CN105093928A - 一种基于主抽风机变频调控的烧结过程状态智能控制方法 - Google Patents

一种基于主抽风机变频调控的烧结过程状态智能控制方法 Download PDF

Info

Publication number
CN105093928A
CN105093928A CN201510526333.2A CN201510526333A CN105093928A CN 105093928 A CN105093928 A CN 105093928A CN 201510526333 A CN201510526333 A CN 201510526333A CN 105093928 A CN105093928 A CN 105093928A
Authority
CN
China
Prior art keywords
brp
fuzzy
exhaust gas
gas temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510526333.2A
Other languages
English (en)
Other versions
CN105093928B (zh
Inventor
陈许玲
范晓慧
甘敏
黄晓贤
姜涛
李光辉
郭宇峰
杨永斌
袁礼顺
杨桂明
黄柱成
张元波
李骞
许斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201510526333.2A priority Critical patent/CN105093928B/zh
Publication of CN105093928A publication Critical patent/CN105093928A/zh
Application granted granted Critical
Publication of CN105093928B publication Critical patent/CN105093928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于调控主抽风机变频的烧结过程状态智能控制方法,根据风箱废气温度对上升点TRP、拐点BRP和烧结终点BTP进行在线软测量,采用专家系统与模糊控制相结合的方法,以主抽风机频率的调控为主、风箱风门开度、料层厚度、机速的调控为辅,实现了烧结过程状态的整体协调控制,稳定了烧结终点的位置和温度,降低了烧结生产的电耗。

Description

一种基于主抽风机变频调控的烧结过程状态智能控制方法
技术领域
本发明技术属于铁矿烧结过程智能控制技术领域,特别是提供了一种基于主抽风机变频调控的烧结过程状态智能控制方法。
背景技术
钢铁工业作为国民经济的基础原料产业,在经济发展中具有重要地位。铁矿烧结是现代钢铁联合企业中的重要生产工序,为高炉提供具有一定粒度、强度且化学成分稳定的炉料。烧结矿质量的好坏直接影响了高炉生产的技术经济指标,而过程状态的好坏与稳定则是决定烧结矿质量的关键。
烧结过程状态包括热状态和透气性状态,最早也是目前最常采用的表征参数为烧结终点(BTP)[1]。由于烧结终点的位置在烧结机的后部,若以其为控制目标,时滞严重。因此,日本[2]于20世纪90年代初期提出以废气温度拐点(BRP)作为控制目标提前稳定烧结终点;也有人采用BTP预测值作为控制目标;发明人[3]于21世纪初采用废气温度上升点TRP、BRP和BTP综合评判烧结过程状态。国内外烧结厂或研究单位无论是以哪个参数作为控制目标,调控参数均是以台车速度为主,结合风机风门、料高的调整。而台车速度的调整一方面会影响料高、混合料槽的料位,需要配料系统的协同控制,另一方面,则会影响烧结矿的产量,需要冷却系统的同步调整,会使烧结生产时刻处于波动状态。而且,台车速度调整模式从本质上来讲,是为了迎合料层状态的变化,是被动调整。
近年来,随着高压变频器技术和装备制造越趋成熟,国内部分烧结厂对主抽风机进行了变频改造[4],这为烧结过程状态的控制提供了一种新的节电模式。但部分烧结厂只是通过变频器控制主抽风机的启停,以减少风机启停过程中对电网的冲击;少数烧结厂虽然将主抽风机频率作为过程状态的调控参数,但也主要是依靠操作工的经验,难以达到理想水平。太钢[5]研究了主抽风机转速、烧结风量、烧结机速和垂直烧结速度之间相关关系,开发了以垂直烧结速度为判据的主抽风机转速自动控制系统。系统以10min为周期,根据转速与风量、风量与机速、机速与烧结速度之间的线性回归关系计算转速的调整量,仅适用于原料结构稳定、操作参数波动小、且检测了风机风量的烧结机,难以在国内推广。
通过改变主抽风机的频率(转速)来稳定烧结过程状态,是一种相对主动的控制模式,既可以避免众多生产参数的频繁调整,又能节约电能,有效降低生产成本。因此,开发一种基于主抽变频调控的适应性强的烧结过程状态控制方法,对稳定烧结生产过程、降低生产能耗具有十分重要的意义。
发明内容
本发明要解决的技术问题是提出一种适应性强的基于主抽风机变频调控的烧结过程状态控制方法,既能使烧结终点的位置及其温度稳定在适宜范围内,又能降低烧结生产的电耗。
一种基于主抽风机变频调控的烧结过程状态智能控制方法,包括以下步骤:
步骤1:根据在线检测的风箱废气温度对过程状态及过程状态变化参数进行软测量;
所述过程状态参数包括废气温度上升点TRP、废气温度拐点BRP和烧结终点BTP;
步骤2:将过程状态及过程状态变化率参数的测量结果按照表1进行级别划分,并对其进行模糊处理,获取其所属级别及对应的模糊子集:
表1过程状态的模糊子集划分
其中,μ和σ分别表示前述过程状态参数在预测前一小时内的均值和标准偏差;
步骤3:根据过程状态对应的模糊子集,与下述专家规则进行匹配,并输出相应调控措施:
(1)若废气温度上升点TRP及烧结终点BTP的模糊变量级别在[-2,+2]的范围内波动,则根据BRP模糊控制器调整主抽频率,使得BTP的实时测量值对应的模糊子集为ZE;
(2)若烧结终点BTP的模糊变量级别量处于异常区间,则调整风箱风门开度与台车速度,使得BTP的实时测量值对应的模糊子集为ZE;
(3)若废气温度上升点TRP的模糊变量级别处于异常区间,且废气温度拐点BRP的模糊子集为ZE,则根据废气温度上升点TRP状态预先调整主抽频率,使得TRP的实时测量值对应的模糊子集为ZE;
若废气温度拐点BRP处于与废气温度上升点TRP为同向状态,则根据BRP模糊控制器调整主抽频率;
所述同向状态是指废气温度上升点TRP的模糊变量级别为+3,废气温度拐点BRP的模糊变量级别属于范围[+1,+3]中;或者是废气温度上升点TRP的模糊变量级别为-3,废气温度拐点BRP对应的模糊变量级别属于范围[-1,-3]中;
若废气温度拐点BRP处于与废气温度上升点TRP不为同向状态,则降低主抽频率调整幅度,同时调整料层厚度;
(4)若余热锅炉压力、大烟道温度及风机电流参数处于厂家设定的生产临界值范围,则将当前控制模式设置为料层厚度、台车速度调控模式;
过程状态模糊变量处于异常区间是指过程状态模糊变量级别为+3或-3;
步骤4:根据专家系统和BRP模糊控制器确定最终输出的调控措施,并将调控参数的模糊量按其基本论域清晰化后,下发至执行器进行调整;
其中,主抽风机频率调整量的基本论域为[-1.5,1.5]Hz;
风门开度为开或关,料层厚度以5mm为一个基本调整单元;
台车速度的基本论域为[0,SPmax],SPmax为生产允许的台车速度最大值。
所述BRP模糊控制过程如下:
步骤A:BRP的偏差和偏差变化分别按式(1)和式(2)进行模糊化:
E=ke(xBRP-sBRP)(1)
式中:E为BRP的偏差模糊变量;xBRP为BRP实测值;sBRP为BRP的设定值;ke为E的模糊化的比例因子;
E C = k e c ( x B R P - x B R P ′ Δ t ) - - - ( 2 )
式中:EC为BRP的偏差变化的模糊变量;kec为模糊化的比例因子;x′BRP为上一时刻的BRP实测值;Δt为采样时间间隔;
步骤B:根据BRP的偏差E和偏差变化EC,按表2进行模糊推理,得到一个模糊集合,采用加权平均法进行模糊决策得到输出量U;
表2BRP模糊控制器器的规则
步骤C:最后将输出量按式(3)进行清晰化计算和尺度变换,即可得到所需要的主抽风机变频调整量:
u = U k u - - - ( 3 )
式中:u为控制变量清晰化后的实际调整值;U为BRP模糊控制器输出的模糊化的控制变量;ku为清晰化的量化因子;
在BRP模糊控制器中,BRP偏差E、偏差变化EC和主抽风机频率调整量的模糊子集均为:{NB,NM,NS,O,PS,PM,PB},模糊论域为:{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6};
BRP偏差E的基本论域e∈[-3,3],单位为m,量化因子Ke=6/3=2;
BRP偏差变化的基本论域ec∈[-0.4,0.4],单位为m/min,量化因子Kec=6/0.4=15;
有益效果
与现有技术相比,本发明具有如下优点:
(1)控制策略科学
本发明所提供的烧结过程状态智能控制方法,结合了专家经验和模糊控制,综合考察烧结过程的整体状态,在生产波动较大的时候采取专家经验控制,根据不同的状况输出包括主抽风机频率、风箱风门开度、料层厚度、台车速度等控制手段;在生产相对稳定的时候采取模糊控制,根据BRP的状态及状态变化输出主抽风机频率的调整值。烧结生产工序较多,烧结过程涉及的物理化学变化复杂,因此在对烧结过程状态进行控制时需要综合考察烧结过程整体的状态及其前后变化趋势,结合烧结领域专家及现场操作工人的经验知识,通过专家系统和模糊逻辑等智能控制技术实现对烧结过程状态的整体协调控制。
(2)过程状态稳定
采用本发明所提供的方法编制烧结过程状态控制系统软件,在国内某钢铁厂的烧结车间进行闭环控制,人工与系统控制效果对比如表3所示。
应用结果表明:该方法可以使得烧结终点温度的标准偏差在±30℃之内,烧结终点位置的标准偏差在±0.3m之内,且相比人工控制更为稳定。
(3)电耗低
工业应用期,烧结矿质量及烧结电耗对比如表4所示。可知,智能控制前后烧结矿转鼓强度的均值相近,但智能控制期的波动更小;采用智能控制后主抽风机的电耗下降明显,日均节电达1万度。
附图说明
图1为本发明提出的以TRP、BRP和BTP共同表征烧结过程状态的示意图;
图2为本发明的烧结过程状态控制流程图;
图3为本发明的模糊控制器基本结构图。
具体实施方式
下面将结合附图和实施例对本发明做进一步的说明。
如图2和图3所示,为本发明所述烧结过程状态智能控制方法的工作流程图,具体包括以下步骤:
步骤S01:烧结过程状态参数软测量
采集烧结风箱废气温度,通过烧结过程状态参数软测量模型分别计算烧结废气温度上升点TRP、烧结废气温度拐点BRP和烧结终点BTP,如图1所示;
步骤S02:专家规则匹配
计算TRP、BRP和BTP与各自设定值的偏差,并执行模糊化处理,如下式所示。根据模糊化后的3个状态参数偏差,基于已建立的专家经验知识库进行匹配和推理,确定是否调用BRP模糊控制器,若需则执行步骤S03;若不需要则输出相应的控制规则转至步骤S04。
Ei=ke,i(xi-ci)
式中:Ei为模糊化后的状态参数;x为状态参数的实测值;c为状态参数的设定值;ke为模糊化的比例因子;下标i可分别表示TRP、BRP和BTP。
步骤S03:模糊控制
以BRP的实测值和目标值作为输入,以主抽风机变频调整量作为输出建立模糊控制器,其基本结构如图3所示。
首先,计算BRP的偏差及偏差变化,并进行尺度变化和模糊化计算,
E C = k e c ( x B R P - x B R P ′ Δ t )
式中:EC为BRP的偏差变化的模糊变量;kec为模糊化的比例因子;xBRP为BRP实测值;x′BRP为上一时刻的BRP实测值;Δt为采样时间间隔;
根据两个模糊化后的输入,进行模糊推理可得到一个模糊集合,采用加权平均法进行模糊决策得到输出量U。
最后将输出量进行清晰化计算和尺度变换,即可得到所需要的主抽风机变频调整量,如式 u = U k u ;
式中:u为控制变量清晰化后的实际调整值;U为专家经验控制器输出的模糊化的控制变量;为清晰化的量化因子。
步骤S04:控制量下发
在保证输出量不超出操作参数的允许范围下,将控制量下发到烧结过程,通过调节主抽风机频率等操作参数实现烧结过程状态的优化控制。
实施例1:
实例中所研究的烧结机有效长度为42m、宽2.5m,一共有16个风箱,其中1#~3#、14#~16#风箱宽度为2m,4#~13#风箱宽度为3m。
步骤S01:烧结过程状态参数软测量
采集一段时期内烧结机的各个风箱的废气温度,按照软测量模型的要求组成以下三组数列:
x T R P = { 19.5 , 22.5 , 25.5 , 28.5 , 31.5 } y T R P = { 72 , 73 , 80 , 86 , 111 }
x B R P = { 25.5 , 28.5 , 31.5 , 34.5 , 37 } y B R P = { 78 , 80 , 108 , 156 , 241 }
x B T P = { 37 , 39 , 41 } y B T P = { 242 , 297 , 268 }
分别对三组数列进行二次曲线拟合,并分别求出切线斜率为STRP、纵坐标为TBRP,以及曲线最高点(如图1所示),结果如表3所示。
表3烧结过程状态软测量结果(m)
TRP BRP BTP
28.00 33.09 39.65
步骤S02:专家经验控制
实例所研究的烧结机,其理想的TRP、BRP和BTP位置分别为:27m、32m、39m。对各个状态参数的偏差进行模糊化,结果如表4所示:
表4烧结过程状态的偏差状态
TRP BRP BTP
PM PM PS
从表中可以看出,当前TRP和BRP的状态较为滞后,但BTP的状态只是略为滞后。根据上述状态分析,搜索专家经验知识库,执行步骤03。
步骤S03:模糊控制
查询数据库,获得上一时刻的BRP值为33.10m,计算BRP的偏差及偏差变化并进行模糊化处理,可得BRP偏差为PM,BRP偏差变化为ZE,即:BRP当前状态为滞后,而其趋势变化不明显。通过模糊推理可得主抽风机频率调整值的模糊化输出,将控制输出清晰化,主抽风机频率调整值为:+0.5Hz。
步骤S04:控制量下发
在当前主抽风机设定值为47Hz,调整值为+0.5Hz,即建议值为47.5Hz,未超出操作参数的允许范围[35Hz,50Hz],可以执行风机频率调整。
采用本发明所提供的方法编制烧结过程状态控制方法,在国内某钢铁厂的烧结车间进行闭环控制,人工与系统控制效果对比如表5所示。
该结果表明:该方法可以使得烧结终点温度的标准偏差在±30℃之内,烧结终点位置的标准偏差在±0.3m之内,且相比人工控制更为稳定。
表5烧结终点参数对比
在工业应用期期间,烧结矿质量及烧结电耗对比如表6所示。可知,智能控制前后烧结矿转鼓强度的均值相近,但智能控制期的波动更小;采用智能控制后主抽风机的电耗下降明显,日均节电达1万度。
表6烧结矿质量指标及烧结电耗对比
参考文献
[1]范晓慧.铁矿造块过程数学模型与专家系统[M].北京:科学出版社,2013.
[2]WatanabaM,SasakiY,etal.DevelopmentofoperationguidesystemanditapplicationtoChibaNo.4SinteringPlant[C]//4thInternationalSymposiumonAgglomeration,TorntoCanada,1985:147-152.
[3]陈许玲.烧结过程状态集成优化控制指导系统的研究[D].中南大学,2006
[4]黄河清.重钢2×360m2烧结主抽风机变频调速的应用[J].科技信息,2009,(16):276
[5]李强.太钢烧结主抽风机转速的智能控制[J].钢铁,2013,48(4):18-23。

Claims (2)

1.一种基于主抽风机变频调控的烧结过程状态智能控制方法,其特征在于,包括以下步骤:
步骤1:根据在线检测的风箱废气温度对过程状态及过程状态变化参数进行软测量;
所述过程状态参数包括废气温度上升点TRP、废气温度拐点BRP和烧结终点BTP;
步骤2:将过程状态及过程状态变化率参数的测量结果按照表1进行级别划分,并对其进行模糊处理,获取其所属级别及对应的模糊子集:
表1过程状态的模糊子集划分
其中,μ和σ分别表示前述过程状态参数在预测前一小时内的均值和标准偏差;
步骤3:根据过程状态对应的模糊子集,与下述专家规则进行匹配,并输出相应调控措施:
(1)若废气温度上升点TRP及烧结终点BTP的模糊变量级别在[-2,+2]的范围内波动,则根据BRP模糊控制器调整主抽频率,使得BTP的实时测量值对应的模糊子集为ZE;
(2)若烧结终点BTP的模糊变量级别量处于异常区间,则调整风箱风门开度与台车速度,使得BTP的实时测量值对应的模糊子集为ZE;
(3)若废气温度上升点TRP的模糊变量级别处于异常区间,且废气温度拐点BRP的模糊子集为ZE,则根据废气温度上升点TRP状态预先调整主抽频率,使得TRP的实时测量值对应的模糊子集为ZE;
若废气温度拐点BRP处于与废气温度上升点TRP为同向状态,则根据BRP模糊控制器调整主抽频率;
所述同向状态是指废气温度上升点TRP的模糊变量级别为+3,废气温度拐点BRP的模糊变量级别属于范围[+1,+3]中;或者是废气温度上升点TRP的模糊变量级别为-3,废气温度拐点BRP对应的模糊变量级别属于范围[-1,-3]中;
若废气温度拐点BRP处于与废气温度上升点TRP不为同向状态,则降低主抽频率调整幅度,同时调整料层厚度;
(4)若余热锅炉压力、大烟道温度及风机电流参数处于厂家设定的生产临界值范围,则将当前控制模式设置为料层厚度、台车速度调控模式;
过程状态模糊变量处于异常区间是指过程状态模糊变量级别为+3或-3;
步骤4:根据专家系统和BRP模糊控制器确定最终输出的调控措施,并将调控参数的模糊量按其基本论域清晰化后,下发至执行器进行调整;
其中,主抽风机频率调整量的基本论域为[-1.5,1.5]Hz;
风门开度为开或关,料层厚度以5mm为一个基本调整单元;
台车速度的基本论域为[0,SPmax],SPmax为生产允许的台车速度最大值。
2.根据权利要求1所述的一种基于主抽风机变频调控的烧结过程状态智能控制方法,其特征在于,所述BRP模糊控制过程如下:
步骤A:BRP的偏差和偏差变化分别按式(1)和式(2)进行模糊化:
E=ke(xBRP-sBRP)(1)
式中:E为BRP的偏差模糊变量;xBRP为BRP实测值;sBRP为BRP的设定值;ke为E的模糊化的比例因子;
E C = k e c ( x B R P - x B R P ′ Δ t ) - - - ( 2 )
式中:EC为BRP的偏差变化的模糊变量;kec为模糊化的比例因子;x′BRP为上一时刻的BRP实测值;Δt为采样时间间隔;
步骤B:根据BRP的偏差E和偏差变化EC,按表2进行模糊推理,得到一个模糊集合,采用加权平均法进行模糊决策得到输出量U;
表2BRP模糊控制器器的规则
步骤C:最后将输出量按式(3)进行清晰化计算和尺度变换,即可得到所需要的主抽风机变频调整量:
u = U k u - - - ( 3 )
式中:u为控制变量清晰化后的实际调整值;U为BRP模糊控制器输出的模糊化的控制变量;ku为清晰化的量化因子;
在BRP模糊控制器中,BRP偏差E、偏差变化EC和主抽风机频率调整量的模糊子集均为:{NB,NM,NS,O,PS,PM,PB},模糊论域为:{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6};
BRP偏差E的基本论域e∈[-3,3],单位为m,量化因子Ke=6/3=2;
BRP偏差变化的基本论域ec∈[-0.4,0.4],单位为m/min,量化因子Kec=6/0.4=15;
主抽风机频率输出增量u∈[-1.5,1.5],单位为Hz,比例因子Ku=1.5/6=0.25。
CN201510526333.2A 2015-08-25 2015-08-25 一种基于主抽风机变频调控的烧结过程状态智能控制方法 Active CN105093928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510526333.2A CN105093928B (zh) 2015-08-25 2015-08-25 一种基于主抽风机变频调控的烧结过程状态智能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510526333.2A CN105093928B (zh) 2015-08-25 2015-08-25 一种基于主抽风机变频调控的烧结过程状态智能控制方法

Publications (2)

Publication Number Publication Date
CN105093928A true CN105093928A (zh) 2015-11-25
CN105093928B CN105093928B (zh) 2018-02-16

Family

ID=54574634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510526333.2A Active CN105093928B (zh) 2015-08-25 2015-08-25 一种基于主抽风机变频调控的烧结过程状态智能控制方法

Country Status (1)

Country Link
CN (1) CN105093928B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674745A (zh) * 2016-01-26 2016-06-15 上海宝钢节能环保技术有限公司 烧结机主抽风机变频节能控制方法
CN106022377A (zh) * 2016-05-20 2016-10-12 中南大学 一种铁矿烧结料层透气性状态的在线预测方法
CN106197028A (zh) * 2016-08-12 2016-12-07 中国地质大学(武汉) 一种保证料位稳顺的速比随动控制方法
CN107120977A (zh) * 2017-04-14 2017-09-01 北京首钢自动化信息技术有限公司 一种烧结脱硫和主抽风机联合控制方法
CN107236862A (zh) * 2017-07-06 2017-10-10 重庆大学 一种基于对数正态分布函数的烧结料层温度预测方法
CN108955261A (zh) * 2018-05-31 2018-12-07 中冶华天南京工程技术有限公司 基于音源特征的烧结机风量控制方法及系统
CN109141040A (zh) * 2017-06-16 2019-01-04 中冶长天国际工程有限责任公司 烧结尾部风箱烟气余热回收装置及其方法
CN109341351A (zh) * 2018-10-24 2019-02-15 上海宝钢节能环保技术有限公司 一种用于钢铁厂烧结主排风机的变频智能化节电控制方法
CN109654897A (zh) * 2018-11-30 2019-04-19 中国地质大学(武汉) 一种提高碳效的烧结终点智能控制方法
CN110595208A (zh) * 2019-10-21 2019-12-20 马鞍山钢铁股份有限公司 一种烧结终点的控制方法
CN112033172A (zh) * 2020-09-07 2020-12-04 无锡智澄电气科技有限公司 一种烧结主抽风机频率调节方法
CN113091459A (zh) * 2021-04-17 2021-07-09 乌海市包钢万腾钢铁有限责任公司 一种合成速度控制烧结终点的方法
CN115200370A (zh) * 2022-07-14 2022-10-18 中冶华天工程技术有限公司 一种烧结过程多特征点分段控制方法
CN115216624A (zh) * 2022-07-14 2022-10-21 中冶华天南京工程技术有限公司 一种铁矿石烧结过程多特征点协同优化控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034682A1 (en) * 2008-09-23 2010-04-01 Abb Research Ltd Method and system for controlling an industrial process
CN101907867B (zh) * 2010-08-25 2011-10-26 中南大学 一种基于工况识别的烧结终点参数自整定专家控制方法
US20120150507A1 (en) * 2009-06-24 2012-06-14 Abb Research Ltd Estimating initial states of a system model for controlling an industrial process
CN101949645B (zh) * 2010-09-27 2012-07-18 中南大学 一种降低煤气成本的多元流烧结点火控制方法
CN103885335A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种基于烧结过程决策支持系统的决策方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034682A1 (en) * 2008-09-23 2010-04-01 Abb Research Ltd Method and system for controlling an industrial process
US20120150507A1 (en) * 2009-06-24 2012-06-14 Abb Research Ltd Estimating initial states of a system model for controlling an industrial process
CN101907867B (zh) * 2010-08-25 2011-10-26 中南大学 一种基于工况识别的烧结终点参数自整定专家控制方法
CN101949645B (zh) * 2010-09-27 2012-07-18 中南大学 一种降低煤气成本的多元流烧结点火控制方法
CN103885335A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种基于烧结过程决策支持系统的决策方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李桃等: "冶金过程的自适应预测模糊控制研究与应用", 《矿冶工程》 *
李桃等: "烧结过程的递阶集成智能控制系统研究", 《烧结球团》 *
范晓慧等: "铁矿石烧结终点的优化控制", 《华中科技大学学报》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674745A (zh) * 2016-01-26 2016-06-15 上海宝钢节能环保技术有限公司 烧结机主抽风机变频节能控制方法
CN106022377B (zh) * 2016-05-20 2019-07-23 中南大学 一种铁矿烧结料层透气性状态的在线预测方法
CN106022377A (zh) * 2016-05-20 2016-10-12 中南大学 一种铁矿烧结料层透气性状态的在线预测方法
CN106197028A (zh) * 2016-08-12 2016-12-07 中国地质大学(武汉) 一种保证料位稳顺的速比随动控制方法
CN107120977A (zh) * 2017-04-14 2017-09-01 北京首钢自动化信息技术有限公司 一种烧结脱硫和主抽风机联合控制方法
CN109141040A (zh) * 2017-06-16 2019-01-04 中冶长天国际工程有限责任公司 烧结尾部风箱烟气余热回收装置及其方法
CN107236862A (zh) * 2017-07-06 2017-10-10 重庆大学 一种基于对数正态分布函数的烧结料层温度预测方法
CN108955261A (zh) * 2018-05-31 2018-12-07 中冶华天南京工程技术有限公司 基于音源特征的烧结机风量控制方法及系统
CN109341351A (zh) * 2018-10-24 2019-02-15 上海宝钢节能环保技术有限公司 一种用于钢铁厂烧结主排风机的变频智能化节电控制方法
CN109654897A (zh) * 2018-11-30 2019-04-19 中国地质大学(武汉) 一种提高碳效的烧结终点智能控制方法
CN110595208A (zh) * 2019-10-21 2019-12-20 马鞍山钢铁股份有限公司 一种烧结终点的控制方法
CN110595208B (zh) * 2019-10-21 2021-02-02 马鞍山钢铁股份有限公司 一种烧结终点的控制方法
CN112033172A (zh) * 2020-09-07 2020-12-04 无锡智澄电气科技有限公司 一种烧结主抽风机频率调节方法
CN113091459A (zh) * 2021-04-17 2021-07-09 乌海市包钢万腾钢铁有限责任公司 一种合成速度控制烧结终点的方法
CN113091459B (zh) * 2021-04-17 2024-04-19 乌海市包钢万腾钢铁有限责任公司 一种合成速度控制烧结终点的方法
CN115200370A (zh) * 2022-07-14 2022-10-18 中冶华天工程技术有限公司 一种烧结过程多特征点分段控制方法
CN115216624A (zh) * 2022-07-14 2022-10-21 中冶华天南京工程技术有限公司 一种铁矿石烧结过程多特征点协同优化控制方法
CN115216624B (zh) * 2022-07-14 2023-09-26 中冶华天南京工程技术有限公司 一种铁矿石烧结过程多特征点协同优化控制方法
CN115200370B (zh) * 2022-07-14 2024-06-14 中冶华天工程技术有限公司 一种烧结过程多特征点分段控制方法

Also Published As

Publication number Publication date
CN105093928B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN105093928A (zh) 一种基于主抽风机变频调控的烧结过程状态智能控制方法
CN102319612A (zh) 一种水泥生料立磨压差的智能控制方法
CN103808159B (zh) 基于高精度模糊控制的矿热炉电极自动控制方法
CN101598934B (zh) 一种烧结终点的间接控制方法
CN102323751B (zh) 基于模糊智能控制和最优化方法的预粉磨系统控制方法
CN104242318B (zh) 基于模型预测控制理论的直流近区电压自动控制方法
CN102912275A (zh) 一种热镀锌线镀层厚度自动控制系统
CN112916189A (zh) 制粉系统的优化方法
CN104384009B (zh) 一种基于Bang‑Bang控制的水泥联合粉磨预测控制方法
CN105182740A (zh) 原料粉磨自动控制方法
CN105652663B (zh) 一种基于负荷区判别的滑压曲线深度优化的方法
CN102692124B (zh) 一种提高套筒窑温度均匀性的自动控制方法
CN108672504B (zh) 一种冷轧带钢感应加热钢卷过渡温度控制方法
CN109013039B (zh) 一种立式磨机矿渣生产线及其智能控制系统、智能控制方法
CN107016509B (zh) 一种降低轧钢工序吨钢能耗的方法
CN102363525B (zh) 干料加热器
CN112452520A (zh) 一种矿渣立磨智能化方法
CN101833288B (zh) 一种基于物料熔化模型的电弧炉的供电控制方法
CN102876822A (zh) 高炉操作的闭环控制系统
Gan et al. A method to evaluate the power dispatching potential of energy intensive steel enterprises
CN114959149A (zh) 一种高炉主沟处理团块物料自动控制加入量的方法
CN201476529U (zh) 大型井式炉马弗罐内外串级控温装置
CN109217312B (zh) 热处理电阻炉群电力负荷需量控制系统及控制方法
CN203982179U (zh) 工业节能减排控制装置
Ailian et al. Application of fuzzy Smith intelligent control in automatic control system of cone crusher

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant