CN105107442A - 智能工业化微通道连续反应器 - Google Patents

智能工业化微通道连续反应器 Download PDF

Info

Publication number
CN105107442A
CN105107442A CN201510577979.3A CN201510577979A CN105107442A CN 105107442 A CN105107442 A CN 105107442A CN 201510577979 A CN201510577979 A CN 201510577979A CN 105107442 A CN105107442 A CN 105107442A
Authority
CN
China
Prior art keywords
micro
reaction
reaction tube
flow reactor
channel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510577979.3A
Other languages
English (en)
Other versions
CN105107442B (zh
Inventor
张苏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Zirconium Titanium Tantalum Niobium Continuous Reactor Co Ltd
Original Assignee
Qingdao Zirconium Titanium Tantalum Niobium Continuous Reactor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Zirconium Titanium Tantalum Niobium Continuous Reactor Co Ltd filed Critical Qingdao Zirconium Titanium Tantalum Niobium Continuous Reactor Co Ltd
Priority to CN201510577979.3A priority Critical patent/CN105107442B/zh
Publication of CN105107442A publication Critical patent/CN105107442A/zh
Priority to PCT/CN2016/098051 priority patent/WO2017036418A1/zh
Application granted granted Critical
Publication of CN105107442B publication Critical patent/CN105107442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及石油化工、精细化学、制药、塑料、合成橡胶、涂料、食品加工等使用的反应设备技术领域。更具体地说,涉及一种大幅提高安全与环保性能,大幅节能,大幅提高生产效率的智能工业化微通道连续反应器。其包括:壳体、原料入口、产物出口、封头和反应管,其特征在于:反应管中紧密插装有三维微通道组件,三维微通道组件的外表面与反应管内壁面之间形成有若干条始终贯通的um/mm级的微形通道。它大幅降低了反应物料间的传质阻力,可及时迅速传导反应热能,缩短反应时间,减少返混与副反应,减少或免除溶剂使用,安全可靠性高,并可大幅节能减排,增加收率,提高生产效率。

Description

智能工业化微通道连续反应器
技术领域
本发明涉及石油化工、精细化学、制药、塑料、合成橡胶、涂料、食品加工等使用的反应设备技术领域。更具体地说,涉及一种可以部分取代传统间歇生产反应釜和反应器,大幅降低土地、车间使用面积和设备投资,大幅提高安全与环保性能,大幅节能,大幅提高生产效率的智能工业化微通道连续反应器。
背景技术
在石油化工、精细化工,制药、食品加工等生产领域中,对于液/液、气/液、气/固/液的均相、非均相常压,高压反应,聚合反应,通常要用到传统搅拌和反应釜进行反应。但搅拌器及反应釜由于先天结构原因,其传质阻力大,返混等现象难以克服,有时还需要增加溶剂使用量,造成整体反应时间过长,副产物增加,后处理分离困难及三废处理量加大等弊病;同时,反应釜的反应热能受结构限制传导困难,内部受热不均匀,特别是硝化、加氢、氧化等危险工艺其中孕含的安全隐患更为突出。这是一个长期以来难以解决的重大难题。
为此,长期以来国内外各种科研机构和企业进行了大量的理论探讨和实践研究。除了某些工艺可以用到的固定床、流化床、塔板式反应器之外,近些年来,国外公司逐步又推出了釜式串联、大口径管式静态反应器、回路反应器和高通量-微通道连续流反应器,逐步在将传统间歇反应向连续化生产工艺过渡和发展:
釜式串联,是将两个及两个以上反应釜串联使用,使反应液体在其转移过程中逐级搅拌完成反应,达到连续化生产的目的;此装置易于形成返混和局部放热、反应不全的致命缺陷,工程造价及车间占地面积不菲;
大口径管式静态反应器,是利用固定的,不装或者装填不同物理形态填料的管道,使反应液体在其中流动时产生的不同湍流而进行反应的连续化生产反应器。其优点是基本没有返混现象,而造价与流量、长度、占据空间成正比。为了能够充分反应,最长的管式静态反应器可长达数公里;
回路反应器是将液/液、气/液、气/固/液反应的反应液,通过文丘里喷射器将其吸入混合,再喷射于反应器下部液面下,在液面内充分混合,混合料液随着回路反应器底部循环泵进入外置式列管换热器进行热能交换,再返回到文丘里喷射器的入口端,与初始反应料液混合后进行再循环,形成环路反应。而后一部分做为产物进入后处理工序,另一部分继续参与循环。这样的反应方式目前可适用于硝化等快速化学反应。其优点是外接换热器的换热面积可以任意设置,而它的的缺陷也是显而易见,不能一次性反应完全,而且形成返混。造价昂贵;
康宁公司的高通量-微通道连续流反应器,比以上的反应器有显著的优点:相应流量的反应液进入反应器,在内部的心形通道模块中进行混合反应,流体经历湍流细致混合的过程,几乎没有返混现象发生。反应迅速、彻底,还可以减少甚至不使用溶剂,使产品转化率、纯度、收率大幅提高。由于其“三明治”夹层形态的矩形特殊结构,反应微循环通道两面整体贴合于热载体交换器,反应热会被即时移除。所以,该原理是目前化学反应器中较为先进的。但是,由于它采用特种玻璃、特种陶瓷或不锈钢等材质雕刻完成,加工工艺比较复杂,价格极为昂贵,加之原理所限而难以提高的流量,其连接材料和结构所限还制约了它在高温、高压及中型以上规模工业化生产的普及和应用。
国内外还有其他形式的各种微通道反应器,但是成熟的,可以放大到数千吨/年流量以上的工业化微通道反应器极为罕见。
综上所述,在大型工业化生产中,如何减少化学反应时的传质阻力,及时迅速传导反应热能,缩短反应时间,减少混流与副反应,减少或免除溶剂使用,节能减排,增加收率,提高效率,安全可靠性高,环保清洁,大幅降低投资及运行成本,使用一种效果显著,切实可行,经济实用,易于推广的,能将传统间歇生产反应釜或老式反应器升级为智能工业化微通道连续反应器,是目前本领域技术和操作人员十分期待的。
发明内容
本发明的目的是通过在反应管内加装三维微通道流体组件,配合高效热能传导装置,以及相应的前置、后置及传感、测量、控制等外围设备,成为一种高效实用的智能工业化微通道连续反应器。液/液、气/液、气/固/液均相或非均相反应物,在通过其内部反应管时,管内液态(或是裹挟粉末催化剂,或是裹挟细微气泡)的物料,被管内加装的三维微通道组件分割为细小的微形通道,并在其中的微通道环境中产生强烈多变的分离、聚合、再分离的湍流和相互混合,大幅降低了反应物料间的传质阻力。又由于三维微通道流体组件,将流体与金属管壁间热传导交换面积大大增加,从而可以将反应热能通过载热体和装置迅速进行传导,精确控制各种反应所需相应温度。对于某些需要高压、超高压,高温、低温、超低温、强腐蚀条件下的特殊化学反应,也可以通过反应器材质的选择完全胜任。在实际应用中,可根据具体反应在反应器内所需停留时间长短选择反应管长度,并根据流量选择反应器中反应管的直径和根数。
为了实现上述目的,本发明提供如下技术方案:
智能工业化微通道连续反应器,包括:具有载热体进口和载热体出口的壳体、原料入口、产物出口、封堵于壳体两端处的封头和用于供反应物料反应的反应管,所述反应管设置于壳体内,所述反应管的内腔为管程,所述壳体与反应管之间的腔体成为壳程,所述原料入口和产物出口与管程相连通,所述载热体进口和载热体出口与壳程相连通,其特征在于:所述反应管中紧密插装有三维微通道组件,所述三维微通道组件的外表面与反应管内壁面之间形成有若干条始终贯通的um/mm级(微米或毫米级)的微形通道。此处需要说明的是三维微通道组件与反应管“紧密插装”,是指液相反应物料无法通过反应管内壁与三维微通道组件表面凹陷形成的微形通道以外的任何缝隙。
在上述技术方案基础上,所述微形通道在三维微通道组件的外表面上凹陷地形成。
在上述技术方案基础上,所述微形通道为弯曲的任意几何图案形状。
在上述技术方案基础上,各微形通道之间相连通。
在上述技术方案基础上,所述三维微通道组件为内柱或内套管。
在上述技术方案基础上,所述反应管为直排反应管或回转反应管,所述三维微通道组件的整体形状与反应管相配适。
本发明提供的智能工业化微通道连续反应器的使用方法为:将反应所需液/液、气/液、气/固/液物料,用相应压力、扬程的输液泵、计量泵经智能控制混合后分别打入智能工业化微通道连续反应器。进入反应管3后在通过三维微通道组件时,反应物料无论流量大小均会被微形通道5分割为细小的(横截面小)、剧烈地微通道湍流进入微形通道5中,并相互反复充分混合、再分离、再混合。由于上述反应中的微通道湍流横截面极小,流动形态转换很快,因此传质阻力极低;同时,反应会产生热能或者吸收热能,甚至是十分剧烈地,而热能会通过反应管壁与壳程内的热载体进行即时、迅速的交换。同时通过智能调整热载体温度、流量即可精确控制管程内连续进行的化学反应温度。液相反应物料以微通道湍流形态经过漫长的微形通道5的路径(一般为反应管长度的10倍以上),汇集到反应器的产物出口9并流出,不会出现任何反应物料再接触初始原料的返混现象。
在上述技术方案基础上,所述三维微通道组件为内套管,内套管的内腔中流动有载热体。
在上述技术方案基础上,所有微形通道的路径长度相同。
本发明提供的智能工业化微通道连续反应器,通过在反应管内插装三维微通道组件,有效减小了反应物料的传质阻力,缩短了反应时间,减少了副反应;同时,通过在反应管内插装三维微通道组件,使得液相反应物料在反应管内形成液膜,有利于反应物料充分混合以及充分反应;反应过程中产生或所需的热量通过壳体内的热载体与反应管进行即时热交换,有效提高了传热效率。它具有如下优点:大幅降低了反应物料间的传质阻力,可及时迅速传导反应热能,缩短反应时间,减少返混与副反应,减少或免除溶剂使用,节能减排,增加收率,提高生产效率,安全可靠性高,环保清洁,能够大幅地降低投资及运行成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一种实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明实施例提供的一种智能工业化微通道连续反应器的结构示意图;
图2为本发明实施例提供的一种智能工业化微通道连续反应器的反应管的一种局部剖面结构示意图(三维微通道组件未剖切);
图3为本发明实施例提供的一种智能工业化微通道连续反应器的反应管的另一种局部剖面结构示意图(三维微通道组件未剖切);
具体实施方式
下面结合附图和实例对本发明作进一步说明:
如图1和图2所示智能工业化微通道连续反应器,智能工业化微通道连续反应器,包括:具有载热体进口6和载热体出口7的壳体1、原料入口8、产物出口9、封堵于壳体两端处的封头2和用于供反应物料反应的反应管3,所述反应管设置于壳体内,所述反应管3的内腔为管程,所述壳体1与反应管3之间的腔体成为壳程,所述原料入口8和产物出口9与管程相连通,所述载热体进口6和载热体出口7与壳程相连通,其特征在于:所述反应管3中紧密插装有三维微通道组件4,所述三维微通道组件4的外表面与反应管内壁面之间形成有若干条上下贯通的um/mm级(微米或毫米级)的微形通道5。相比在反应管3中加填料,由于填料是离散性的、不定形的,长时间使用后,在自重等原因下势必会凝积阻塞反应管,造成反应管上下气流不通透、阻塞形成液泛,而三维微通道组件4很好地解决了此问题。
可以理解的是,壳体1为耐蚀材质,适用于所需载热体传导;壳体的形状可为长方体或圆柱体形等,宜选圆柱体形;反应管3能满足良好热传导性、耐蚀、耐压强等条件;三维微通道组件4满足耐蚀,微形通道5有充分的体表面积、具有良好液膜流动性、能始终保持上下气流通透。反应管3内腔为管程,壳体1与反应管3之间的腔体为壳程,反应管3供反应物料在内反应,即反应物料流经管程,载热体流经壳程。对于壳体1的大小、分级与否,反应管3的直径大小和数目需要根据实际需要进行设计,反应管内径宜取6mm~16mm,数量一般为数十至数百根,反应管的壁厚宜为0.5~3.0毫米,但不仅限于以上数量范围,根据反应料液的化学性质不同,反应管3的材质可为各类不锈钢、钛、锆、钽或其合金等材料,一些常压反应器及对热交换要求不高的反应管还可以使用聚四氟乙烯、聚丙烯、聚乙烯等,本发明实施例对此不做限定。
可以理解的是:载热体进口6、载热体出口7、原料入口8和产物出口9的位置、数量均是根据实际需要进行设计、确定的,如1所示,原料入口8位于壳体1的底部,产物出口9位于壳体1的顶部,但并不代表只有这一种布置方法,原料入口8亦可位于壳体1的顶部,此时产物出口9位于壳体1的底部,故本发明实施例对此不做限定,也不应以具体实施例来限制本申请的保护范围。
微形通道5形成于三维微通道组件4的外表面与反应管内壁面之间,即微形通道5可在三维微通道组件4的外表面上加工形成,也可在反应管3的内壁面上加工形成,抑或在三维微通道组件4的外表面及反应管3的内壁面上均有加工,但为了方便加工,节约加工工艺和加工成本,优选的,所述微形通道在三维微通道组件的外表面上凹陷地形成,如通过在三维微通道组件的外表面上进行刻槽的方法形成。由于三维微通道组件与反应管3紧密结合,故液相反应物料仅可从微形通道5中通过。
本实施例提供的智能工业化微通道连续反应器的使用方法为:将反应所需液/液、气/液、气/固/液物料,用相应压力、扬程的输液泵、计量泵经智能控制混合后分别打入智能工业化微通道连续反应器。进入反应管3后在通过三维微通道组件时,反应物料无论流量大小均会被微形通道5分割为细小的(横截面小)、剧烈地微通道湍流进入微形通道5中,并相互反复充分混合、再分离、再混合。由于上述反应中的微通道湍流横截面极小,流动形态转换很快,因此传质阻力极低;同时,反应会产生热能,甚至是剧烈地放热,热能通过反应管壁可即时、迅速地传导至壳体内的热载体并被吸收交换。同时通过智能调整载热体温度、流量即可精确控制管程内连续进行的化学反应温度。如可以通过壳程中热载体(比如导热油)对反应管内的物料反应温度进行设定。由此,该反应器在工业化生产中可以做到精确控制反应温度;液相反应物料以微通道湍流形态经过漫长的微形通道5的路径(一般为反应管长度的10倍以上),汇集到反应器的产物出口9处流出,不会出现任何反应物料再接触初始原料的返混现象。需要说明的是,无论是液液、气液或是气固液反应,反应物料在进入该智能工业化微通道连续反应器时,需要根据反应具体条件和要求决定混合和预处理方式。
为了延长微形通道5的路径、增加反复混合机会和体表面积,优选的,所述微形通道为弯曲的任意几何图案形状,由于目的是满足延长微形通道5的路径和增加反复分离和汇合的机会即可,故微形通道5可以设计加工出无数种图案,故本发明实施例对图案的具体形态不做限定。
如图3所示,为了提高混合效率,优选的,各微形通道5之间彼此相连通。即微形通道5之间反复分离并汇合。可以理解的是汇合点可为一个也可为多个,汇合点也可在反应管3长度方向上任意位置处,微形通道5之间可杂乱地交汇也可有规律地交汇,如两两交汇等。
上述实施例提供的智能工业化微通道连续反应器,对于液液相反应、气液相反应、气液固相反应,优先选择将圆柱型智能工业化微通道连续反应器垂直安装,而长方体智能工业化微通道连续反应器选择水平安装。
优选的,所述三维微通道组件为内柱或内套管。
优选的,所述反应管为直排反应管或回转反应管(即反应管不仅仅为直管这一方式),所述三维微通道组件的整体形状与反应管相配适。优选的,反应管内加装的三维微通道流体组件材质与反应管宜为相同材质,膨胀系数相同。上述实施例提供的智能工业化微通道连续反应器中,反应管3的直径、根数和管的类型(直排、回转)可根据设备、反应物料流量大小,反应热能传导需要以及易于安装相应三维微通道组件4等条件进行确定。而反应管的长度基本等于反应器的有效长度,取决于充分反应或阶段反应完成所需的时间。因此,某些较为和缓的反应需要增加反应器长度,或者串联2台以上反应器,或者使用回转反应管才能完成。即使这样,连续化、高效率、高收率,低排放和相比较低的投资、运营成本,比之任何一种传统反应器都要优越。
优选的,智能工业化微通道连续反应器可以设置远程数据监测、自动取样、授权级别操控等多种智能化功能。
优选的,反应管外壁面上可以加工有不同纹路,以增加其在壳程内的热交换比表面积,在相对紧凑的壳程空间内,可达到最佳热交换效果。
当所述三维微通道组件为内套管时,内套管的内腔中流动有载热体,即载热体既在壳程内流动又在内套管的内腔中流动,可大大增强热交换效率。关于内套管的内腔与载热体进口6和载热体出口7间的连接方式非本申请的实质重点且运用现有的一些技术手段即可容易的实现,故不进行赘述。
宜使所有微形通道的路径长度相同,特别是在该智能工业化微通道连续反应器竖直安装时,管程内的物料宜在压力的作用下由底部进入,由顶部射出(即原料入口8设于壳体1的底部,产物出口9设于壳体1的顶部),如此物料在管程内可齐平运动,同时进入同时导出,反应均匀。如果随着反应进行产物会逐渐增稠的反应,则采取上进下出,或水平安装的方式。
在实际应用过程中,可将本发明实施例提供的智能工业化微通道连续反应器串联或者并联使用,或者与其他设备组合、连接使用,并不局限于单独使用。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的原理或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.智能工业化微通道连续反应器,包括:具有载热体进口和载热体出口的壳体、原料入口、产物出口、封堵于壳体两端处的封头和用于供反应物料反应的反应管,所述反应管设置于壳体内,所述反应管的内腔为管程,所述壳体与反应管之间的腔体成为壳程,所述原料入口和产物出口与管程相连通,所述载热体进口和载热体出口与壳程相连通,其特征在于:所述反应管中紧密插装有三维微通道组件,所述三维微通道组件的外表面与反应管内壁面之间形成有若干条始终贯通的um/mm级(微米或毫米级)的微形通道。
2.根据权利要求1所述智能工业化微通道连续反应器,其特征在于:所述微形通道在三维微通道组件的外表面上凹陷地形成。
3.根据权利要求1或2所述智能工业化微通道连续反应器,其特征在于:所述微形通道为弯曲的任意几何图案形状。
4.根据权利要求1所述智能工业化微通道连续反应器,其特征在于:各微形通道之间相连通。
5.根据权利要求1所述智能工业化微通道连续反应器,其特征在于:所述三维微通道组件为内柱或内套管。
6.根据权利要求1所述智能工业化微通道连续反应器,其特征在于:所述反应管为直排反应管或回转反应管,所述三维微通道组件的整体形状与反应管相配适。
7.根据权利要求5所述智能工业化微通道连续反应器,其特征在于:所述三维微通道组件为内套管,内套管的内腔中流动有载热体。
8.根据权利要求1所述智能工业化微通道连续反应器,其特征在于:所有微形通道的路径长度相同。
CN201510577979.3A 2015-09-06 2015-09-06 智能工业化微通道连续反应器 Active CN105107442B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510577979.3A CN105107442B (zh) 2015-09-06 2015-09-06 智能工业化微通道连续反应器
PCT/CN2016/098051 WO2017036418A1 (zh) 2015-09-06 2016-09-05 智能工业化微通道连续反应器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510577979.3A CN105107442B (zh) 2015-09-06 2015-09-06 智能工业化微通道连续反应器

Publications (2)

Publication Number Publication Date
CN105107442A true CN105107442A (zh) 2015-12-02
CN105107442B CN105107442B (zh) 2018-11-02

Family

ID=54655684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510577979.3A Active CN105107442B (zh) 2015-09-06 2015-09-06 智能工业化微通道连续反应器

Country Status (2)

Country Link
CN (1) CN105107442B (zh)
WO (1) WO2017036418A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817187A (zh) * 2016-01-05 2016-08-03 南京工业大学 适合极度放热反应的微通道反应装置和系统
WO2017036418A1 (zh) * 2015-09-06 2017-03-09 青岛钛钽铌锆连续化反应器有限公司 智能工业化微通道连续反应器
CN106984251A (zh) * 2017-05-20 2017-07-28 连云港多瑞建筑装饰有限公司 微通道连续反应器
CN107433174A (zh) * 2017-08-25 2017-12-05 山东豪迈化工技术有限公司 一种微反应器
CN107519835A (zh) * 2016-06-22 2017-12-29 中国石油化工股份有限公司 一种微通道反应器
CN108745261A (zh) * 2018-06-04 2018-11-06 西安交通大学 一种多单元金属氢化物蓄热反应器
CN111250027A (zh) * 2020-03-05 2020-06-09 内蒙古兰格生物科技有限公司 药物中间体反应管及生产线
CN112592275A (zh) * 2020-12-28 2021-04-02 杭州宇龙化工有限公司 一种5-氯-2,2-二甲基戊酸异丁酯的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694460B (zh) * 2021-02-10 2022-07-01 河北龙亿环境工程有限公司 一种连续合成四氢苯酐的方法及装置
CN113041971B (zh) * 2021-03-24 2022-08-09 青岛科技大学 一种防堵塞的微通道反应器
CN114516788B (zh) * 2022-01-26 2023-11-10 煤炭科学技术研究院有限公司 使用微通道与反应釜联用反应器连续合成酰基萘的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221554A1 (en) * 2002-03-11 2003-12-04 Tegrotenhuis Ward E. Methods of contacting substances and microsystem contactors
US20060245987A1 (en) * 2005-05-02 2006-11-02 United Technologies Corporation Micro heat exchanger with thermally conductive porous network
CN201314804Y (zh) * 2008-09-28 2009-09-23 湖南晟通科技集团有限公司 一种具有微细通道结构的高效换热管
CN203695040U (zh) * 2014-01-27 2014-07-09 石祖嘉 列管式双环形通道双面换热大通量微通道反应器
CN104258796A (zh) * 2014-10-13 2015-01-07 南京工业大学 一种新型高通量多层螺旋绕管微通道反应器
CN205164690U (zh) * 2015-09-06 2016-04-20 青岛钛钽铌锆连续化反应器有限公司 智能工业化微通道连续反应器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2563836C (en) * 2004-04-23 2011-06-14 Eugenia Kumacheva Method of producing polymeric particles with selected size, shape, morphology and composition
EP2172260A1 (en) * 2008-09-29 2010-04-07 Corning Incorporated Multiple flow path microfluidic devices
CN103801245B (zh) * 2014-01-27 2015-06-03 石祖嘉 列管式双环形通道双面换热大通量微通道反应器
CN105107442B (zh) * 2015-09-06 2018-11-02 青岛钛钽铌锆连续化反应器有限公司 智能工业化微通道连续反应器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030221554A1 (en) * 2002-03-11 2003-12-04 Tegrotenhuis Ward E. Methods of contacting substances and microsystem contactors
US20060245987A1 (en) * 2005-05-02 2006-11-02 United Technologies Corporation Micro heat exchanger with thermally conductive porous network
CN201314804Y (zh) * 2008-09-28 2009-09-23 湖南晟通科技集团有限公司 一种具有微细通道结构的高效换热管
CN203695040U (zh) * 2014-01-27 2014-07-09 石祖嘉 列管式双环形通道双面换热大通量微通道反应器
CN104258796A (zh) * 2014-10-13 2015-01-07 南京工业大学 一种新型高通量多层螺旋绕管微通道反应器
CN205164690U (zh) * 2015-09-06 2016-04-20 青岛钛钽铌锆连续化反应器有限公司 智能工业化微通道连续反应器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017036418A1 (zh) * 2015-09-06 2017-03-09 青岛钛钽铌锆连续化反应器有限公司 智能工业化微通道连续反应器
CN105817187A (zh) * 2016-01-05 2016-08-03 南京工业大学 适合极度放热反应的微通道反应装置和系统
CN107519835A (zh) * 2016-06-22 2017-12-29 中国石油化工股份有限公司 一种微通道反应器
CN106984251A (zh) * 2017-05-20 2017-07-28 连云港多瑞建筑装饰有限公司 微通道连续反应器
CN107433174A (zh) * 2017-08-25 2017-12-05 山东豪迈化工技术有限公司 一种微反应器
CN108745261A (zh) * 2018-06-04 2018-11-06 西安交通大学 一种多单元金属氢化物蓄热反应器
CN111250027A (zh) * 2020-03-05 2020-06-09 内蒙古兰格生物科技有限公司 药物中间体反应管及生产线
CN111250027B (zh) * 2020-03-05 2022-03-11 内蒙古兰格生物科技有限公司 药物中间体反应管及生产线
CN112592275A (zh) * 2020-12-28 2021-04-02 杭州宇龙化工有限公司 一种5-氯-2,2-二甲基戊酸异丁酯的制备方法

Also Published As

Publication number Publication date
CN105107442B (zh) 2018-11-02
WO2017036418A1 (zh) 2017-03-09

Similar Documents

Publication Publication Date Title
CN105107442A (zh) 智能工业化微通道连续反应器
CN205164690U (zh) 智能工业化微通道连续反应器
CN104258796B (zh) 一种新型高通量多层螺旋绕管微通道反应器
Bai et al. Experimental study of mass transfer in water/ionic liquid microdroplet systems using micro-LIF technique
Kumar et al. Slug flow in curved microreactors: hydrodynamic study
CN102875323B (zh) 连续流微通道反应器中叔丁醇溴化制备溴代叔丁烷的方法
Benke Micro-reactors: A new concept for chemical synthesis and technological feasibility
CN106984251A (zh) 微通道连续反应器
CN104549057A (zh) 多用途列管式填料反应器
CN105817187A (zh) 适合极度放热反应的微通道反应装置和系统
Gill et al. Microcapillary film reactor outperforms single-bore mesocapillary reactors in continuous flow chemical reactions
Zhao et al. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure
KR101875494B1 (ko) 관형 유통식 반응 장치
CN207237948U (zh) 一种微反应通道、基板以及微反应器
Rojahn et al. Mixing performance in a distributed-feed plate-type reactor with multinozzle injection for fine chemical production scale
CN213824722U (zh) 一种连续流微反应器
CN109634321B (zh) 适用于微反应实验的精确控温系统及方法
CN110433682B (zh) 一种承压流体混合装置
US20100163114A1 (en) Micro mixer
CN219186845U (zh) 一种气-液-固三相流管式螺旋微通道反应器
CN203044010U (zh) 用于液态均相反应的管式反应器
CN103596676A (zh) 用于连续流反应器的放大的系统与方法
CN113145037B (zh) 一种微流体分布器及多通道并行放大的流体均匀分布方法
CN202315858U (zh) 一种微反应体系装置
CN209985399U (zh) 一种简易型微通道反应器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant