CN105118875A - 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法 - Google Patents

一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法 Download PDF

Info

Publication number
CN105118875A
CN105118875A CN201510444958.4A CN201510444958A CN105118875A CN 105118875 A CN105118875 A CN 105118875A CN 201510444958 A CN201510444958 A CN 201510444958A CN 105118875 A CN105118875 A CN 105118875A
Authority
CN
China
Prior art keywords
film
cadmium
zns
film solar
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510444958.4A
Other languages
English (en)
Other versions
CN105118875B (zh
Inventor
杨雯
赵恒利
杨培志
段良飞
李学铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN201510444958.4A priority Critical patent/CN105118875B/zh
Publication of CN105118875A publication Critical patent/CN105118875A/zh
Application granted granted Critical
Publication of CN105118875B publication Critical patent/CN105118875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种铜铟镓硒薄膜太阳电池无镉缓冲层的沉积方法,该方法的特征是采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源进行原子层沉积,得到Zn1-xMgxS缓冲层材料。此方法具有沉积速度稳定、薄膜致密性好、性能优异等特点。Zn1-xMgxS作为CIGS薄膜太阳电池的一种新型缓冲层材料,具有无镉、环境友好的特点;通过调节ZnS的Mg掺杂比例,可得到比ZnS更合适的晶格参数,降低了其与吸收层CIGS界面间的失配度,改善了界面质量;随着Mg含量x的变化,还能调节Zn1-xMgxS薄膜的带隙,弥补硫化锌带隙偏小的缺点;Zn1-xMgxS的带隙增加还可增强紫外区的透光率,进而提高铜铟镓硒薄膜太阳电池的光电转换效率;采用原子层沉积(ALD)制备的薄膜由于致密性好,还可抑制由于薄膜致密性不理想产生的微针孔而导致的电池内部短路现象,改善电池的性能。

Description

一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法
技术领域
本发明属于太阳电池领域,涉及一种以原子层沉积(ALD)技术制备铜铟镓硒(CIGS)薄膜太阳电池无镉缓冲层的方法,该缓冲层材料为Mg掺杂ZnS薄膜(Zn1-xMgxS)。
背景技术
太阳电池是一种根据光生伏打效应而将太阳能直接转化成电能的半导体器件。CIGS薄膜太阳电池是20世纪80年研发出的一种新型太阳电池,具有吸收层材料的吸收系数大、性能稳定、抗辐射能力强、光电转换效率高和弱光效应好等特点。目前,CIGS太阳电池的实验室转换效率已超过多晶硅,因此,其有着良好的应用前景。CIGS薄膜太阳电池的典型结构为:衬底(玻璃)/金属背电极(Mo)/光吸收层(CIGS)/缓冲层(CdS)/窗口层(ZnO)/透明前电极(AZO)/金属栅线电极(Al)。虽然缓冲层厚度一般只有50nm,但它能与吸收层形成异质结分离载流子以提高少子寿命,并保护吸收层。目前高效的CIGS太阳电池普遍采用硫化镉(CdS)为缓冲层材料,其实验室电池效率可达20%以上。CdS缓冲层一般采用化学水浴法(CBD)制备,与吸收层和窗口层的制备工艺不匹配,不利于流水线规模化生产;并且Cd有毒,不环保,不符合太阳电池的“环境友好”的要求;同时硫化镉的带隙小,对短波长的可见光有较强的吸收作用,不利于电池效率的进一步提升。为此,人们开始寻找CdS的替代物,并将重点放在硫化锌系化合物上,但硫化锌的带隙仍然偏小,同时由于其与吸收层的界面处存在较大的晶格失配,导致界面质量下降,电池效率降低。因此,有必要寻找性能比ZnS更好的无镉缓冲层材料。
原子层沉积(ALD)是一种可以将物质以单原子膜形式一层一层地镀在基底表面的方法。其优点主要有:可以通过控制反应周期数精确控制薄膜的厚度,形成达到原子层厚度精度的薄膜;不需要控制反应物流量的均一性;前驱体是饱和化学吸附,保证生成大面积均匀性的薄膜;可生成极好的三维保形性化学计量致密薄膜,缺陷少,可作为台阶覆盖和纳米孔材料的涂层;可以沉积多组份纳米薄层和混合氧化物;薄膜生长可在低温(室温到400℃)下进行。利用原子层沉积技术制备的Zn1-xMgxS薄膜具有致密性和保形性好、无针孔、带隙可调、薄膜厚度可精确控制等特点,从而可实现与吸收层较好的晶格匹配,改善界面质量,弥补硫化锌的带隙偏小的不足,增强紫外区的透过率,还可以抑制由于薄膜中存在的微针孔而导致的电池内部短路现象,提高电池的性能。
发明内容
本发明提供了一种以原子层沉积技术制备铜铟镓硒(CIGS)薄膜太阳电池无镉缓冲层材料—Zn1-xMgxS薄膜的方法,采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源,使用高纯度N2作为载运和清洗气体进行原子层沉积,得到了较好的Zn1-xMgxS薄膜,作为铜铟镓硒薄膜太阳电池无镉缓冲层。制备方法如下。
在普通钠钙玻璃衬底上依次制备钼背电极和铜铟镓硒光吸收层,形成样片,将样片放入原子层沉积设备的反应室中。
将反应室真空抽到0.5pa以下,设置反应腔室温度为150-250℃。
采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源,使用高纯度N2作为载运和清洗气体,携带气体流量100-300sccm,源瓶温度设置为室温到100℃,ZnS和MgS薄膜一个生长周期的脉冲时间分别为10-50ms,等待时间为3-10s。
分别生长300-500个周期,可得到厚度为40-70nm的Zn1-xMgxS薄膜,薄膜的Mg组分通过ZnS和MgS的周期数调节来实现。
本发明采用原子层沉积技术制备铜铟镓硒薄膜太阳电池无镉缓冲层,获得的Zn1-xMgxS缓冲层薄膜致密、无微针孔、均匀,厚度易于控制、薄膜性能优异,Mg组分易控、带隙可调,弥补了ZnS带隙偏小的不足,提高了其在紫外区的透光率;可实现其与吸收层材料的晶格匹配度,改善界面质量;还可抑制由于薄膜致密性不好而产生的电池内部短路现象。提高电池的效率,取代目前的CdS缓冲层。
具体实施方式
为使本发明的上述目的、特征和优点能够更加通俗易懂,下面结合具体实施方式对本发明做详细的说明。
实施例1
(1)在普通钠钙玻璃衬底上依次制备钼背电极和铜铟镓硒光吸收层,形成样片,将样片放入原子层沉积设备的反应室中;
(2)将反应室真空抽到0.5pa,设置反应腔室温度为180℃;
(3)采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源,使用高纯度N2作为载运和清洗气体,携带DEZn和MgCP2气体流量均为150sccm,携带H2S气体流量为200sccm,分别设置ZnS和MgS薄膜一个生长周期的脉冲时间为20ms和25ms,等待时间分别为5s和10s;
(4)分别进行薄膜生长共500个周期,得到较好的Zn1-xMgxS薄膜。
实施例2
(1)在普通钠钙玻璃衬底上依次制备钼背电极和铜铟镓硒光吸收层,形成样片,将样片放入原子层沉积设备的反应室中;
(2)抽反应室真空到0.4pa,设置反应腔室温度为200℃;
(3)采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源,使用高纯度N2作为载运和清洗气体,携带DEZn和MgCP2气体流量均为180sccm,携带H2S气体流量为220sccm,分别设置ZnS和MgS薄膜一个生长周期的脉冲时间为30ms和40ms,等待时间分别为5s和10s;
(4)分别进行薄膜生长共400个周期,得到较好的Zn1-xMgxS薄膜。
以上所述内容仅为本发明构思下的基本说明,而依据本发明所做的等效变换,均应属于本发明的保护范围。

Claims (3)

1.一种铜铟镓硒薄膜太阳电池无镉缓冲层的沉积方法,其制备步骤包括:在普通钠钙玻璃衬底上依次制备钼背电极和铜铟镓硒光吸收层,形成样片,将样片放入原子层沉积系统的反应室中,抽反应室真空到0.5pa以下,设置反应腔室温度为150-250℃,采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源,使用高纯度N2作为载运和清洗气体,携带气体流量为100-300sccm,源瓶温度设置为室温到100℃,分别设置ZnS和MgS一个生长周期的脉冲时间为10-50ms,等待时间为3-10s,生长300-500个周期的薄膜,可得到厚度为40-70nm的Zn1-xMgxS薄膜,薄膜的Mg组分通过调节ZnS和MgS的生长周期数来实现。
2.根据权利要求1所述的铜铟镓硒薄膜太阳电池无镉缓冲层的沉积方法,其特征在于:采用二乙基锌(DEZn)、双环戊二茂镁(MgCP2)、H2S作为Zn、Mg和S的前躯体源,采用原子层沉积(ALD)技术制备优质Zn1-xMgxS薄膜。
3.根据权利要求1所述的铜铟镓硒薄膜太阳电池无镉缓冲层的沉积方法,其特征在于:携带气体流量100-300sccm,源瓶温度设置为室温到100℃;分别设置ZnS和MgS一个生长周期的脉冲时间为10-50ms,等待时间为3-10s;为满足缓冲层的使用要求,薄膜生长300-500个周期。
CN201510444958.4A 2015-07-27 2015-07-27 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法 Active CN105118875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510444958.4A CN105118875B (zh) 2015-07-27 2015-07-27 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510444958.4A CN105118875B (zh) 2015-07-27 2015-07-27 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法

Publications (2)

Publication Number Publication Date
CN105118875A true CN105118875A (zh) 2015-12-02
CN105118875B CN105118875B (zh) 2023-07-07

Family

ID=54666821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510444958.4A Active CN105118875B (zh) 2015-07-27 2015-07-27 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法

Country Status (1)

Country Link
CN (1) CN105118875B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449812A (zh) * 2016-11-15 2017-02-22 云南师范大学 溅射锡靶和硫化铜靶制备铜锡硫薄膜及电池的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005570A1 (en) * 2009-07-09 2011-01-13 Faquir Chand Jain High efficiency tandem solar cells and a method for fabricating same
WO2011126454A1 (en) * 2010-04-09 2011-10-13 Platzer-Bjoerkman Charlotte Thin film photovoltaic solar cells
CN102337516A (zh) * 2011-09-29 2012-02-01 中国建材国际工程集团有限公司 一种无镉的铜铟镓硒薄膜太阳能电池缓冲层的沉积方法
US20120058576A1 (en) * 2010-09-03 2012-03-08 Beck Markus E Deposition System
CN102723399A (zh) * 2011-12-26 2012-10-10 云南师范大学 一种Cu(InAl)Se2薄膜的化学制备工艺
JP2012209518A (ja) * 2011-03-30 2012-10-25 Toyota Industries Corp 光電素子及び太陽電池
JP2014225567A (ja) * 2013-05-16 2014-12-04 日東電工株式会社 Cigs系化合物太陽電池およびその製造方法
CN104404459A (zh) * 2014-11-10 2015-03-11 研创应用材料(赣州)有限公司 一种新型缓冲层氧化锌硫靶材及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005570A1 (en) * 2009-07-09 2011-01-13 Faquir Chand Jain High efficiency tandem solar cells and a method for fabricating same
WO2011126454A1 (en) * 2010-04-09 2011-10-13 Platzer-Bjoerkman Charlotte Thin film photovoltaic solar cells
US20130037100A1 (en) * 2010-04-09 2013-02-14 Charlotte PLATZER BJÖRKMAN Thin Film Photovoltaic Solar Cells
US20120058576A1 (en) * 2010-09-03 2012-03-08 Beck Markus E Deposition System
JP2012209518A (ja) * 2011-03-30 2012-10-25 Toyota Industries Corp 光電素子及び太陽電池
CN102337516A (zh) * 2011-09-29 2012-02-01 中国建材国际工程集团有限公司 一种无镉的铜铟镓硒薄膜太阳能电池缓冲层的沉积方法
CN102723399A (zh) * 2011-12-26 2012-10-10 云南师范大学 一种Cu(InAl)Se2薄膜的化学制备工艺
JP2014225567A (ja) * 2013-05-16 2014-12-04 日東電工株式会社 Cigs系化合物太陽電池およびその製造方法
CN104404459A (zh) * 2014-11-10 2015-03-11 研创应用材料(赣州)有限公司 一种新型缓冲层氧化锌硫靶材及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449812A (zh) * 2016-11-15 2017-02-22 云南师范大学 溅射锡靶和硫化铜靶制备铜锡硫薄膜及电池的方法

Also Published As

Publication number Publication date
CN105118875B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
JP5246839B2 (ja) 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子
KR101094326B1 (ko) 태양전지용 Cu-In-Zn-Sn-(Se,S)계 박막 및 이의 제조방법
TWI684288B (zh) 包括經由原子層沉積形成的多重緩衝層的太陽能電池及其製造方法
CN104851931B (zh) 具有梯度结构的碲化镉薄膜太阳能电池及其制造方法
CN102154622A (zh) 用作太阳能电池光吸收层的铜铟镓硒薄膜的制备方法
CN102337516A (zh) 一种无镉的铜铟镓硒薄膜太阳能电池缓冲层的沉积方法
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN102437237A (zh) 黄铜矿型薄膜太阳能电池及其制造方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
KR101438486B1 (ko) 탠덤구조 cigs 박막 제조방법 및 이를 이용하여 제조된 cigs 박막 태양전지
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN102214737A (zh) 太阳能电池用化合物薄膜的制备方法
CN105047750A (zh) 一种提高薄膜太阳能电池转换效率的方法
US20140048132A1 (en) Solar cell and method of preparing the same
CN105118875A (zh) 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法
CN105047736B (zh) 一种铜铟镓硒薄膜太阳电池无镉缓冲层材料的制备方法
CN103194726A (zh) 一种铜铟镓硒薄膜的制造工艺
KR20140116770A (ko) 태양전지 및 그의 제조 방법
CN103094372B (zh) 太阳能电池及其制造方法
KR20160075042A (ko) Ald 공정을 통한 박막 태양전지 제조방법 및 이로부터 제조된 박막 태양전지
KR20180056676A (ko) Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
CN103311364A (zh) 一种铜铟镓硒太阳能电池用硫化铟缓冲层薄膜的制备方法
CN203325950U (zh) 一种多带隙双面透光太阳能电池
KR102212040B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지의 제조방법
JP2011249686A (ja) 光電変換素子の製造方法および光電変換素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant