit diagram of the main circuit module 100 . The synchronous discharge of three plasma synthetic jet actuators is taken as an example for illustration. The 220V AC mains power is regulated by the voltage regulating circuit 101 in the main circuit module 100, boosted by the voltage boosting circuit 102, and rectified by the rectifying circuit 103 to become a high-voltage direct current, and then through the charging circuit 104 and the switching circuit 105 to become a negative polarity high voltage. The pulses are applied to load 106 .
调压电路101由第一交流调压器201组成,对220V交流市电进行调压,实现电压可调。The voltage regulating circuit 101 is composed of a first AC voltage regulator 201, which regulates the voltage of the 220V AC mains to realize voltage adjustment.
升压电路102由升压变压器202组成,对第一交流调压器201的输出电压进行升压。升压变压器202的输出端经第一限流电阻207与第一储能电容208的两端相连,对升压变压器202输出的交流电压进行整流,经第一限流电阻207给第一储能电容208充电,将交流电压变为直流电压。The boost circuit 102 is composed of a boost transformer 202 to boost the output voltage of the first AC voltage regulator 201 . The output terminal of the step-up transformer 202 is connected to the two ends of the first energy storage capacitor 208 through the first current-limiting resistor 207, the AC voltage output by the step-up transformer 202 is rectified, and the first energy storage capacitor is supplied to the first energy storage through the first current-limiting resistor 207. The capacitor 208 is charged to convert the AC voltage into a DC voltage.
整流电路103由四只高压整流二极管203、204、205、206、第一限流电阻207和第一储能电容208组成,第一整流二极管203、第二整流二极管204、第三整流二极管205和第四整流二极管206构成整流桥。The rectifier circuit 103 is made up of four high voltage rectifier diodes 203, 204, 205, 206, a first current limiting resistor 207 and a first energy storage capacitor 208, the first rectifier diode 203, the second rectifier diode 204, the third rectifier diode 205 and The fourth rectifier diode 206 constitutes a rectifier bridge.
充电电路104由限流电感209、隔离二极管210、三个放电电容232、236、240和三只续流二极管235、239、243组成。第一储能电容208的一端与限流电感209的一端相连,限流电感209、隔离二极管210、三个放电电容232、236、240、三只续流二极管235、239、243串联连接,三只续流二极管235、239、243的一端与第一储能电容208的另一端相连并接大地244,三个放电电容232、236、240与三只续流二极管235、239、243串联构成的支路并联连接。The charging circuit 104 is composed of a current limiting inductor 209 , an isolation diode 210 , three discharge capacitors 232 , 236 , 240 and three freewheeling diodes 235 , 239 , 243 . One end of the first energy storage capacitor 208 is connected to one end of the current-limiting inductance 209, the current-limiting inductance 209, the isolation diode 210, three discharge capacitors 232, 236, 240, and three freewheeling diodes 235, 239, 243 are connected in series. Only one end of the freewheeling diode 235, 239, 243 is connected to the other end of the first energy storage capacitor 208 and connected to the ground 244, and three discharge capacitors 232, 236, 240 are connected in series with three freewheeling diodes 235, 239, 243 to form a The branches are connected in parallel.
开关电路105由电感211、十一只晶闸管开关、十一只续流二极管、十一组静态均压电阻构成的静态均压电路和十一组动态均压电阻、十一组动态均压电容串联构成的动态均压电路组成。在单组晶闸管系统电路中,单组晶闸管驱动电路与单组静态均压电路、单组动态均压电路并联连接。十一组晶闸管系统电路串联连接组成晶闸管串联式高压开关,高压开关的一端与电感211的一端相连,电感211另的一端与隔离二极管210的阴极相连,高压开关的另一端与第一储能电容208的一端相连,控制三个放电电容232、236、240的工作状态。The switch circuit 105 is a static voltage equalizing circuit composed of an inductor 211, eleven thyristor switches, eleven freewheeling diodes, eleven groups of static voltage equalizing resistors, eleven groups of dynamic voltage equalizing resistors, and eleven groups of dynamic voltage equalizing capacitors connected in series Composed of dynamic voltage equalization circuit. In the single-group thyristor system circuit, the single-group thyristor driving circuit is connected in parallel with the single-group static voltage equalizing circuit and the single-group dynamic voltage equalizing circuit. Eleven groups of thyristor system circuits are connected in series to form a thyristor series high-voltage switch. One end of the high-voltage switch is connected to one end of the inductor 211, the other end of the inductor 211 is connected to the cathode of the isolation diode 210, and the other end of the high-voltage switch is connected to the first energy storage capacitor. One end of 208 is connected to control the working state of three discharge capacitors 232 , 236 , 240 .
负载106由三个等离子体合成射流激励器234、238、242、三只限流二极管233、237、241组成,等离子体合成射流激励器由腔体、带孔盖及穿过腔体两根相对的间距可调节的钨针电极构成。单个等离子体合成射流激励器的一端与单只限流二极管的阳极相连,单只限流二极管的阴极与单个放电电容的一端相连,等离子体合成射流激励器的另一端与第一储能电容的接地端相连,多个放电电容、多只续流二极管、多只限流二极管、多个等离子体合成射流激励器的连接方式与上述连接一致。The load 106 is composed of three plasma synthetic jet actuators 234, 238, 242, and three current-limiting diodes 233, 237, 241. The plasma synthetic jet actuator consists of a cavity, a cover with holes, and two opposite electrodes passing through the cavity. It consists of tungsten needle electrodes with adjustable pitch. One end of a single plasma synthetic jet actuator is connected to the anode of a single current-limiting diode, the cathode of a single current-limiting diode is connected to one end of a single discharge capacitor, and the other end of the plasma synthetic jet actuator is connected to the first energy storage capacitor The ground terminal is connected, and the connection mode of multiple discharge capacitors, multiple freewheeling diodes, multiple current limiting diodes, and multiple plasma synthetic jet actuators is consistent with the above connection.
具体的连接为:第一工频市电200与第一交流调压器201的输入端相连,第一交流调压器201的输出端与升压变压器202的输入端相连,升压变压器202的输出端与整流桥的输入端相连,整流桥的一端与第一限流电阻207的一端相连,整流桥的另一端与第一储能电容208的一端相连,第一储能电容208的另一端与第一限流电阻207的另一端、限流电感209的一端相连,限流电感209的另一端与隔离二极管210的阳极相连,隔离二极管210的阴极与电感211、第一放电电容232的一端、第二放电电容236的一端、第三放电电容240的一端相连,电感211的另一端与第一晶闸管开关215的阳极、第一续流二极管216的阴极、第一静态均压电阻217的一端、第一动态均压电容218的一端、第一吸收电容230的一端相连,第一动态均压电容218的另一端与第一动态均压电阻219的一端相连,第一吸收电容230的另一端与第一吸收电阻231的一端相连,十一只晶闸管开关为串联连接,十一只续流二极管为串联连接,十一个静态均压电阻为串联连接,十一个动态均压电容、十一动态均压电阻为串联连接,第十一晶闸管开关225的阴极、第十一续流二极管226的阳极、第十一静态均压电阻227的另一端、第十一动态均压电阻229的另一端、第一吸收电阻231的另一端与第一储能电容208的一端相连,第一放电电容232的另一端、第二放电电容236的另一端、第三放电电容240的另一端分别与第一限流二极管233的阴极、第二限流二极管237的阴极、第三限流二极管241的阴极、第十二续流二极管235的阳极、第十三续流二极管239的阳极、第十四续流二极管243的阳极分别相连,第一限流二极管233的阳极、第二限流二极管237的阳极、第三限流二极管241的阳极分别与等离子体合成射流激励器234的一端、第二等离子体合成射流激励器238的一端、第三等离子体合成射流激励器242的一端相连,第一等离子体合成射流激励器234的另一端、第二等离子体合成射流激励器238的另一端、第三等离子体合成射流激励器242的另一端分别与第十二续流二极管235的阴极、第十三续流二极管239的阴极、第十四续流二极管243的阴极、第一储能电容208的一端、大地244相连,第一晶闸管驱动电路212的输出端、第二晶闸管驱动电路213的输出端、第十一晶闸管驱动电路214的输出端分别与第一晶闸管开关215的触发极、第二晶闸管开关220的触发极、第十一晶闸管开关225的触发极相连。The specific connection is as follows: the first power frequency mains 200 is connected to the input end of the first AC voltage regulator 201, the output end of the first AC voltage regulator 201 is connected to the input end of the step-up transformer 202, and the input end of the step-up transformer 202 The output terminal is connected to the input terminal of the rectifier bridge, one end of the rectifier bridge is connected to one end of the first current limiting resistor 207, the other end of the rectifier bridge is connected to one end of the first energy storage capacitor 208, and the other end of the first energy storage capacitor 208 Connect with the other end of the first current-limiting resistor 207 and one end of the current-limiting inductance 209, the other end of the current-limiting inductance 209 is connected with the anode of the isolation diode 210, the cathode of the isolation diode 210 is connected with the inductance 211 and one end of the first discharge capacitor 232 , one end of the second discharge capacitor 236, and one end of the third discharge capacitor 240 are connected, and the other end of the inductor 211 is connected to the anode of the first thyristor switch 215, the cathode of the first freewheeling diode 216, and one end of the first static equalizing resistor 217 1. One end of the first dynamic equalizing capacitor 218 is connected to one end of the first absorbing capacitor 230, the other end of the first dynamic equalizing capacitor 218 is connected to one end of the first dynamic equalizing resistor 219, and the other end of the first absorbing capacitor 230 Connected to one end of the first absorbing resistor 231, eleven thyristor switches are connected in series, eleven freewheeling diodes are connected in series, eleven static equalizing resistors are connected in series, eleven dynamic equalizing capacitors, eleven The dynamic equalizing resistors are connected in series, the cathode of the eleventh thyristor switch 225, the anode of the eleventh freewheeling diode 226, the other end of the eleventh static equalizing resistor 227, and the other end of the eleventh dynamic equalizing resistor 229 , the other end of the first absorption resistor 231 is connected to one end of the first energy storage capacitor 208, the other end of the first discharge capacitor 232, the other end of the second discharge capacitor 236, and the other end of the third discharge capacitor 240 are respectively connected to the first The cathode of the current limiting diode 233, the cathode of the second current limiting diode 237, the cathode of the third current limiting diode 241, the anode of the twelfth freewheeling diode 235, the anode of the thirteenth freewheeling diode 239, the fourteenth freewheeling diode The anode of diode 243 is connected respectively, and the anode of the first current-limiting diode 233, the anode of the second current-limiting diode 237, the anode of the third current-limiting diode 241 are respectively connected with one end of the plasma synthesis jet driver 234, the second plasma synthesis One end of the jet actuator 238 and one end of the third plasma synthetic jet actuator 242 are connected, the other end of the first plasma synthetic jet actuator 234, the other end of the second plasma synthetic jet actuator 238, the third plasma The other end of synthetic jet exciter 242 is respectively connected with the negative electrode of the twelfth freewheeling diode 235, the negative electrode of the thirteenth freewheeling diode 239, the negative electrode of the fourteenth freewheeling diode 243, one end of the first energy storage capacitor 208, the ground 244 connected, the output end of the first thyristor drive circuit 212, the output end of the second thyristor drive circuit 213, the output end of the eleventh thyristor drive circuit 214 are respectively connected with the trigger of the first thyristor switch 215 pole, the trigger pole of the second thyristor switch 220, and the trigger pole of the eleventh thyristor switch 225 are connected.
如图3所示,为控制电路模块110的具体实施电路图。控制电路模块110包括脉冲发生器模块112和开关驱动电路111,脉冲发生器模块112的一端与开关驱动电路111的一端相连,开关驱动电路111的另一端与主电路模块100中开关电路105的一端相连,脉冲发生器模块112产生控制信号经开关驱动电路111控制开关电路105中晶闸管开关的开通与关断。As shown in FIG. 3 , it is a specific implementation circuit diagram of the control circuit module 110 . The control circuit module 110 includes a pulse generator module 112 and a switch drive circuit 111. One end of the pulse generator module 112 is connected to one end of the switch drive circuit 111, and the other end of the switch drive circuit 111 is connected to one end of the switch circuit 105 in the main circuit module 100. connected, the pulse generator module 112 generates a control signal to control the turn-on and turn-off of the thyristor switch in the switch circuit 105 through the switch drive circuit 111 .
脉冲发生器模块112由脉冲发生器315和电光转换板314组成,脉冲发生器315的输出端与电-光转换板314相连。脉冲发生器315由键盘、显示屏、ARM芯片,ARM芯片的输出端与键盘、显示屏相连。经键盘输入、ARM芯片处理、功率放大、电-光转换、显示屏显示,提供脉宽、频率、脉冲个数可调的光信号。电-光转换板314将电信号转换为光信号,将高压输出电路与控制电路分离开,防止电磁信号对控制电路的干扰,避免高压开关误触发。The pulse generator module 112 is composed of a pulse generator 315 and an electro-optic conversion board 314 , the output end of the pulse generator 315 is connected with the electro-optic conversion board 314 . The pulse generator 315 is composed of a keyboard, a display screen and an ARM chip, and the output end of the ARM chip is connected with the keyboard and the display screen. Through keyboard input, ARM chip processing, power amplification, electro-optical conversion, and display on the display screen, an optical signal with adjustable pulse width, frequency, and pulse number is provided. The electro-optical conversion board 314 converts electrical signals into optical signals, separates the high-voltage output circuit from the control circuit, prevents electromagnetic signals from interfering with the control circuit, and avoids false triggering of the high-voltage switch.
开关驱动电路111由整流模块、第二储能电容307、IGBT开关311、IGBT开关驱动模块312、光-电转换板313、十一路隔离脉冲变压器316、十一个分压电阻、十一个限流电阻、十一只续流二极管、十一只限流二极管组成。整流模块由四个整流二极管302、303、304、305组成。交流市电与整流模块的输入端相连,整流模块的输出端与第二储能电容307的输入端相连,产生稳定的直流电压。IGBT开关311的触发极与IGBT驱动模块312的输出端相连接,IGBT开关驱动模块312的输入端与光-电转换板313的输出端相连,光-电转换板313与脉冲发生器315中的电-光转换板314相连,控制IGBT开关311的开通与关断。IGBT开关311的一端与十一路隔离脉冲变压器316的原边相连,单个隔离脉冲变压器的副边与单个分压电阻的一端相连,单个分压电阻的另一端与单个晶闸管开关触发极阴极相连,单个限流电阻的另一端与单只限流二极管的阳极相连,单个限流二极管的阴极与单个晶闸管触发极阳极相连,单个分压电阻与单只续流二极管并连,单个分压电阻的一端与单个限流二极管的阳极相连,单个分压电阻的另一端与单个晶闸管开关的触发极阴极相连,十一路隔离脉冲变压器副边的连接方式与上述连接一致,提供电压、电流达到晶闸管开关驱动要求的十一路同步驱动信号。The switch drive circuit 111 is composed of a rectifier module, a second energy storage capacitor 307, an IGBT switch 311, an IGBT switch drive module 312, a light-to-electricity conversion board 313, an eleven-way isolated pulse transformer 316, eleven voltage divider resistors, and eleven Composed of current limiting resistors, eleven freewheeling diodes, and eleven current limiting diodes. The rectification module is composed of four rectification diodes 302 , 303 , 304 , 305 . The AC mains is connected to the input end of the rectification module, and the output end of the rectification module is connected to the input end of the second energy storage capacitor 307 to generate a stable DC voltage. The trigger pole of the IGBT switch 311 is connected to the output terminal of the IGBT drive module 312, the input terminal of the IGBT switch drive module 312 is connected to the output terminal of the photoelectric conversion board 313, and the photoelectric conversion board 313 is connected to the output terminal of the pulse generator 315. The electro-optical conversion board 314 is connected to control the opening and closing of the IGBT switch 311 . One end of the IGBT switch 311 is connected to the primary side of the eleven-channel isolated pulse transformer 316, the secondary side of the single isolated pulse transformer is connected to one end of a single voltage dividing resistor, and the other end of the single voltage dividing resistor is connected to the cathode of the trigger electrode of a single thyristor switch, The other end of a single current-limiting resistor is connected to the anode of a single current-limiting diode, the cathode of a single current-limiting diode is connected to the anode of a single thyristor trigger, the single voltage-dividing resistor is connected in parallel with a single freewheeling diode, and one end of a single voltage-dividing resistor It is connected to the anode of a single current-limiting diode, and the other end of a single voltage dividing resistor is connected to the cathode of a trigger pole of a single thyristor switch. The required eleven synchronous drive signals.
具体的连接为:第二工频市电300与第二交流调压器301的输入端相连,第二交流调压器301的输出端与四只整流二极管302、303、304、305组成的整流模块的输入端相连,整流模块的一端与第二限流电阻306的一端相连,整流模块的另一端与第二储能电容307的一端相连,第二储能电容307的另一端与第二限流电阻306的另一端、IGBT开关311的集电极、第二吸收电阻308的一端、第十五续流二极管310的阳极相连,第二吸收电阻308的另一端、第十五续流二极管310的阴极与第二吸收电容309的一端相连,IGBT开关311的发射极与十一路隔离脉冲变压器316原边的一端、第二吸收电容309的另一端相连,十一路隔离脉冲变压器316原边的另一端与第二储能电容307的一端相连,脉冲发生器315的输出端与电-光转换模块314的输入端相连,电-光转换模块314的输出端与光-电转换模块313的输入端相连,光-电转换模块313的输出端与IGBT驱动模块312的输入端相连,IGBT驱动模块312的输出端与IGBT开关311的门极相连,十一路隔离脉冲变压器316副边的一端分别与第三限流电阻317的一端、第四限流电阻322的一端、第十三限流电阻327的一端相连,十一路隔离脉冲变压器316副边的另一端分别与第一分压电阻318的一端、第二分压电阻323的一端、第十一分压电阻328的一端、第十六续流二极管320的阳极、第十七续流二极管325的阳极、第二十六续流二极管330的阳极、第一晶闸管开关215的触发阴极、第二晶闸管开关220的触发阴极、第十一晶闸管开关225的触发阴极相连,第三限流电阻317的另一端、第四限流电阻322的另一端、第十三限流电阻327的另一端分别与第一分压电阻318的另一端、第二分压电阻323的另一端、第十一分压电阻328的另一端、第十六续流二极管320的阴极、第十七续流二极管325的阴极、第二十六续流二极管330的阴极、限流二极管319、324、329的阳极相连,第四限流二极管319的阴极、第五限流二极管324的阴极、第十四限流二极管329的阴极分别与第一晶闸管开关215的触发阳极、第二晶闸管开关220的触发阳极、第十一晶闸管开关225的触发阳极相连。The specific connection is: the second power frequency mains 300 is connected to the input terminal of the second AC voltage regulator 301, and the output terminal of the second AC voltage regulator 301 is connected to the rectifying circuit composed of four rectifying diodes 302, 303, 304, and 305. The input end of the module is connected, one end of the rectification module is connected with one end of the second current limiting resistor 306, the other end of the rectification module is connected with one end of the second energy storage capacitor 307, the other end of the second energy storage capacitor 307 is connected with the second limiter The other end of the current resistance 306, the collector of the IGBT switch 311, one end of the second snubber resistor 308, and the anode of the fifteenth freewheeling diode 310 are connected, the other end of the second snubber resistor 308, the fifteenth freewheeling diode 310 The cathode is connected to one end of the second absorption capacitor 309, the emitter of the IGBT switch 311 is connected to one end of the primary side of the eleven-way isolation pulse transformer 316, and the other end of the second absorption capacitor 309, and the primary side of the eleven-way isolation pulse transformer 316 The other end is connected to one end of the second energy storage capacitor 307, the output end of the pulse generator 315 is connected to the input end of the electrical-optical conversion module 314, and the output end of the electrical-optical conversion module 314 is connected to the input end of the optical-electrical conversion module 313. The output terminal of the photoelectric conversion module 313 is connected to the input terminal of the IGBT drive module 312, the output terminal of the IGBT drive module 312 is connected to the gate of the IGBT switch 311, and one end of the secondary side of the eleven-way isolation pulse transformer 316 is respectively One end of the third current-limiting resistor 317, one end of the fourth current-limiting resistor 322, and one end of the thirteenth current-limiting resistor 327 are connected. One end of the second voltage dividing resistor 323, one end of the eleventh voltage dividing resistor 328, the anode of the sixteenth freewheeling diode 320, the anode of the seventeenth freewheeling diode 325, the twenty-sixth freewheeling diode 330 The anode of the first thyristor switch 215, the trigger cathode of the second thyristor switch 220, the trigger cathode of the eleventh thyristor switch 225 are connected, the other end of the third current limiting resistor 317, the other end of the fourth current limiting resistor 322 One end, the other end of the thirteenth current limiting resistor 327 and the other end of the first voltage dividing resistor 318, the other end of the second voltage dividing resistor 323, the other end of the eleventh voltage dividing resistor 328, the sixteenth freewheeling resistor The cathode of the diode 320, the cathode of the seventeenth freewheeling diode 325, the cathode of the twenty-sixth freewheeling diode 330, and the anodes of the current limiting diodes 319, 324, 329 are connected, the cathode of the fourth current limiting diode 319, the fifth limiting diode The cathode of the current-limiting diode 324 and the cathode of the fourteenth current-limiting diode 329 are respectively connected to the trigger anode of the first thyristor switch 215 , the trigger anode of the second thyristor switch 220 , and the trigger anode of the eleventh thyristor switch 225 .
结合图2、图3说明本发明的工作过程。图2中第一工频市电200经过第一交流调压器201调压、升压变压器202升压变为高压交流电,高压交流电经过第一整流二极管203、第二整流二极管204、第三整流二极管205、第四整流二极管206、变为高压直流电,经过第一限流电阻207给第一储能电容208充电,第一限流电阻207的作用是保护第一交流调压器201、升压变压器202及第一整流二极管203、第二整流二极管204、第三整流二极管205、第四整流二极管206,第一储能电容208经过限流电感209、隔离二极管210、第一放电电容232、第二放电电容236、第三放电电容240、第十二续流二极管235、第十三续流二极管239、第十四续流二极管243分别给第一放电电容232、第二放电电容236、第三放电电容240充电。同理,图3中第二工频市电300经过第二交流调压器301调压、第五整流二极管302、第六整流二极管303、第七整流二极管304、第八整流二极管305整流变为22V直流电压,22V直流电压经过第二限流电阻306给第二储能电容307充电,第二限流电阻306的作用是保护第二交流调压器301、第五整流二极管302、第六整流二极管303、第七整流二极管304、第八整流二极管305。当脉冲发生器315产生所需脉冲信号时,脉冲信号由ARM芯片输出,经电-光转换模块314将电信号转换为光信号,光信号传导至光-电装换模块313时,光信号转换为电信号输入到IGBT开关驱动模块312,IGBT开关驱动模块312将驱动信号输入到IGBT开关311的门极,IGBT开关311导通,第二储能电容307在十一路隔离脉冲变压器316的原边产生低压信号,经过十一路隔离脉冲变压器316的升压,在十一路隔离脉冲变压器316的副边产生十一路同步驱动信号,经过第三限流电阻317、第四限流电阻322、第十三限流电阻327限流,第一分压电阻318、第二分压电阻323、第十一分压电阻328、分压后产生十一路电压、电流幅值满足十一只晶闸管开关触发要求的同步触发信号,经第十六续流二极管320、第十七续流二极管325、第二十六续流二极管330去除反压,第四限流二极管319、第五限流二极管324、第十四限流二极管329去除反向电流后,得到波形较好的十一路同步触发信号,IGBT开关311的两端并联有第十五续流二极管310、第二吸收电阻308、第二吸收电容309,作用是吸收IGBT开关311开通、关断时产生的尖峰电压,十一路同步触发信号分别与主电路模块110中十一只晶闸管开关触发阴极和触发阳极相连,使主电路模块110中十一只晶闸管开关同时导通。第一放电电容232、第二放电电容236、第三放电电容240将三路同步的10kV负极性高压分别加在第一等离子体合成射流激励器234、第二等离子体合成射流激励器238、第三等离子体合成射流激励器242、两端,分别通过电感211、串联的十一只晶闸管开关、第一等离子体合成射流激励器234、第二等离子体合成射流激励器238、第三等离子体合成射流激励器242、第一限流二极管233、第二限流二极管237、第三限流二极管241放电,产生三路同步的等离子体合成射流。第一限流二极管233、第二限流二极管237、第三限流二极管241的作用为只允许正向放电电流通过;第十二续流二极管235、第十三续流二极管239、第十四续流二极管243一方面为第一放电电容232、第二放电电容236、第三放电电容240充电提供回路,另一方面为放电的反向电流提供续流通道;电感211的作用是调节电路的放电参数;第一静态均压电阻217、第二静态均压电阻222、第十一静态均压电阻227的作用是保证晶闸管串联开关在阻断时承受的电压一致,避免某只晶闸管开关因过压而烧毁;第一动态均压电容218、第二动态均压电容223、第十一动态均压电容228和第一动态均压电阻219、第二动态均压电阻224、第十一动态均压电阻229的作用是保证晶闸管串联开关在导通及关断时承受的电压一致,避免某只晶闸管开关因过压而烧毁;限流电感209的作用是保证串联的晶闸管开关能够正常的开通关断;隔离二极管210的作用是防止后级电路产生的反向电流影响前级。第一等离子体合成射流激励器234、第二等离子体合成射流激励器238、第三等离子体合成射流激励器242同时工作产生的正向电流通过串联的十一只晶闸管开关,反向电流通过第一续流二极管216、第二续流二极管221、第十一续流二极管226,第一续流二极管216、第二续流二极管221、第十一续流二极管226的主要作用时保证串联晶闸管开关可靠关断,第一吸收电容230和第一吸收电阻231的作用为吸收串联晶闸管开关在开通及关断时产生的尖峰电压。The working process of the present invention is illustrated in conjunction with Fig. 2 and Fig. 3 . In Fig. 2, the first power frequency mains 200 is regulated by the first AC voltage regulator 201 and boosted by the step-up transformer 202 to become high-voltage alternating current, and the high-voltage alternating current passes through the first rectifying diode 203, the second rectifying diode 204, and the third rectifying diode The diode 205 and the fourth rectifier diode 206 become high-voltage direct current, and charge the first energy storage capacitor 208 through the first current-limiting resistor 207. The function of the first current-limiting resistor 207 is to protect the first AC voltage regulator 201, boost Transformer 202, first rectifier diode 203, second rectifier diode 204, third rectifier diode 205, fourth rectifier diode 206, first energy storage capacitor 208 through current limiting inductor 209, isolation diode 210, first discharge capacitor 232, second rectifier capacitor 208 The second discharge capacitor 236, the third discharge capacitor 240, the twelfth freewheel diode 235, the thirteenth freewheel diode 239, and the fourteenth freewheel diode 243 respectively provide the first discharge capacitor 232, the second discharge capacitor 236, and the third discharge capacitor 232. The discharge capacitor 240 is charged. Similarly, in Fig. 3, the second power frequency mains 300 is adjusted by the second AC voltage regulator 301, rectified by the fifth rectifier diode 302, the sixth rectifier diode 303, the seventh rectifier diode 304, and the eighth rectifier diode 305 to become 22V DC voltage, the 22V DC voltage charges the second energy storage capacitor 307 through the second current limiting resistor 306, the function of the second current limiting resistor 306 is to protect the second AC voltage regulator 301, the fifth rectifier diode 302, and the sixth rectifier diode Diode 303 , seventh rectifying diode 304 , and eighth rectifying diode 305 . When the pulse generator 315 generates the required pulse signal, the pulse signal is output by the ARM chip, and the electrical signal is converted into an optical signal by the electrical-optical conversion module 314. When the optical signal is transmitted to the optical-electrical replacement module 313, the optical signal is converted The electrical signal is input to the IGBT switch drive module 312, and the IGBT switch drive module 312 inputs the drive signal to the gate of the IGBT switch 311, the IGBT switch 311 is turned on, and the second energy storage capacitor 307 is in the original position of the eleven-way isolation pulse transformer 316. side generates a low-voltage signal, and through the step-up of the eleven-way isolation pulse transformer 316, the eleven-way synchronous drive signal is generated on the secondary side of the eleven-way isolation pulse transformer 316, and passes through the third current-limiting resistor 317 and the fourth current-limiting resistor 322 , the thirteenth current-limiting resistor 327 limits the current, the first voltage-dividing resistor 318, the second voltage-dividing resistor 323, and the eleventh voltage-dividing resistor 328 generate eleven voltages after voltage division, and the current amplitude satisfies eleven thyristors The synchronous trigger signal required by the switch trigger is removed by the sixteenth freewheeling diode 320, the seventeenth freewheeling diode 325, and the twenty-sixth freewheeling diode 330. The fourth current limiting diode 319 and the fifth current limiting diode 324 After the fourteenth current-limiting diode 329 removes the reverse current, eleven synchronous trigger signals with better waveforms are obtained. The two ends of the IGBT switch 311 are connected in parallel with the fifteenth freewheeling diode 310, the second absorbing resistor 308, the second The absorption capacitor 309 is used to absorb the peak voltage generated when the IGBT switch 311 is turned on and off, and the eleven synchronous trigger signals are respectively connected to the trigger cathodes and trigger anodes of the eleven thyristor switches in the main circuit module 110, so that the main circuit module 110 Eleven thyristor switches are turned on at the same time. The first discharge capacitor 232, the second discharge capacitor 236, and the third discharge capacitor 240 add three synchronous 10kV negative polarity high voltages to the first plasma synthetic jet actuator 234, the second plasma synthetic jet actuator 238, and the first plasma synthetic jet actuator 238, respectively. Three plasma synthetic jet actuators 242, two ends, respectively through inductance 211, eleven thyristor switches connected in series, first plasma synthetic jet actuator 234, second plasma synthetic jet actuator 238, third plasma synthetic jet actuator The jet actuator 242, the first current-limiting diode 233, the second current-limiting diode 237, and the third current-limiting diode 241 are discharged to generate three synchronous plasma synthetic jets. The first current-limiting diode 233, the second current-limiting diode 237, and the third current-limiting diode 241 only allow forward discharge current to pass through; the twelfth freewheeling diode 235, the thirteenth freewheeling diode 239, the fourteenth On the one hand, the freewheeling diode 243 provides a loop for charging the first discharge capacitor 232, the second discharge capacitor 236, and the third discharge capacitor 240, and on the other hand provides a freewheeling channel for the reverse current of the discharge; the role of the inductor 211 is to regulate the circuit Discharge parameters; the first static voltage equalizing resistor 217, the second static voltage equalizing resistor 222, and the eleventh static voltage equalizing resistor 227 are used to ensure that the thyristor series switch bears the same voltage when blocking, so as to avoid a certain thyristor switch from being overheated. pressure and burned; the first dynamic voltage equalization capacitor 218, the second dynamic voltage equalization capacitor 223, the eleventh dynamic voltage equalization capacitor 228 and the first dynamic voltage equalization resistor 219, the second dynamic voltage equalization resistor 224, the eleventh dynamic voltage equalization capacitor The function of the piezoresistor 229 is to ensure that the thyristor series switch bears the same voltage when it is turned on and off, so as to prevent a certain thyristor switch from being burned due to overvoltage; the function of the current-limiting inductor 209 is to ensure that the thyristor switch in series can be turned on and off normally The role of the isolation diode 210 is to prevent the reverse current generated by the subsequent circuit from affecting the previous stage. The forward current generated by the simultaneous operation of the first plasma synthetic jet actuator 234, the second plasma synthetic jet actuator 238, and the third plasma synthetic jet actuator 242 passes through eleven thyristor switches connected in series, and the reverse current passes through the first plasma synthetic jet actuator switch. A freewheeling diode 216, the second freewheeling diode 221, the eleventh freewheeling diode 226, the first freewheeling diode 216, the second freewheeling diode 221, and the eleventh freewheeling diode 226 ensure that the series thyristor switch is Reliable shutdown, the function of the first absorption capacitor 230 and the first absorption resistor 231 is to absorb the peak voltage generated when the series thyristor switch is turned on and turned off.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510578087.5A CN105119517B (en) | 2015-09-11 | 2015-09-11 | The high-voltage pulse power source of multiple plasma synthesis jet-flow excitor synchronous discharges |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510578087.5A CN105119517B (en) | 2015-09-11 | 2015-09-11 | The high-voltage pulse power source of multiple plasma synthesis jet-flow excitor synchronous discharges |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105119517A true CN105119517A (en) | 2015-12-02 |
CN105119517B CN105119517B (en) | 2017-11-10 |
Family
ID=54667437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510578087.5A Expired - Fee Related CN105119517B (en) | 2015-09-11 | 2015-09-11 | The high-voltage pulse power source of multiple plasma synthesis jet-flow excitor synchronous discharges |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105119517B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106050593A (en) * | 2016-08-02 | 2016-10-26 | 中国科学院电工研究所 | Plasma synthesis jet flow serial connection discharge device based on Marx generator |
CN106899060A (en) * | 2017-03-14 | 2017-06-27 | 南京工业大学 | Portable charging microsecond pulse power supply |
CN106961227A (en) * | 2017-05-08 | 2017-07-18 | 成都锦江电子系统工程有限公司 | Large power high voltage pulse hard switch modulator |
CN108429547A (en) * | 2018-04-11 | 2018-08-21 | 西安交通大学 | A device for generating negative high-voltage pulses |
CN108573790A (en) * | 2017-03-08 | 2018-09-25 | 天津工业大学 | Single-phase energy-saving triangular pulsed magnetic field generator based on IGBT control |
CN108684130A (en) * | 2018-03-23 | 2018-10-19 | 厦门大学 | A kind of program-controlled array plasma jet exciter system |
CN110048618A (en) * | 2019-02-19 | 2019-07-23 | 青岛科技大学 | A kind of electricity driving device based on plasma nano-dispersed technology |
CN110350812A (en) * | 2018-04-08 | 2019-10-18 | 佛山科学技术学院 | A kind of inverter module for UPS |
CN110498052A (en) * | 2019-08-01 | 2019-11-26 | 南京理工大学 | Thrust vector control system and method based on hybrid synthetic jet actuator |
CN110632492A (en) * | 2019-10-12 | 2019-12-31 | 盐田国际集装箱码头有限公司 | Portable IGBT tester |
CN110891357A (en) * | 2019-07-16 | 2020-03-17 | 中国人民解放军空军工程大学 | Flow-to-multi-channel pulsed arc plasma flow control device and method for reducing shock wave intensity |
CN111181538A (en) * | 2019-12-30 | 2020-05-19 | 成都信息工程大学 | High-speed high-voltage electronic switch and working method thereof |
CN112118664A (en) * | 2020-09-08 | 2020-12-22 | 西安交通大学 | A dual-channel single-gap plasma spray device and its application |
CN113644837A (en) * | 2021-08-11 | 2021-11-12 | 中国空气动力研究与发展中心低速空气动力研究所 | Multi-channel high-current pulse excitation circuit for deicing |
CN114056528A (en) * | 2021-12-14 | 2022-02-18 | 湖南高精特电装备有限公司 | Control system and control method of circulating electromagnetic jet device |
CN114221569A (en) * | 2021-12-21 | 2022-03-22 | 中国人民解放军国防科技大学 | Parallel discharge device and method for plasma high-energy synthetic jet actuator |
CN115459603A (en) * | 2022-09-22 | 2022-12-09 | 南京航空航天大学 | A Synthetic Jet Generating Circuit Based on Isolated Saturated Inductor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102510238A (en) * | 2011-11-30 | 2012-06-20 | 中国科学院电工研究所 | Program-control pulse generator used for repetition frequency high-voltage pulse power supply |
US20130181525A1 (en) * | 2012-01-18 | 2013-07-18 | Lockheed Martin Corporation | System and method for a high speed, high voltage pulse power generator |
CN104682765A (en) * | 2015-02-03 | 2015-06-03 | 中国科学院电工研究所 | Device and method for synchronous discharge of multiple plasma synthetic jet actuators |
-
2015
- 2015-09-11 CN CN201510578087.5A patent/CN105119517B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102510238A (en) * | 2011-11-30 | 2012-06-20 | 中国科学院电工研究所 | Program-control pulse generator used for repetition frequency high-voltage pulse power supply |
US20130181525A1 (en) * | 2012-01-18 | 2013-07-18 | Lockheed Martin Corporation | System and method for a high speed, high voltage pulse power generator |
CN104682765A (en) * | 2015-02-03 | 2015-06-03 | 中国科学院电工研究所 | Device and method for synchronous discharge of multiple plasma synthetic jet actuators |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106050593B (en) * | 2016-08-02 | 2018-05-25 | 中国科学院电工研究所 | Plasma synthesis jet stream discharged in series device and method based on Marx generators |
CN106050593A (en) * | 2016-08-02 | 2016-10-26 | 中国科学院电工研究所 | Plasma synthesis jet flow serial connection discharge device based on Marx generator |
CN108573790A (en) * | 2017-03-08 | 2018-09-25 | 天津工业大学 | Single-phase energy-saving triangular pulsed magnetic field generator based on IGBT control |
CN106899060A (en) * | 2017-03-14 | 2017-06-27 | 南京工业大学 | Portable charging microsecond pulse power supply |
CN106961227A (en) * | 2017-05-08 | 2017-07-18 | 成都锦江电子系统工程有限公司 | Large power high voltage pulse hard switch modulator |
CN108684130A (en) * | 2018-03-23 | 2018-10-19 | 厦门大学 | A kind of program-controlled array plasma jet exciter system |
CN110350812A (en) * | 2018-04-08 | 2019-10-18 | 佛山科学技术学院 | A kind of inverter module for UPS |
CN108429547B (en) * | 2018-04-11 | 2021-01-19 | 西安交通大学 | A device for generating negative high voltage pulses |
CN108429547A (en) * | 2018-04-11 | 2018-08-21 | 西安交通大学 | A device for generating negative high-voltage pulses |
CN110048618A (en) * | 2019-02-19 | 2019-07-23 | 青岛科技大学 | A kind of electricity driving device based on plasma nano-dispersed technology |
CN110891357A (en) * | 2019-07-16 | 2020-03-17 | 中国人民解放军空军工程大学 | Flow-to-multi-channel pulsed arc plasma flow control device and method for reducing shock wave intensity |
CN110498052A (en) * | 2019-08-01 | 2019-11-26 | 南京理工大学 | Thrust vector control system and method based on hybrid synthetic jet actuator |
CN110632492A (en) * | 2019-10-12 | 2019-12-31 | 盐田国际集装箱码头有限公司 | Portable IGBT tester |
CN111181538A (en) * | 2019-12-30 | 2020-05-19 | 成都信息工程大学 | High-speed high-voltage electronic switch and working method thereof |
CN112118664A (en) * | 2020-09-08 | 2020-12-22 | 西安交通大学 | A dual-channel single-gap plasma spray device and its application |
CN112118664B (en) * | 2020-09-08 | 2021-11-19 | 西安交通大学 | Double-path single-gap plasma jet device and application thereof |
CN113644837A (en) * | 2021-08-11 | 2021-11-12 | 中国空气动力研究与发展中心低速空气动力研究所 | Multi-channel high-current pulse excitation circuit for deicing |
CN114056528A (en) * | 2021-12-14 | 2022-02-18 | 湖南高精特电装备有限公司 | Control system and control method of circulating electromagnetic jet device |
CN114221569A (en) * | 2021-12-21 | 2022-03-22 | 中国人民解放军国防科技大学 | Parallel discharge device and method for plasma high-energy synthetic jet actuator |
CN114221569B (en) * | 2021-12-21 | 2023-12-01 | 中国人民解放军国防科技大学 | Parallel discharge device and method for plasma high-energy synthetic jet exciter |
CN115459603A (en) * | 2022-09-22 | 2022-12-09 | 南京航空航天大学 | A Synthetic Jet Generating Circuit Based on Isolated Saturated Inductor |
CN115459603B (en) * | 2022-09-22 | 2023-04-14 | 南京航空航天大学 | A Synthetic Jet Generating Circuit Based on Isolated Saturated Inductor |
Also Published As
Publication number | Publication date |
---|---|
CN105119517B (en) | 2017-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105119517B (en) | The high-voltage pulse power source of multiple plasma synthesis jet-flow excitor synchronous discharges | |
CN104682765B (en) | Device and method for synchronous discharge of multiple plasma synthetic jet actuators | |
Wu et al. | Repetitive and high voltage Marx generator using solid-state devices | |
CN109245713B (en) | Series-type assembly-level photovoltaic shutdown system | |
CN103337983B (en) | A kind of repeated frequency high-voltage microsecond pulse power supply | |
WO2019144037A1 (en) | Resonant pulsed voltage multiplier and capacitor charger | |
CN103618472B (en) | There is all solid state high voltage pulse current source that unipolar pulse exports | |
Li et al. | Repetitive high voltage rectangular waveform pulse adder for pulsed discharge of capacitive load | |
WO2019062262A1 (en) | Dc solid state relay | |
Liu et al. | A repetitive high voltage pulse adder based on solid state switches | |
CN104218810B (en) | The circuit arrangement that a kind of boost conversion and electric capacity charge | |
CN108923680B (en) | High-voltage side direct coupling electric precipitation pulse power supply | |
KR100433356B1 (en) | High voltage power supply for an electrostatic precipitator and it's protective method | |
CN104052268B (en) | DC voltage converting circuit | |
CN204408214U (en) | A kind of pulse triggering means for spark gap protection | |
Wang et al. | Repetitive high voltage all-solid-state Marx generator for dielectric barrier discharge pulsed plasma | |
CN112187090A (en) | IPOx framework type high-voltage microsecond pulse power supply based on energy efficiency and stability design model | |
Sack et al. | Auxiliary Power Supply for a Semiconductor-based Marx Generator | |
CN207766147U (en) | A kind of reverse switch transistor trigger circuit and pulse plasma power supply | |
CN107222124B (en) | High-voltage pulse power supply for generating plasma by liquid phase discharge | |
CN212063519U (en) | Combined switch electric field induction electricity-taking device | |
CN106026717B (en) | Three-phase rectifier and its control method for high frequency high voltage dc power source | |
CN208623563U (en) | A kind of square-wave voltage source being isolated using high-voltage relay | |
CN107947776B (en) | Isolated switching tube driving circuit | |
CN109382211B (en) | Electrostatic dust removal pulse power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171110 |