CN105094140A - 一种基于基因遗传算法的结构滤波器参数优化方法 - Google Patents
一种基于基因遗传算法的结构滤波器参数优化方法 Download PDFInfo
- Publication number
- CN105094140A CN105094140A CN201510521040.5A CN201510521040A CN105094140A CN 105094140 A CN105094140 A CN 105094140A CN 201510521040 A CN201510521040 A CN 201510521040A CN 105094140 A CN105094140 A CN 105094140A
- Authority
- CN
- China
- Prior art keywords
- filter parameter
- value
- closed
- stability margin
- structure filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Feedback Control In General (AREA)
Abstract
一种基于基因遗传算法的结构滤波器参数优化方法,本发明针对含挠性和液体晃动的航天器目前普遍采用的PID+结构滤波器姿态控制方式,提出了一种滤波器参数的优化方法。包括以下步骤:(1)根据系统状态方程得到其可控可观的最小实现,并依据系统的输入-输出形式提取出被控系统的传递函数;(2)设计系统优化指标的具体形式为线性相位稳定裕度、增益稳定裕度和非线性稳定裕度的加权组合形式;(3)选择满足稳定性要求的初值,增大优化算法的成功概率;(4)采用基因遗传算法进行滤波器参数的优化。
Description
技术领域
本发明涉及一种基于基因遗传算法的结构滤波器参数优化方法,属于航天器控制工程领域。
背景技术
随着航天技术的发展,航天器所携带的帆板越来越大,燃料越来越重,由此带来的影响是帆板振动和液体晃动的影响越来越严重。为了抑制挠性振动和液体晃动,工程上一般采用PID+结构滤波器形式的控制器进行姿态控制。传统的PID参数一般是根据带宽和抗干扰要求进行选择,然后基于经验的方式来调整滤波器参数。
一般来说,可以采用增益稳定的方式来设计结构滤波器参数。该方式一般是通过设计陷波滤波器或超前滞后滤波器的形式来使得谐振模态的增益小于0dB。然而,在工程实践中发现,由于航天器的帆板振动与本体经常耦合非常严重。此时,采用传统的经验调整滤波器参数的方式很难获得足够的稳定裕度。为此,设计了一种基于遗传算法的滤波器参数自动寻优算法,不仅可以获得比人工更优的滤波器参数,而且大大减轻了设计工作量。
目前尚没有相似的文献报导。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种基于基因遗传算法的结构滤波器参数优化方法,对航天器姿态的PID+结构滤波控制器中的滤波器参数自动进行寻优,以得到足够稳定裕度的结构滤波器参数,并降低设计师的工作量。
本发明的技术解决方案是:一种基于基因遗传算法的+结构滤波器参数优化方法,提出了一套工程上可行的结构滤波器参数优化步骤,实现步骤如下:
第一步,根据含挠性与液体晃动的姿态动力学系统的状态方程,得到可控可观的最小实现,并依据系统的输入-输出形式提取出所述状态方程的传递函数;
第二步,设计反馈控制器为PID+结构滤波器形式,从而得到整个闭环系统的传递函数,设计控制器优化指标形式为闭环系统的线性相位稳定裕度、增益稳定裕度和非线性稳定裕度的加权组合形式;
第三步,结合随机选取和工程经验来选择满足闭环系统稳定性要求的滤波器参数的初值集合;
第四步,基于以上的闭环传递函数和优化指标形式,采用基因遗传算法进行滤波器参数的优化。
所述第一步中传递函数的计算的过程为:
(1)将含挠性与液体晃动的航天器姿态动力学方程写成状态方程的形式:
y=Cx+D
其中x表示状态变量向量,u表示输入,y表示输出;A表示系统矩阵,B表示输入矩阵,C表示输出矩阵,D表示传输矩阵。
(2)采用可控可观分解得到含挠性与液体晃动的姿态动力学状态方程的最小实现形式,消去不可观可控的状态变量;
(3)采用如下表达式计算系统的传递函数:
其中α(s)是状态方程的特征多项式,Ei,i=0,...,n-1分别为状态方程的系数矩阵定义为:
En-1=CB
En-2=CAB+αn-1CB
...。
E1=CAn-2B+αn-1CAn-3B+...+α2CB
E0=CAn-1B+αn-1CAn-2B+...+α1CB
其中αi,i=1,...,n-1为特征多项式α(s)相应项的系数。
所述第二步具体实现为:设计系统待优化的指标函数的具体形式为:
f=γ1Ggain+γ2Gphase+γ3Gnonlinear
其中Ggain,Gphase,Gnonlinear分别增益稳定裕度、线性相位稳定裕度和非线性稳定裕度,γ1,γ2,γ3分别为Ggain,Gphase,Gnonlinear的加权系数。
所述加权系数γ1,γ2,γ3满足γ1+γ2+γ3=1且γ1∈(0,1),γ2∈(0,1)和γ3∈(0,1)的条件。
所述第三步具体实现为:
(1)通过人工经验判断各个滤波器参数使得闭环系统稳定的大概范围,滤波器为如下三个二阶线性滤波器的级联形式:
其中s为拉普拉斯算子,Ti,i=1,...,6,Di,i=1,...,6分别为时间和阻尼常数。
(2)随机产生滤波器参数Ti,i=1,...,6,Di,i=1,...,6的各个组合值,对每种组合均判断闭环系统是否稳定,如果满足要求则将该组合值添加入初值集合;
(3)如果事先通过工程经验获得了稳定裕度比较好的滤波器初值,则将该初值与随机初值集合进行合并。
所述第四步具体实现为:
(1)设置基因遗传的遗传代数,种群规模以及设置前述选择的初值;
(2)调用基因遗传算法获得下一代结构滤波器参数值;
(3)计算结构滤波器参数值对应的优化目标值,如果所对应的闭环系统不稳定,则将目标值设置为一个比正常值大5~10倍的值的值;
(4)判断前后代之间的参数变化是否小于设定的阈值,或者迭代的代数是否达到设定的值,如果满足条件则停止计算,否则继续调用步骤(2)。
所述设定的阈值为0.0001,或视具体对象可做相应调整。
本发明与现有技术相比的优点在于:
(1)本发明利用基因遗传算法对含挠性与液体晃动的航天器姿态控制器中的结构滤波器参数进行自动寻优,一方面,可以提高所设计的控制器作用下的闭环系统稳定裕度;另一方面,可以通过软件设计实现过程的自动化,减少设计过程对人工经验的依赖。
(2)本发明提出了利用基因遗传算法实现结构滤波器参数自动寻优的工程可行性方法,能够方便的通过加权系数的调整获得对系统线性稳定裕度和增益稳定裕度的调节,以获得满意的系统性能。
(3)由于本发明提出的初值选取方法满足闭环系统稳定性条件,因此能够大大提高基因遗传算法优化的成功性。
附图说明
图1为本发明方法的实现流程图;
图2为对滤波器参数优化前的Nichols图;
图3为对采用本发明方法后滤波器参数优化后的Nichols图。
具体实施方式
下面结合附图及实施例对本发明进行详细说明。
如图1所示,本发明具体实现如下:
第一步,计算含挠性与液体晃动的航天器传递函数方法如下:
(1)将含挠性与液体晃动的航天器姿态动力学方程线性化,并写成如下形式:
其中第1个方程为动量矩方程,第2个方程为线动量方程,第3个方程为挠性振动方程,第4个为液体晃动方程;为质心平动加速度,ωbs为航天器本体的转动角速度,qi,i=1,2,…,n1为挠性振动模态坐标,rk,k=1,2,…,n2为液体晃动模态坐标;mk为晃动液体质量对角阵,J为系统相对于质心的惯量阵,Brot,i和Btran,i分别为第i个挠性附件相对于质心的转动和平动耦合系数,αk、lk为液体晃动的耦合系数;和Λi分别为挠性振动的阻尼和频率,dk和Ωk分别为液体晃动的阻尼和频率;
(2)将上述方程组写成如下的状态方程形式:
y=Cx+d
其中x表示状态变量向量,u表示输入,y表示输出;A表示系统矩阵,B表示输入矩阵,C表示输出矩阵,D表示传输矩阵。
(3)对上述方程计算系统的传递函数:
其中α(s)是状态方程的特征多项式,计算公式如下:
Rn-1=I
Rk=Rk+1A+αk+1I
Ei,i=0,...,n-1为系数矩阵定义为:
En-1=CB
En-2=CAB+αn-1CB
...
E1=CAn-2B+αn-1CAn-3B+...+α2CB
E0=CAn-1B+αn-1CAn-2B+...+α1CB
其中A、B、C和D与(2)中相同。
(4)对于时延部分,考虑采用1阶Pade近似,从而可得总的传递函数近似为如下形式:
其中Td为时延量,s为拉普拉斯算子。
第二步,设计系统的优化指标为如下形式:
f=γ1Ggain+γ2Gphase+γ3Gnonlinear
其中f为优化目标函数,Ggain,Gphase,Gnonlinear分别闭环系统的线性增益稳定裕度、线性相位稳定裕度和非线性稳定裕度,γ1,γ2,γ3分别为加权系数,可以通过调整而获得不同的优化结果。加权系数γ1,γ2,γ3满足γ1+γ2+γ3=1且γ1∈(0,1),γ2∈(0,1)和γ3∈(0,1)的条件。
稳定裕度的计算方式为:将拉普拉斯变量s=ωj,其频率从0值逐次增加,并代入到传递函数Gt(s)进行计算,首先判断其Nichols图形是否包括(0dB,-180°)点,如果包括,那么表明闭环系统是不稳定的,此时将优化目标函数值设置为一个较大的值。如果不包括,那么表明闭环系统是稳定的,可以进一步计算其在Nichols图上离(0dB,-180°)最近的频率点,其中纵轴离(0dB,-180°)最近的距离定义为线性增益稳定裕度,横轴离(0dB,-180°)最近的距离为线性相位稳定裕度。将非线性环节的描述函数同时画在Nichols上,计算线性部分的传函Gt(s)与非线性部分传函在每一频率点的距离,其中最近的距离即对应非线性稳定裕度,距离的计算公式为:
min0≤ω<∞|Gt(ωj)-GN(ωj)|
其中GN(s)表示非线性部分的传函。
关于各种稳定裕度的详细定义可参考屠善澄所著的《卫星姿态动力学与控制》一书。
第三步,初值选取的具体实现为:
(1)通过人工经验判断各个滤波器参数的大概范围;
(2)在所选定的范围内,随机产生滤波器的各个组合值,对每种参数组合均判断闭环系统是否满足稳定性要求,稳定性判断的方法是计算闭环系统的Nichols图形是否包括(0dB,-180°)点。
如果满足稳定性要求则将其添加入初值集合,直到获得满足要求的初值数目。
(3)如果事先通过人工调整获得了比较好的滤波器初值,则可以将该初值与随机初值集合进行合并;
第四步,调用基因遗传算法的具体实现为:
(1)设置基因遗传的遗传代数,种群规模以及设置前述选择的初值;
(2)调用基因遗传算法获得下一代结构滤波器参数值;
(3)计算结构滤波器参数值对应的优化目标值,如果所对应的闭环系统不稳定,则将目标值设置为一个比正常值大5~10倍的值;
(4)判断前后代之间的参数变化是否小于0.0001,或者迭代的代数是否达到设定的值,如果满足条件则停止计算,否则继续调用步骤(2)。
本发明能够较为显著的提高系统的稳定裕度。图2和图3比较了采用遗传算法前后开环系统Nichols图的比较,其中横坐标为相位(单位为度),纵坐标为增益(单位为dB),并且每幅图的下部均显示了相应的线性增益裕度和线性相位稳定裕度的大小。图2显示了采用滤波器优化前的开环系统Nichols图,由图可见,优化前系统的增益稳定裕度比较小;图3显示了优化后的开环系统Nichols图,由图可以看出,通过对滤波器参数进行优化,在满足线性相位稳定裕度的前提下,线性增益裕度可以通过滤波器参数优化提高7dB左右。
Claims (7)
1.一种基于基因遗传算法的结构滤波器参数优化方法,其特征在于实现步骤如下:
第一步,根据含挠性与液体晃动的姿态动力学系统的状态方程,得到可控可观的最小实现,并依据系统的输入-输出形式提取出所述状态方程的传递函数;
第二步,设计反馈控制器为PID+结构滤波器形式,从而得到整个闭环系统的传递函数,设计控制器优化指标形式为闭环系统的线性相位稳定裕度、增益稳定裕度和非线性稳定裕度的加权组合形式;
第三步,结合随机选取和工程经验来选择满足闭环系统稳定性要求的滤波器参数的初值集合;
第四步,基于以上的闭环传递函数和优化指标形式,采用基因遗传算法进行滤波器参数的优化。
2.根据权利要求1所述的基于基因遗传算法的结构滤波器参数优化方法,其特征在于:所述第一步中传递函数的计算的过程为:
(1)将含挠性与液体晃动的航天器姿态动力学方程写成状态方程的形式:
y=Cx+D
其中x表示状态变量向量,u表示输入,y表示输出;A表示系统矩阵,B表示输入矩阵,C表示输出矩阵,D表示传输矩阵。
(2)采用可控可观分解得到含挠性与液体晃动的姿态动力学状态方程的最小实现形式,消去不可观可控的状态变量;
(3)采用如下表达式计算系统的传递函数:
其中α(s)是状态方程的特征多项式,Ei,i=0,...,n-1分别为状态方程的系数矩阵定义为:
En-1=CB
En-2=CAB+αn-1CB
...。
E1=CAn-2B+αn-1CAn-3B+...+α2CB
E0=CAn-1B+αn-1CAn-2B+...+α1CB
其中αi,i=1,...,n-1为特征多项式α(s)相应项的系数。
3.根据权利要求1所述的基于基因遗传算法的结构滤波器参数优化方法,其特征在于:
所述第二步具体实现为:设计系统待优化的指标函数的具体形式为:
f=γ1Ggain+γ2Gphase+γ3Gnonlinear
其中Ggain,Gphase,Gnonlinear分别增益稳定裕度、线性相位稳定裕度和非线性稳定裕度,γ1,γ2,γ3分别为Ggain,Gphase,Gnonlinear的加权系数。
4.根据权利要求3所述的基于基因遗传算法的结构滤波器参数优化方法,其特征在于:所述加权系数γ1,γ2,γ3满足γ1+γ2+γ3=1且γ1∈(0,1),γ2∈(0,1)和γ3∈(0,1)的条件。
5.根据权利要求1所述的基于基因遗传算法的结构滤波器参数优化方法,其特征在于:所述第三步具体实现为:
(1)通过工程经验判断各个滤波器参数使得闭环系统稳定的大概范围,滤波器为如下三个二阶线性滤波器的级联形式:
其中s为拉普拉斯算子,Ti,i=1,...,6,Di,i=1,...,6分别为时间和阻尼常数。
(2)随机产生滤波器参数Ti,i=1,...,6,Di,i=1,...,6的各个组合值,对每种组合均判断闭环系统是否稳定,如果满足要求则将该组合值添加入初值集合;
(3)如果事先通过工程经验获得了稳定裕度比较好的滤波器初值,则将该初值与随机初值集合进行合并。
6.根据权利要求1所述的基于基因遗传算法的结构滤波器参数优化方法,其特征在于:所述第四步具体实现为:
(1)设置基因遗传的遗传代数,种群规模以及设置前述选择的初值;
(2)调用基因遗传算法获得下一代结构滤波器参数值;
(3)计算结构滤波器参数值对应的优化目标值,如果所对应的闭环系统不稳定,则将目标值设置为一个比正常值大5~10倍的值的值;
(4)判断前后代之间的参数变化是否小于设定的阈值,或者迭代的代数是否达到设定的值,如果满足条件则停止计算,否则继续调用步骤(2)。
7.根据权利要求6所述的基于基因遗传算法的结构滤波器参数优化方法,其特征在于:所述设定的阈值为0.0001,或视具体对象可做相应调整。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510521040.5A CN105094140B (zh) | 2015-08-21 | 2015-08-21 | 一种基于基因遗传算法的结构滤波器参数优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510521040.5A CN105094140B (zh) | 2015-08-21 | 2015-08-21 | 一种基于基因遗传算法的结构滤波器参数优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105094140A true CN105094140A (zh) | 2015-11-25 |
CN105094140B CN105094140B (zh) | 2017-12-19 |
Family
ID=54574813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510521040.5A Active CN105094140B (zh) | 2015-08-21 | 2015-08-21 | 一种基于基因遗传算法的结构滤波器参数优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105094140B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108267958A (zh) * | 2018-01-25 | 2018-07-10 | 北京控制工程研究所 | 一种基于模态结构分解的h∞范数指标的控制器参数优化方法、系统和介质 |
CN108388264A (zh) * | 2018-03-22 | 2018-08-10 | 北京控制工程研究所 | 一种充液航天器姿态控制与晃动抑制方法 |
CN108549219A (zh) * | 2018-03-28 | 2018-09-18 | 北京控制工程研究所 | 一种航天器喷气控制器参数辅助设计方法及系统 |
CN112086135A (zh) * | 2020-08-21 | 2020-12-15 | 北京信息科技大学 | 状态分析方法、装置和设备 |
CN116184809A (zh) * | 2023-02-20 | 2023-05-30 | 哈尔滨工业大学 | 用于伺服系统力矩环的图形免调试方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185585A (zh) * | 2011-02-25 | 2011-09-14 | 浙江工业大学 | 基于遗传算法的格型数字滤波器 |
US8036762B1 (en) * | 2007-05-09 | 2011-10-11 | Zilker Labs, Inc. | Adaptive compensation in digital power controllers |
CN103092069A (zh) * | 2013-01-28 | 2013-05-08 | 上海交通大学 | 基于参数稳定域的PIλDμ控制器参数整定方法 |
-
2015
- 2015-08-21 CN CN201510521040.5A patent/CN105094140B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8036762B1 (en) * | 2007-05-09 | 2011-10-11 | Zilker Labs, Inc. | Adaptive compensation in digital power controllers |
CN102185585A (zh) * | 2011-02-25 | 2011-09-14 | 浙江工业大学 | 基于遗传算法的格型数字滤波器 |
CN103092069A (zh) * | 2013-01-28 | 2013-05-08 | 上海交通大学 | 基于参数稳定域的PIλDμ控制器参数整定方法 |
Non-Patent Citations (4)
Title |
---|
M MAHROOGHY等: ""On the use of the genetic algorithm filter-based feature selection technique for satellite precipitation estimation"", 《IEEE GEOSCIENCE & ROMOTE SENSING LETTERS》 * |
屠善澄主编: "《卫星姿态动力学与控制 第2册》", 31 December 2009 * |
邹益民,等: ""基于量子遗传算法的滤波器参数优化"", 《系统工程与电子技术》 * |
黄鹏,等: ""基于遗传算法的PID参数寻优"", 《无线互联技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108267958A (zh) * | 2018-01-25 | 2018-07-10 | 北京控制工程研究所 | 一种基于模态结构分解的h∞范数指标的控制器参数优化方法、系统和介质 |
CN108388264A (zh) * | 2018-03-22 | 2018-08-10 | 北京控制工程研究所 | 一种充液航天器姿态控制与晃动抑制方法 |
CN108388264B (zh) * | 2018-03-22 | 2021-02-05 | 北京控制工程研究所 | 一种充液航天器姿态控制与晃动抑制方法 |
CN108549219A (zh) * | 2018-03-28 | 2018-09-18 | 北京控制工程研究所 | 一种航天器喷气控制器参数辅助设计方法及系统 |
CN112086135A (zh) * | 2020-08-21 | 2020-12-15 | 北京信息科技大学 | 状态分析方法、装置和设备 |
CN116184809A (zh) * | 2023-02-20 | 2023-05-30 | 哈尔滨工业大学 | 用于伺服系统力矩环的图形免调试方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105094140B (zh) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105094140A (zh) | 一种基于基因遗传算法的结构滤波器参数优化方法 | |
CN106874616A (zh) | 一种参数优化调整方法及系统 | |
CN105867399B (zh) | 一种确定多状态跟踪制导参数的方法 | |
CN107908109A (zh) | 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器 | |
CN110376900B (zh) | 参数优化方法、终端设备以及计算机存储介质 | |
CN107797448A (zh) | 采用扰动扩张补偿的电机位置离散重复控制方法 | |
US20150346704A1 (en) | Optimizing device and method | |
CN107515612A (zh) | 基于侧喷流控制的弹性振动抑制方法 | |
CN103792945A (zh) | 一种充液航天器系统的姿态控制和燃料晃动抑制方法 | |
CN110377034A (zh) | 一种基于蜻蜓算法优化的水面船轨迹跟踪全局鲁棒滑模控制方法 | |
CN114967725A (zh) | 靶标的姿态控制方法、计算机设备及介质 | |
An et al. | Adaptive controller design for a switched model of air-breathing hypersonic vehicles | |
Su et al. | Improved dynamic event-triggered anti-unwinding control for autonomous underwater vehicles | |
Liu et al. | Adaptive composite dynamic surface neural control for nonlinear fractional-order systems subject to delayed input | |
Saussié et al. | Self-scheduled and structured H⋡ synthesis: A launch vehicle application | |
Zhao et al. | Policy optimization for vibration isolator stiffness control during agile attitude maneuvers | |
CN117332684B (zh) | 一种基于强化学习的多航天器追逃博弈下的最优捕获方法 | |
CN105373131A (zh) | 一种基于模态结构分解的h∞无穷姿态控制器及控制方法 | |
CN108267958A (zh) | 一种基于模态结构分解的h∞范数指标的控制器参数优化方法、系统和介质 | |
CN117687305A (zh) | 一种以鲁棒性能为导向的机电系统启发式优化设计方法及系统 | |
CN110362124B (zh) | 双控制面二维机翼颤振系统的最优pid控制方法 | |
CN103809446A (zh) | 飞行器多回路模型簇颤振抑制复合频率鲁棒控制器设计方法 | |
CN116700107A (zh) | 一种控制器参数确定方法、装置、设备及可读存储介质 | |
CN106950834A (zh) | 一种高阶非线性系统快速有限时间稳定的控制方法 | |
Mooij | Model reference adaptive guidance for re-entry trajectory tracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |