CN105110488B - 一种酸性矿井废水的治理装置 - Google Patents

一种酸性矿井废水的治理装置 Download PDF

Info

Publication number
CN105110488B
CN105110488B CN201510618308.7A CN201510618308A CN105110488B CN 105110488 B CN105110488 B CN 105110488B CN 201510618308 A CN201510618308 A CN 201510618308A CN 105110488 B CN105110488 B CN 105110488B
Authority
CN
China
Prior art keywords
reducing bacteria
sulfate reducing
bacterium solution
sulfate
controlling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510618308.7A
Other languages
English (en)
Other versions
CN105110488A (zh
Inventor
蔡昌凤
孙敬
罗飞翔
徐建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201510618308.7A priority Critical patent/CN105110488B/zh
Publication of CN105110488A publication Critical patent/CN105110488A/zh
Application granted granted Critical
Publication of CN105110488B publication Critical patent/CN105110488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

本发明涉及一种酸性矿井废水的治理装置,治理装置整体呈长方体状槽体,沿槽体长度方向依次设置布水区、微生物微电池预处理区、活性介质反应区、过滤区、出水区,槽体上部密封,各区之间设置有孔板。本发明治理装置采用三维微生物燃料微电池与固载硫酸盐还原菌活性介质结合的可渗透反应床,能保证硫酸盐还原菌生长的碳源供给和保持适宜的pH环境,消除反应产物H2S浓度和重金属离子对其的抑制,提高硫酸盐还原菌活性,使SRB处理硫酸根和重金属效果得到进一步强化,并有效提高可渗透反应床原位治理抗负荷波动性能,减少硫酸盐还原菌菌体流失,厌氧、无膜、无导线结构的三维微生物燃料微电池延长了电池的使用寿命。

Description

一种酸性矿井废水的治理装置
技术领域
本发明涉及污水处理技术领域,特别涉及一种酸性矿井废水的治理装置。
背景技术
酸性重金属矿井废水(Acidic Mine Drainage,简称AMD)污染是一个世界性的问题,AMD中含有高浓度的硫酸盐和可溶性的重金属离子,同时pH低、酸度大。因此一旦排放将会对河流及其生物产生严重影响,甚至会污染地下水体。一旦污染发生将很难治理。
现有技术“201410081974.7一种酸性矿井废水的治理装置”中公开一种酸性矿井废水的治理装置,该装置包括基于微生物电池的可渗透反应井,反应井底部铺设布水集水层,中部为混合填料生化反应与微生物燃料电池区,微生物燃料电池与反应井以同心圆结构布置,微生物燃料电池阴极由金属丝网支撑的碳布围成的筒状体构成,筒状体与反应井壁之间填充固载硫酸盐还原菌的生物质及大陶粒的混合填料,筒状体内部填充生活污水厂活性污泥作为阳极区,碳棒作为阳极插入污泥中,反应井上部铺设泌水过滤层,阴阳两极均用导线导出,外接电阻构成一个完整的电回路。该装置以硫酸盐还原菌为生物阴极,可以有效调节酸性矿山废水pH值,去除重金属离子,达标排放。但该微生物燃料电池采用碳布吸附硫酸盐还原菌生物阴极,硫酸盐还原菌易随水流流失,易受进水水质冲击;导线易被腐蚀,与阴阳两极接触不良,而影响处理系统的稳定性。
发明内容
针对现有技术的不足,本发明提供一种酸性矿井废水的治理装置。本发明治理装置采用三维微生物燃料微电池与固载硫酸盐还原菌活性介质结合的可渗透反应床,能保证硫酸盐还原菌生长的碳源供给和保持适宜的pH环境,消除反应产物H2S浓度和重金属离子对其的抑制,提高硫酸盐还原菌活性,使SRB处理硫酸根和重金属效果得到进一步强化,并有效提高可渗透反应床原位治理抗负荷波动性能,减少硫酸盐还原菌菌体流失,厌氧、无膜、无导线结构的三维微生物燃料微电池延长了电池的使用寿命。
本发明采用的技术方案是:
一种酸性矿井废水的治理装置,整体呈长方体状槽体,沿槽体长度方向依次设置布水区、微生物微电池预处理区、活性介质反应区、过滤区、出水区,槽体上部密封,各区之间设置有孔板,孔板开孔率为70-80%;微生物微电池预处理区、活性介质反应区、过滤区的体积比为2:6:1;槽体四周还可以设置保温层;
所述微生物微电池预处理区填充介质为活性炭颗粒、厌氧活性污泥和固定有硫酸盐还原菌的活性小球的混合物,三种介质均匀混合构成微生物微电池;活性炭颗粒和厌氧活性污泥构成微生物微电池的阳极,活性炭颗粒和厌氧活性污泥的质量比为1:2,固定有硫酸盐还原菌的活性小球构成微生物微电池的阴极,生物阴极和阳极体积比为1:10;所述微生物微电池无膜、无导线,阴极和阳极均匀混合呈多点接触的三维结构;
所述活性炭颗粒粒径3-5mm,比表面积500-900m2/g,厌氧活性污泥中悬浮污泥固体浓度10-15g/L,固定有硫酸盐还原菌的活性小球粒径3-5mm;
固定有硫酸盐还原菌的活性小球的制备方法为:
A、制备硫酸盐还原菌菌液:将硫酸盐还原菌液态培养至稳定期,离心浓缩菌液中硫酸盐还原菌浓度至2×107~3×107个/mL;
B、用活性炭粉末吸附硫酸盐还原菌:将活性炭粉末加入到硫酸盐还原菌菌液中,密封静置至吸附饱和,制得含活性炭粉末菌液;
C、制备混合溶液:聚乙烯醇用纯水浸泡24h,水浴加热搅拌溶解后依次加入海藻酸钠、二氧化硅、碳酸钙,水、聚乙烯醇、海藻酸钠、二氧化硅、碳酸钙的质量比为900:100:10:30:3;搅拌至全溶后冷却到35-40℃。
D、将混合溶液缓慢加入含活性炭粉末菌液中,搅拌均匀,制得混合悬液,混合溶液与含活性炭粉末菌液体积比为10:4,将混合悬液滴加至含质量百分含量为2%CaCl2的饱和硼酸溶液中,固化成球交联24h以上,然后用0.9%的生理盐水洗涤,制得生物阴极。
所述步骤B中活性炭粉末粒径55.5-74μm、比表面积3500m2/g,活性炭粉末在硫酸盐还原菌菌液中的浓度为90g/L;所述吸附菌液的时间为30min以上;
所述步骤C中水浴加热温度为90℃;
所述活性介质反应区的填充介质为固载硫酸盐还原菌的玉米芯和陶粒的混合物,固载硫酸盐还原菌玉米芯和陶粒的质量比为1:7.5;陶粒粒径3-5mm;玉米芯粒径3-8mm。
固载硫酸盐还原菌玉米芯制备方法为:
玉米芯破碎、过筛、灭菌为固态发酵载体;
固载前取4℃低温保存的硫酸盐还原菌菌种复活,将硫酸盐还原菌35℃液态培养至对数期;将对数期的硫酸盐还原菌菌液加入到培养基中,硫酸盐还原菌菌液与培养基体积比为1:5,按含硫酸盐还原菌菌液的培养基与玉米芯(含水率10%)质量比2:1,将含硫酸盐还原菌菌液的培养基喷洒入处理后的玉米芯中拌匀,控制初始含水率为70%,将接种后的玉米芯装袋,抽真空、充入氮气后,35℃±2℃厌氧固态发酵4天得固载硫酸盐还原菌玉米芯,4℃密封保存,用时开封。
所述过滤区填充介质为石英砂和细陶粒混合物,石英砂和细陶粒的体积比为1:2,石英砂和细陶粒的粒径分别为1-5mm、1-3mm;
所述微生物微电池预处理区顶部设置有布泥管,用于定期补充活性厌氧污泥,微生物微电池预处理区底部设置有出泥口,用于定期排出反应后的活性厌氧污泥;
具体应用时,在地下水污染羽状体下游与地下水流相垂直向开挖沟槽,根据地下水污染羽状体实际情况设收水斗或布水板,沿水流方向设微生物微电池预处理区-活性介质反应区-过滤区,各区按设计长度采用隔板定容,三区同步进行填充,逐步提升隔板,微生物微电池预处理区预留布泥管和排泥口,预埋pH计在线检测探头,下游预留检测采样井。用槽盖或土壤密封反应槽,微生物微电池系统运行需定期置换污泥,由排泥口排出反应后的活性污泥,由布泥管加入新鲜城市生活污水厂厌氧活性污泥,保证微生物微电池系统正常运行。
附图说明
图1为酸性矿井废水的处理装置示意图
图中:1、槽体;2、进水口;3、保温层;4、布水区;5、孔板;6、微生物微电池预处理区;7、活性介质反应区;8、过滤区;9、PH计探头;10、出水区;11、出水口;12、布泥管;13、出泥口;14、槽盖。
具体实施方式
构建酸性矿井废水的治理装置中试试验系统,以PVC板制作长*宽*高为2100*1000*1000长方形槽体1,槽体1外部包裹保温层3,废水由进水口2进入布水区4,沿进水方向,布水区4-微生物微电池预处理区6-活性介质反应区7-过滤区8-出水区10依次排列。布水区4、微生物微电池预处理区6、活性介质反应区7、过滤区8与出水区10之间均设置有设孔板5,孔板5的开孔率75%,开孔孔径2-3mm;活性介质反应区7靠近微生物微电池预处理区6的一侧以及出水区10内靠近出水口11位置设pH探头9;布泥管12通过微生物微电池预处理区6顶部的槽盖上伸入到微生物微电池预处理区6内部,用于定期补充活性厌氧污泥,微生物微电池预处理区6底部设置有出泥口13,用于定期排出反应后的活性厌氧污泥,布泥管12和出泥口13用阀门进行密封。
所述微生物微电池预处理区6填充介质为由活性炭颗粒、厌氧活性污泥构成的阳极和由固定有硫酸盐还原菌的活性小球构成的生物阴极的混合物,活性炭颗粒、厌氧活性污泥的质量比为1:2,阳极与生物阴极的体积比10:1,阳极与生物阴极均匀混合构成三维、厌氧、无膜、无导线的微生物微电池。活性炭颗粒粒径3-5mm,比表面积500-900m2/g,厌氧活性污泥中悬浮污泥固体浓度10g/L,固定有硫酸盐还原菌的活性小球粒径3-5mm。
固定有硫酸盐还原菌的活性小球的制备方法为:
A、制备硫酸盐还原菌菌液:将硫酸盐还原菌液态培养至稳定期,离心浓缩菌液使菌液中硫酸盐还原菌浓度为2×107~3×107个/mL;
B、用活性炭粉末吸附硫酸盐还原菌:将粒径为55.5-74μm、比表面积3500m2/g的活性炭粉末加入到硫酸盐还原菌菌液中,活性炭粉末在硫酸盐还原菌菌液中的浓度为90g/L,密封静置吸附菌液30min,制得含活性炭粉末菌液;
C、制备混合溶液:聚乙烯醇用纯水浸泡24h,水浴加热搅拌溶解后依次加入海藻酸钠、二氧化硅、碳酸钙,搅拌至全溶后冷却,水、聚乙烯醇、海藻酸钠、二氧化硅、碳酸钙的质量比为900:100:10:30:3,搅拌至全溶后冷却到35℃;
D、将混合溶液缓慢加入含活性炭粉末菌液中,搅拌均匀,制得混合悬液,混合溶液与含活性炭粉末菌液体积比为10:4,将混合悬液滴加至含质量百分含量为2%CaCl2的饱和硼酸溶液中,固化成球交联24h以上,然后用0.9%的生理盐水洗涤,制得固定有硫酸盐还原菌的活性小球。
活性介质反应区7的填充介质为固载硫酸盐还原菌的玉米芯和陶粒的混合物,固载硫酸盐还原菌玉米芯和陶粒的质量比为1:7.5;陶粒粒径1-5mm;玉米芯粒径3-8mm。
所述固载硫酸盐还原菌玉米芯制备方法为:玉米芯破碎、过筛、灭菌为固态发酵载体;配制SRB培养基:每1000ml培养基中:Na2S040.5g,NH4CI 1.0g K2HPO40.5g,无水CaCL20.06g,7%乳酸钠5.0mL,MgS04·7H202.0g,抗坏血酸0.4g,抗坏血酸在接种前加入,直接溶于经121℃蒸汽灭菌的培养基中;配制SRB培养基后,利用高压蒸汽灭菌锅灭菌30min后,待冷却至室温,在无菌操作台,按接种量5%将保存的硫酸盐还原菌菌种接种到SRB培养基上,液态培养至对数期,将对数期的硫酸盐还原菌菌液加入到培养基中,硫酸盐还原菌菌液与培养基体积比为1:5,按含硫酸盐还原菌菌液的培养基与玉米芯(含水率10%)质量比2:1,将含硫酸盐还原菌菌液的培养基喷洒入处理后的玉米芯中拌匀,控制初始含水率为70%,将接种后的玉米芯装袋抽真空、充入氮气后,35℃±2℃厌氧固态发酵4天得固载硫酸盐还原菌玉米芯,4℃密封保存备用,用时开封。
所述过滤区8填充介质为石英砂和细陶粒混合物,石英砂和细陶粒的体积比为1:2,石英砂和细陶粒的粒径分别为1-5mm、1-3mm;
微生物微电池预处理区6、活性介质反应区7、过滤区8同步分层加入相应的介质,并喷洒硫酸盐还原菌培养液,至介质层高1000mm,抽出活动隔板。盖上槽盖14,引出pH计探头9的数据线,密封,充入氮气。静置培养7天使硫酸盐还原菌复活为系统优势菌群,泵入酸性重金属废水进行处理。
模拟酸性矿井废水的配方为:NH4Cl 0.191g/L,K2HPO30.075g/L,Na2SO42.215g/LMgSO4·7H2O 3.844g/L,CuCl2·2H2O 0.0797g/L,FeSO4·7H2O 0.149g/L,ZnCl20.0628g/L,NiSO40.179g/L,MnNO30.169g/L,pH=3.0。
试验系统运行2个月,水力停留时间(HRT)为44h,微生物微电池预处理区出水pH稳定在6以上,出水口出水pH稳定在≥7,对重金属离子Cu2+、Zn2+、Mn2+、Ni2+、的去除率分别达到97%-100%、80%-99.9%、40%-90%,83%-99.4%。
实验证明通过固载硫酸盐还原菌的微生物微电池和活性介质联用,起到很好的协同作用,微生物微电池对酸性重金属矿井废水先进行预处理,使得废水经微生物微电池预反应区进入活性介质区时pH值增加到6.0以上,保障活性介质区中的活性介质稳定运行,经过微生物微电池和活性介质综合作用,使得重金属离子总去除率>80%。

Claims (9)

1.一种酸性矿井废水的治理装置,整体呈长方体状槽体,沿槽体长度方向依次设置布水区、微生物微电池预处理区、活性介质反应区、过滤区、出水区,槽体上部密封,各区之间设置有孔板;
所述微生物微电池预处理区填充介质为活性炭颗粒、厌氧活性污泥和固定有硫酸盐还原菌的活性小球的混合物,三种介质均匀混合构成微生物微电池;活性炭颗粒和厌氧活性污泥构成微生物微电池的阳极,活性炭颗粒和厌氧活性污泥的质量比为1:2,固定有硫酸盐还原菌的活性小球构成微生物微电池的阴极,生物阴极和阳极体积比为1:10;所述微生物微电池无膜、无导线,阴极和阳极均匀混合呈多点接触的三维结构。
2.如权利要求1所述的治理装置,其特征在于:微生物微电池预处理区、活性介质反应区、过滤区的体积比为2:6:1;所述孔板开孔率为70-80%。
3.如权利要求1所述的治理装置,其特征在于:所述活性炭颗粒粒径3-5mm,比表面积500-900m2/g,厌氧活性污泥中悬浮污泥固体浓度10-15g/L,固定有硫酸盐还原菌的活性小球粒径3-5mm 。
4.如权利要求1所述的治理装置,其特征在于:
固定有硫酸盐还原菌的活性小球的制备方法为:
A、制备硫酸盐还原菌菌液:将硫酸盐还原菌液态培养至稳定期,离心浓缩菌液使菌液中硫酸盐还原菌浓度为2×107~3×107个/mL;
B、用活性炭粉末吸附硫酸盐还原菌:将活性炭粉末加入到硫酸盐还原菌菌液中,密封静置吸附菌液至吸附饱和,制得含活性炭粉末菌液;
C、制备混合溶液:聚乙烯醇用纯水浸泡24h,水浴加热搅拌溶解后依次加入海藻酸钠、二氧化硅、碳酸钙,搅拌至全溶后冷却,水、聚乙烯醇、海藻酸钠、二氧化硅、碳酸钙的质量比为900:100:10:30:3,搅拌至全溶后冷却到35℃-40℃;
D、将混合溶液缓慢加入含活性炭粉末菌液中,搅拌均匀,制得混合悬液,混合溶液与含活性炭粉末菌液体积比为10:4,将混合悬液滴加至含质量百分含量为2%CaCl2的饱和硼酸溶液中,固化成球交联24h以上,然后用0.9%的生理盐水洗涤,制得固定有硫酸盐还原菌的活性小球。
5.如权利要求4所述的治理装置,其特征在于:所述步骤B中活性炭粉末粒径55.5-74μm、比表面积3500m2/g,活性炭粉末在硫酸盐还原菌菌液中的浓度为90g/L;所述吸附菌液的时间为30min以上;所述步骤C中水浴加热温度为90℃。
6.如权利要求1所述的治理装置,其特征在于:所述活性介质反应区的填充介质为固载硫酸盐还原菌的玉米芯和陶粒的混合物,固载硫酸盐还原菌玉米芯和陶粒的质量比为1:7.5; 陶粒粒径3-5mm;玉米芯粒径3-8mm。
7.如权利要求6所述的治理装置,其特征在于:
所述固载硫酸盐还原菌玉米芯制备方法为:
玉米芯破碎、过筛、灭菌为固态发酵载体;
固载前取4℃低温保存的硫酸盐还原菌菌种复活,将硫酸盐还原菌35℃液态培养至对数期;将对数期的硫酸盐还原菌菌液加入到培养基中,硫酸盐还原菌菌液与培养基体积比为1:5,按含硫酸盐还原菌菌液的培养基与玉米芯质量比2:1,将含硫酸盐还原菌菌液的培养基喷洒入处理后的玉米芯中拌匀,控制初始含水率为70%,所述玉米芯的含水率为10%,将接种后的玉米芯装袋,抽真空、充入氮气后,35℃±2℃厌氧固态发酵4天得固载硫酸盐还原菌玉米芯,4℃密封保存,用时开封。
8.如权利要求1所述的治理装置,其特征在于:所述过滤区填充介质为石英砂和细陶粒混合物,石英砂和细陶粒的体积比为1:2,石英砂和细陶粒的粒径分别为1-5mm、1-3mm。
9.如权利要求1所述的治理装置,其特征在于:所述微生物微电池反应区顶部设置有布泥管,微生物微电池反应区底部设置有出泥口。
CN201510618308.7A 2015-09-24 2015-09-24 一种酸性矿井废水的治理装置 Active CN105110488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510618308.7A CN105110488B (zh) 2015-09-24 2015-09-24 一种酸性矿井废水的治理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510618308.7A CN105110488B (zh) 2015-09-24 2015-09-24 一种酸性矿井废水的治理装置

Publications (2)

Publication Number Publication Date
CN105110488A CN105110488A (zh) 2015-12-02
CN105110488B true CN105110488B (zh) 2017-08-22

Family

ID=54658660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510618308.7A Active CN105110488B (zh) 2015-09-24 2015-09-24 一种酸性矿井废水的治理装置

Country Status (1)

Country Link
CN (1) CN105110488B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574249A (zh) * 2018-12-26 2019-04-05 北京北方节能环保有限公司 生物中和无机酸酸性废水的方法
CN115108685B (zh) * 2022-07-28 2023-10-20 湖南中森环境科技有限公司 一种用于矿井酸性废水原位治理的改性活性炭载体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830585A (zh) * 2010-05-21 2010-09-15 中国矿业大学(北京) 酸性矿井水处理系统
CN103265141B (zh) * 2013-04-22 2015-03-04 安徽工程大学 一种酸性矿井废水处理系统及其使用方法
CN103787557B (zh) * 2014-03-06 2015-08-26 安徽工程大学 一种酸性矿井废水的治理装置

Also Published As

Publication number Publication date
CN105110488A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
Allison Effect of microorganisms on permeability of soil under prolonged submergence
Kristjansson et al. Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate
EP2782180A1 (en) Microbial power generation device, electrode for microbial power generation device, and method for producing same
CN103979736B (zh) 低污染水脱氮的人工湿地装置及其处理方法
Xu et al. Deciphering correlation between permeability and size of anammox granule:“pores as medium”
CN103896407B (zh) 一种快速启动、挂膜碳素微生物组合净水方法
CN204310864U (zh) 一种湖塘水体原位修复的循环推流式固定化生物反应器
CN109368922B (zh) 锰矿石人工湿地耦合微生物燃料电池系统及应用
CN106222091B (zh) 一种腐殖质还原菌的厌氧培养方法
CN109956563A (zh) 一种高效好氧反硝化聚磷菌固定化小球的制备方法及其应用
CN107505369B (zh) 生物电化学系统及其在线生化需氧量监测装置与监测方法
CN105110488B (zh) 一种酸性矿井废水的治理装置
CN104817252B (zh) 一种低温条件下提高城市污泥脱水性能的方法
CN103787557B (zh) 一种酸性矿井废水的治理装置
CN202185451U (zh) 一种循环式生物淋洗修复土壤重金属污染的实验装置
CN101936151A (zh) 一种微生物固定化调剖驱油的方法
CN105161744A (zh) 一种生物阴极及其制备方法、微生物微电池、处理酸性矿井废水的装置
CN104876409B (zh) 一种清除河道底泥中重金属和多环芳烃的装置及其方法
CN111584913B (zh) 一种垂直流互逆型微生物燃料电池
CN108218133A (zh) 深度除磷集水舱及深度除磷微系统
CN113735248A (zh) 耦合厌氧氨氧化和三维电极膜生物工艺的一体式分段反应器
CN106946351A (zh) 一种自发电微电流有机物降解装置及其应用
CN105060630B (zh) 一种酸性矿井废水的治理装置
CN104045157B (zh) 一种处理垃圾渗滤液的渗透性反应墙系统
CN107720970B (zh) 封闭阳极微生物燃料电池与沉水植物人工湿地耦合系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant