CN105092607A - 球面光学元件表面缺陷评价方法 - Google Patents

球面光学元件表面缺陷评价方法 Download PDF

Info

Publication number
CN105092607A
CN105092607A CN201510535230.2A CN201510535230A CN105092607A CN 105092607 A CN105092607 A CN 105092607A CN 201510535230 A CN201510535230 A CN 201510535230A CN 105092607 A CN105092607 A CN 105092607A
Authority
CN
China
Prior art keywords
sub
defect
image
aperture image
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510535230.2A
Other languages
English (en)
Other versions
CN105092607B (zh
Inventor
杨甬英
刘�东
柴惠婷
李阳
李晨
吴凡
许文林
曹频
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Jing Naike Photoelectricity Technology Corp Ltd
Zhejiang University ZJU
Original Assignee
Hangzhou Jing Naike Photoelectricity Technology Corp Ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Jing Naike Photoelectricity Technology Corp Ltd, Zhejiang University ZJU filed Critical Hangzhou Jing Naike Photoelectricity Technology Corp Ltd
Priority to CN201510535230.2A priority Critical patent/CN105092607B/zh
Priority to US15/509,159 priority patent/US10444160B2/en
Priority to PCT/CN2015/089217 priority patent/WO2016041456A1/zh
Publication of CN105092607A publication Critical patent/CN105092607A/zh
Application granted granted Critical
Publication of CN105092607B publication Critical patent/CN105092607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种球面光学元件表面缺陷评价方法。本发明基于显微散射暗场成像原理,对球面光学元件表面进行子孔径图像扫描,之后利用图像处理方法得到表面缺陷信息。本发明充分利用球面子孔径图像全局校正、三维拼接、二维投影、数字化特征提取等评价球面缺陷。利用缺陷定标数据,定量给出缺陷的尺寸和位置信息。本发明实现了球面光学元件表面缺陷的自动化定量检测,极大地提高了检测效率及检测精度,避免了因个人主观因素对检测结果的影响,最终为球面光学元件的使用与加工提供可靠的数值依据。

Description

球面光学元件表面缺陷评价方法
技术领域
本发明属于机器视觉检测技术领域,具体涉及一种球面光学元件表面缺陷评价方法。
背景技术
球面光学元件在大口径空间望远镜、惯性约束聚变(ICF)系统、高能激光等系统中被广泛应用,元件表面的缺陷特征如划痕、麻点等不但会影响光学系统成像质量,其在高能激光系统中还会产生不必要的散射与衍射从而造成能量损失,该能量损失在高功率激光系统中还可能因为能量过高而造成二次损伤,因此有必要在球面光学元件的使用前进行其表面缺陷的检测,数字化评价缺陷信息,从而为球面光学元件的使用提供可靠的数值依据。
球面光学元件缺陷的传统检测方法主要是目视法,利用强光照射球面表面,人眼利用反射光和透射光从不同方向进行观察,目视法受检测者熟练程度的影响较大,主观性较强,而且长期的检测会造成人眼疲劳,同时无法给出缺陷信息的定量化描述。因此需要设计一种球面光学元件表面缺陷评价方法,能够实现球面光学元件表面缺陷的自动化评价,极大的提高检测效率及检测精度。该方法通过对基于显微散射暗场成像原理得到的球面光学元件表面缺陷暗场图像进行处理,设计了一种球面光学元件表面缺陷精确定量评价的方法。
发明内容
本发明的目的是针对现有技术的不足,提供一种球面光学元件表面缺陷评价方法。
球面光学元件表面缺陷评价方法,包括如下步骤:
步骤1.球面光学元件经过显微散射暗场成像在像面上时,得到的成像子孔径图像为二维图像;由于在光学成像过程中会发生沿成像光轴方向的信息压缩,因此首先要进行球面三维重构,矫正球面光学元件的表面缺陷经过光学成像时产生的沿成像光轴方向的信息压缩,所述的球面三维重构过程,是指将显微散射暗场成像过程,简化为小孔成像模型,再利用几何关系将成像子孔径图像重构为三维子孔径图像;
步骤2.经球面三维重构后得到三维子孔径图像,为了便于特征提取,通过全口径投影将三维子孔径图像的信息投影到二维平面上,得到全口径投影图像;
步骤3.对得到的全口径投影图像进行低倍特征提取,然后利用三维逆重构得到缺陷的三维尺寸;最后利用缺陷定标得到的球面缺陷定标数据,实现缺陷实际尺寸的检测,并获得缺陷在球面光学元件表面上的位置坐标;
步骤4.对缺陷进行高倍检测,保证微米量级的检测精度;首先将显微散射暗场成像的放大倍率调节至高倍;然后依据步骤3所得的位置坐标,将表面缺陷移动至高倍视场中心,进行高倍图像采集;再进行高倍特征提取,并利用缺陷定标得到的球面缺陷定标数据得到微米量级的缺陷评价结果;
步骤5.对缺陷评价结果以球面三维预览图、电子报表及缺陷位置示意图的方式进行缺陷评价信息输出。
步骤1所述的球面光学元件经过显微散射暗场成像在像面上得到成像子孔径图像的过程如下,具体如下:
1-1.球面光学元件表面上一点p运动至p′点处,使其进入显微散射暗场成像的物方视场中;
1-2.将显微暗场散射成像的放大倍率调节至低倍并对球面光学元件表面缺陷进行低倍子孔径采集;p′经过显微散射暗场成像后得到在成像子孔径上的像点为p″;
1-3.通过数字图像采集过程,将像面坐标系XcYc转换为图像坐标系XiYi,得到成像子孔径图像,Xc轴和Yc轴组成像面坐标系,其坐标原点为显微散射暗场成像单元的光轴与成像子孔径图像的交点;Xi轴与Yi轴组成图像坐标系XiYi
步骤2所述的全口径投影图像的获取过程,具体包括如下步骤:
2-1.对重构后的三维子孔径图像进行球面子孔径全局坐标变换,将三维子孔径图像经过全局坐标变换转换为球面子孔径图像;
2-2.将球面子孔径图像垂直投影至平面得到投影子孔径图像;
2-3.通过球面子孔径图像垂直投影至平面上得到投影子孔径图像,然后进行投影子孔径图像拼接,在平面上得到上述缺陷的位置和尺寸信息后再对其进行逆重构,从而实现球面光学元件表面缺陷的准确检测。
投影子孔径图像拼接采用纬线层直接拼接,经线层环形拼接的方式;投影子孔径图像拼接过程如下:
①对投影子孔径图像去噪,从而去除背景噪声对投影拼接精度的影响;
②对去噪后的同一纬线层上相邻投影子孔径图像的重叠区域进行特征配准;
③对同一纬线层上配准后的相邻子孔径图像进行拼接,得到纬线层环带图像;
④提取纬线层环带图像中包含所有重叠区的最小圆环;
⑤提取最小圆环的配准点,获取最佳匹配位置,完成投影子孔径拼接过程。
步骤3所述的对得到的全口径投影图像进行低倍特征提取,然后利用缺陷定标得到球面缺陷定标数据,实现缺陷实际尺寸的检测;最后通过三维逆重构得到缺陷的真实尺寸,并获得缺陷在球面光学元件表面上的位置坐标,具体如下:
3-1.在投影子孔径图像拼接后的二维全孔径图像上,进行缺陷的特征提取,获取缺陷的尺寸和位置信息;
3-2.经过缺陷三维逆投影得到球面光学元件表面缺陷的三维尺寸和位置坐标的像素数;
3-3.利用缺陷定标得到的球面缺陷定标数据,将缺陷的三维尺寸和位置坐标的像素数转化为实际尺寸和位置坐标。
步骤3和4中所述的球面缺陷定标数据包括缺陷长度定标数据和缺陷宽度定标数据;长度定标过程就是要获得球面上任意位置处标准线段的实际长度与球面子孔径图像的像素数之间的关系,长度定标数据获取方式如下:
首先在平面物面上取一条标准线段dl,dl的长度通过标准测量仪器测量;标准线段dl经显微散射暗场成像,在成像子孔径图像上得到其像dp
然后将该幅成像子孔径图像重构为三维子孔径图像,在三维子孔径图像上得到标准线段的球面像dc,此时dc以像素数为单位,同时通过dc得到其所对应的圆弧角dθ;由于球面光学元件的曲率半径R能够通过球面定中过程精确测量得到,因此dc所对应的实际尺寸d=Rdθ;通过寻找dc和d之间的对应关系,定标得到三维子孔径图像的像素数与实际尺寸的对应关系,即k=d/dc,将d=Rdθ代入,得k=Rdθ/dc,而dc=Rpixeldθ,其中Rpixel为重构后的三维球面图像的曲率半径,简称为像素曲率半径,从而得到定标系数k=R/Rpixel;在同一个球面光学元件上的表面缺陷在提取其长度时,首先通过特征提取获得缺陷的各像素点位置坐标,依据像素点位置坐标,将连续的缺陷离散为n条线段,得到线段方程li:yi=kixi+bi,其中i=1,2,3...n;针对各线段分别进行逆投影还原过程,得到线段li在以Rpixel为半径的球面上所对应的弧线Ci,并依据球面积分公式得到缺陷像素长度:
L p i x e l = Σ i = 1 n ( ∫ C i d s )
其中ds为曲线微元;将定标系数k代入后,得到缺陷的实际长度
L r e a l = Σ i = 1 n k i ( ∫ C i d s ) .
宽度定标数据获取方式如下:
首先,在三维坐标系中经过原点的切平面上取一条标准线段,其实际宽度由标准测量仪器测量;标准线段经显微散射暗场成像,在成像子孔径图像上得到其像,像面宽度像素数为;
然后,将该幅成像子孔径图像重构为三维子孔径图像,在三维子孔径图像上得到标准线段的球面像,其沿宽度方向的弧长像素数即为缺陷宽度像素数;由于采集高倍图像时,特征位于视场的中心,沿成像光轴方向的信息压缩可以忽略,因此缺陷的实际宽度与标准线段的实际宽度相等;
将缺陷的实际宽度与缺陷宽度的像素数的对应关系的离散点进行分段拟合,获得最佳的拟合曲线,即为定标传递函数;利用定标传递函数计算球面任意的宽度像素数对应的实际宽度。
本发明实现了球面光学元件表面缺陷的自动化定量检测,解决了球面光学元件表面缺陷检测中缺陷三维重构及特征提取的难题。不仅使检测者从繁重的目视检测中解放出来,更极大地提高了检测效率及检测精度,避免了因个人主观因素对检测结果的影响,最终为球面光学元件的使用与加工提供可靠的数值依据。
附图说明
图1所示是缺陷评价方法的流程图。
图2所示是与图1对应的三维子孔径图像成像过程的示意图。
图3所示是与图1对应的三维子孔径图像重构,球面子孔径图像拼接及全口径投影的示意图。
图4所示是与图1对应的投影子孔径图像逆重构的示意图。
图5所示是与图1对应的全口径投影的流程图。
图6所示是与图5对应的全口径投影拼接过程的流程图。
图7所示是球面缺陷长度低倍定标过程的示意图。
图8所示是球面缺陷宽度高倍定标过程的示意图。
图9所示是与图8对应的宽度定标传递函数曲线。
图10所示是实施例2的图像处理模块的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明可以评价凸球面、凹球面光学元件的表面缺陷。实施例1适用于评价球面光学元件表面缺陷的情况。实施例2适用于利用球面光学元件表面缺陷评价方法评价小口径球面光学元件表面缺陷的情况。小口径的球面光学元件只需采集一幅子孔径图像即可得到全口径的暗场图像信息,将使得评价方法更加简化。
下面本发明的实施例将会用上图中的标号进行详细描述,在所有描述实施例的图中,原则上同一个部件将会用同一个符号表示。
实施例1
下面,本发明的实施例1将用图1-9来详细描述。
球面光学元件表面缺陷评价方法,具体包括如下步骤:
步骤1.球面光学元件201经过显微散射暗场成像成像在像面上时,得到的成像子孔径图像为二维图像。由于在光学成像过程中会发生沿成像光轴方向的信息压缩,因此首先要进行球面三维重构,矫正球面光学元件201的表面缺陷经过光学成像时产生的沿成像光轴方向的信息压缩。
步骤2.经球面三维重构后得到三维子孔径图像,为了便于特征提取,通过全口径投影将三维子孔径图像的信息投影到二维平面上,得到全口径投影图像。
步骤3.对得到的全口径投影图像进行低倍特征提取,然后利用三维逆重构得到缺陷的三维尺寸;最后利用缺陷定标得到的球面缺陷定标数据,实现缺陷实际尺寸的检测,并获得缺陷在球面光学元件201表面上的位置坐标。
步骤4.对缺陷进行高倍检测,保证微米量级的检测精度。首先调节显微散射暗场成像的成像放大倍率至高倍;然后依据步骤3-3所得的位置坐标,将表面缺陷移动至高倍视场中心,进行高倍图像采集;再进行高倍特征提取,并利用缺陷定标1400得到的球面缺陷定标数据得到微米量级的缺陷评价结果。
步骤5.对缺陷评价结果以球面三维预览图、电子报表及缺陷位置示意图的方式进行缺陷评价信息输出。
步骤1所述的球面光学元件201经过显微散射暗场成像在像面上得到成像子孔径图像的过程如下,具体参看图2:
1-1.球面光学元件201表面上一点p1201运动至p′1202点处,进入显微散射暗场成像的物方视场中进行光学成像,如图2中的过程1261所示;
1-2.将显微暗场散射成像的放大倍率调节至低倍并对球面光学元件表面缺陷进行低倍子孔径采集;如图2中的过程1262所示,p′1202经过显微散射暗场成像后得到在成像子孔径1210上的像点为p″1211;
1-3.通过数字图像采集过程,将像面坐标系XcYc转换为图像坐标系XiYi,得到成像子孔径图像1210,如图2中过程1263所示。如图2所示,Xc轴1001c和Yc轴1002c组成像面坐标系XcYc;Xi轴1001i与Yi轴1002c组成图像坐标系XiYi,其坐标原点Oi点1004i为采集得到的数字图像左上角点。
如图3中过程1264所示,步骤1所述的球面三维重构过程,是指将显微散射暗场成像过程,简化为小孔成像模型,再利用几何关系将成像子孔径图像1210重构为三维子孔径图像1220。
如图3与图5所示,步骤2所述的全口径投影图像的获取过程,具体包括如下步骤:
2-1.对重构后的三维子孔径图像1220进行球面子孔径全局坐标变换,如图3中过程1265所示,将三维子孔径图像1220经过全局坐标变换转换为球面子孔径图像1230;
2-2.如图3中过程1266所示将球面子孔径图像1230垂直投影至平面得到投影子孔径图像1240,从而减少表征一幅子孔径图像的数据量,并且大大简化了后续特征提取的计算量;
2-3.对于分布于多个子孔径图像之间的球面光学元件201表面缺陷的检测,也需要先进行子孔径图像的准确拼接,才能提取此类缺陷的位置和大小信息。在三维空间中提取上述缺陷的位置和尺寸信息很困难,所以可以通过球面子孔径图像1230垂直投影至平面上得到投影子孔径图像1240,然后进行投影子孔径图像拼接,在平面上得到上述缺陷的位置和尺寸信息后再对其进行逆重构就可以实现球面光学元件201表面缺陷的准确检测。
投影子孔径图像拼接采用纬线层直接拼接,经线层环形拼接的方式。如图6所示,投影子孔径图像拼接过程如下:
①对投影子孔径图像去噪,从而去除背景噪声对投影拼接精度的影响。
②对去噪后的同一纬线层上相邻投影子孔径图像的重叠区域进行特征配准。
③对同一纬线层上配准后的相邻子孔径图像进行拼接,得到纬线层环带图像。
④提取纬线层环带图像中包含所有重叠区的最小圆环。
⑤提取最小圆环的配准点,获取最佳匹配位置,完成投影子孔径拼接过程。
从图3中可以看出,经过球面子孔径全局坐标转后不同球面子孔径图像1230垂直投影时的变形量不同,对表面缺陷的压缩量也不同,所以后续的低倍特征提取还需要三维逆重构的过程消除因球面子孔径图像1230垂直投影而产生的压缩变形。
步骤3所述的对得到的全口径投影图像进行低倍特征提取,然后利用缺陷定标得到球面缺陷定标数据,实现缺陷实际尺寸的检测;最后通过三维逆重构得到缺陷的真实尺寸,并获得缺陷在球面光学元件201表面上的位置坐标,具体如下:
3-1.在投影子孔径图像拼接后的二维全孔径图像上,进行缺陷的特征提取,获取缺陷的尺寸和位置信息;
3-2.经过缺陷三维逆投影才能得到球面光学元件201表面缺陷的三维尺寸和位置坐标的像素数,缺陷三维逆投影过程如图4中的过程1267所示;
3-3.利用缺陷定标得到的球面缺陷定标数据,将缺陷的三维尺寸和位置坐标的像素数转化为实际尺寸和位置坐标。
步骤3和4中所述的球面缺陷定标数据包括缺陷长度定标数据和缺陷宽度定标数据。缺陷定标数据建立了球面任意位置处子孔径图像的像素数与实际尺寸的关系,可以获得缺陷的实际长度、宽度以及位置坐标。
长度定标过程就是要获得球面上任意位置处标准线段的实际长度与球面子孔径图像的像素数之间的关系。如图7所示,采用如下方式获取长度定标数据:
首先在平面物面1250上取一条标准线段dl1420,dl1420的长度通过标准测量仪器测量。标准线段dl1420经显微散射暗场成像,在成像子孔径图像1210上得到其像dp1410。
然后将该幅成像子孔径图像1210重构为三维子孔径图像1220,在三维子孔径图像1220上得到标准线段的球面像dc1430,此时dc以像素数为单位,同时通过dc1430得到其所对应的圆弧角dθ1440。由于凸球面光学元件201的曲率半径R能够通过球面定中过程精确测量得到,因此dc1430所对应的实际尺寸d=Rdθ。通过寻找dc和d之间的对应关系,可定标得到三维子孔径图像1220的像素数与实际尺寸的对应关系,即k=d/dc,若将d=Rdθ代入,可得k=Rdθ/dc,而dc=Rpixeldθ,其中Rpixel为重构后的三维球面图像的曲率半径(以像素数为单位),简称为像素曲率半径,从而得到k=R/Rpixel,由此可见定标系数k的取值随曲率半径R的变化而变化,当曲率半径R变化时,需重新进行定标。
在同一个凸球面光学元件201上的表面缺陷在提取其长度时,首先通过特征提取获得缺陷的各像素点位置坐标,依据像素点位置坐标,将连续的缺陷离散为n条线段,得到线段方程li:yi=kixi+bi,其中i=1,2,3...n。针对各线段分别进行逆投影还原过程,得到线段li在以Rpixel为半径的球面上所对应的弧线Ci,并依据球面积分公式可得到缺陷像素长度:
L p i x e l = Σ i = 1 n ( ∫ C i d s )
其中ds为曲线微元。将定标系数k代入后,可得到缺陷的实际长度
L r e a l = Σ i = 1 n k i ( ∫ C i d s )
宽度定标过程就是要获得球面上任意位置处标准线段的实际宽度与球面子孔径图像的像素数之间的关系。显微散射暗场成像的成像放大倍率为低倍时,视场小,分辨率低,对微米量级的宽度数值难以准确定标。低倍下的宽度定标结果仅可以参考,不能作为评价结果,因此宽度应该在高倍下进行定标和评价。低倍下,宽度定标过程可采取与长度定标过程类似的定标方法。高倍下,由于缺陷的宽度在微米量级,缺陷位于视场的中心。如图8所示,采用如下方式获取宽度定标数据:
首先,在三维坐标系中经过原点的切平面1250上取一条标准线段,其实际宽度1420w由标准测量仪器测量。标准线段经过显微散射暗场成像,在成像子孔径图像1210上得到其像,像面宽度像素数为1410w。
然后,将该幅成像子孔径图像1210重构为三维子孔径图像1220,在三维子孔径图像1220上得到标准线段的球面像,其沿宽度方向的弧长像素数1430w即为缺陷宽度像素数。
由于采集高倍图像时,特征位于视场的中心,沿成像光轴方向的信息压缩可以忽略,因此缺陷的实际宽度与标准线段的实际宽度1420w相等。
如图9所示,将缺陷的实际宽度与缺陷宽度的像素数的对应关系的离散点1450进行分段拟合,获得最佳的拟合曲线,即为定标传递函数1460。利用定标传递函数1460,就可以计算球面任意的宽度像素数对应的实际宽度,完成宽度定标。
实施例2
下面,本发明的实施例2将结合图10来详细描述。实施例2中,将描述评价小口径球面光学元件时的球面光学元件表面缺陷评价方法。
本实施例中讨论的小口径球面光学元件1801特点是只需要对球面顶点处的一幅子孔径进行显微散射暗场成像就可以得到整个小口径球面光学元件表面的全口径成像。因此,相应的缺陷评价方法也会比实施例1简单,通过图像处理和缺陷定标对子孔径图像进行处理,就可以得到球面缺陷信息。
所述的通过图像处理和缺陷定标对子孔径图像进行处理,得到球面缺陷信息,参看图10,具体包括如下步骤:
2-1.小口径球面光学元件1801经过显微散射暗场成像在像面上时,得到的成像子孔径图像为二维图像,因此首先要进行球面三维重构,矫正小口径球面光学元件1801的表面缺陷经过光学成像时产生的沿成像光轴方向的信息压缩。
2-2.经球面三维重构后得到三维子孔径图像,为了便于特征提取,通过单子孔径投影将三维子孔径图像的信息投影到二维平面上,得到单子孔径投影图像。
2-3.对得到的单子孔径投影图像进行低倍特征提取,然后利用三维逆重构得到缺陷的三维尺寸;最后利用缺陷定标得到的球面缺陷定标数据,实现缺陷实际尺寸的检测,并获得缺陷在小口径球面光学元件1801表面上的位置坐标。
2-4.对缺陷进行高倍检测,保证微米量级的检测精度。首先调节显微散射暗场成像的成像倍率至高倍;然后依据步骤2-3所得的位置坐标,将表面缺陷移动至高倍视场中心,进行高倍图像采集;再进行高倍特征提取,并利用缺陷定标得到的球面缺陷定标数据得到微米量级的缺陷评价结果。
2-5.对缺陷评价结果以球面三维预览图、电子报表及缺陷位置示意图的方式进行缺陷评价信息输出。

Claims (7)

1.球面光学元件表面缺陷评价方法,其特征在于包括如下步骤:
步骤1.球面光学元件经过显微散射暗场成像在像面上时,得到的成像子孔径图像为二维图像;由于在光学成像过程中会发生沿成像光轴方向的信息压缩,因此首先要进行球面三维重构,矫正球面光学元件的表面缺陷经过光学成像时产生的沿成像光轴方向的信息压缩,所述的球面三维重构过程,是指将显微散射暗场成像过程,简化为小孔成像模型,再利用几何关系将成像子孔径图像重构为三维子孔径图像;
步骤2.经球面三维重构后得到三维子孔径图像,为了便于特征提取,通过全口径投影将三维子孔径图像的信息投影到二维平面上,得到全口径投影图像;
步骤3.对得到的全口径投影图像进行低倍特征提取,然后利用三维逆重构得到缺陷的三维尺寸;最后利用缺陷定标得到的球面缺陷定标数据,实现缺陷实际尺寸的检测,并获得缺陷在球面光学元件表面上的位置坐标;
步骤4.对缺陷进行高倍检测,保证微米量级的检测精度;首先将显微散射暗场成像的放大倍率调节至高倍;然后依据步骤3所得的位置坐标,将表面缺陷移动至高倍视场中心,进行高倍图像采集;再进行高倍特征提取,并利用缺陷定标得到的球面缺陷定标数据得到微米量级的缺陷评价结果;
步骤5.对缺陷评价结果以球面三维预览图、电子报表及缺陷位置示意图的方式进行缺陷评价信息输出。
2.如权利要求1所述的球面光学元件表面缺陷评价方法,其特征在于步骤1所述的球面光学元件经过显微散射暗场成像在像面上得到成像子孔径图像的过程如下,具体如下:
1-1.球面光学元件表面上一点p运动至p′点处,使其进入显微散射暗场成像的物方视场中;
1-2.将显微暗场散射成像的放大倍率调节至低倍并对球面光学元件表面缺陷进行低倍子孔径采集;p′经过显微散射暗场成像后得到在成像子孔径上的像点为p″;
1-3.通过数字图像采集过程,将像面坐标系XcYc转换为图像坐标系XiYi,得到成像子孔径图像,Xc轴和Yc轴组成像面坐标系XcYc;Xi轴与Yi轴组成图像坐标系XiYi
3.如权利要求1所述的球面光学元件表面缺陷评价方法,其特征在于步骤2所述的全口径投影图像的获取过程,具体包括如下步骤:
2-1.对重构后的三维子孔径图像进行球面子孔径全局坐标变换,将三维子孔径图像经过全局坐标变换转换为球面子孔径图像;
2-2.将球面子孔径图像垂直投影至平面得到投影子孔径图像;
2-3.通过球面子孔径图像垂直投影至平面上得到投影子孔径图像,然后进行投影子孔径图像拼接,在平面上得到上述缺陷的位置和尺寸信息后再对其进行逆重构,从而实现球面光学元件表面缺陷的准确检测。
4.如权利要求1所述的球面光学元件表面缺陷评价方法,其特征在于投影子孔径图像拼接采用纬线层直接拼接,经线层环形拼接的方式;投影子孔径图像拼接过程如下:
①对投影子孔径图像去噪,从而去除背景噪声对投影拼接精度的影响;
②对去噪后的同一纬线层上相邻投影子孔径图像的重叠区域进行特征配准;
③对同一纬线层上配准后的相邻子孔径图像进行拼接,得到纬线层环带图像;
④提取纬线层环带图像中包含所有重叠区的最小圆环;
⑤提取最小圆环的配准点,获取最佳匹配位置,完成投影子孔径拼接过程。
5.如权利要求1所述的球面光学元件表面缺陷评价方法,其特征在于步骤3所述的对得到的全口径投影图像进行低倍特征提取,然后利用缺陷定标得到球面缺陷定标数据,实现缺陷实际尺寸的检测;最后通过三维逆重构得到缺陷的真实尺寸,并获得缺陷在球面光学元件表面上的位置坐标,具体如下:
3-1.在投影子孔径图像拼接后的二维全孔径图像上,进行缺陷的特征提取,获取缺陷的尺寸和位置信息;
3-2.经过缺陷三维逆投影得到球面光学元件表面缺陷的三维尺寸和位置坐标的像素数;
3-3.利用缺陷定标得到的球面缺陷定标数据,将缺陷的三维尺寸和位置坐标的像素数转化为实际尺寸和位置坐标。
6.如权利要求1所述的球面光学元件表面缺陷评价方法,其特征在于步骤3和4中所述的球面缺陷定标数据包括缺陷长度定标数据和缺陷宽度定标数据;长度定标过程就是要获得球面上任意位置处标准线段的实际长度与球面子孔径图像的像素数之间的关系,长度定标数据获取方式如下:
首先在平面物面上取一条标准线段dl,dl的长度通过标准测量仪器测量;标准线段dl经显微散射暗场成像,在成像子孔径图像上得到其像dp
然后将该幅成像子孔径图像重构为三维子孔径图像,在三维子孔径图像上得到标准线段的球面像dc,此时dc以像素数为单位,同时通过dc得到其所对应的圆弧角dθ;由于球面光学元件的曲率半径R能够通过球面定中过程精确测量得到,因此dc所对应的实际尺寸d=Rdθ;通过寻找dc和d之间的对应关系,定标得到三维子孔径图像的像素数与实际尺寸的对应关系,即k=d/dc,将d=Rdθ代入,得k=Rdθ/dc,而dc=Rpixeldθ,其中Rpixel为重构后的三维球面图像的曲率半径,简称为像素曲率半径,从而得到定标系数k=R/Rpixel;在同一个球面光学元件上的表面缺陷在提取其长度时,首先通过特征提取获得缺陷的各像素点位置坐标,依据像素点位置坐标,将连续的缺陷离散为n条线段,得到线段方程li:yi=kixi+bi,其中i=1,2,3...n;针对各线段分别进行逆投影还原过程,得到线段li在以Rpixel为半径的球面上所对应的弧线Ci,并依据球面积分公式得到缺陷像素长度:
L p i x e l = Σ i = 1 n ( ∫ C i d s )
其中ds为曲线微元;将定标系数k代入后,得到缺陷的实际长度
L r e a l = Σ i = 1 n k i ( ∫ C i d s ) .
7.如权利要求6所述的球面光学元件表面缺陷评价方法,其特征在于宽度定标数据获取方式如下:
首先,在三维坐标系中经过原点的切平面上取一条标准线段,其实际宽度由标准测量仪器测量;标准线段经显微散射暗场成像,在成像子孔径图像上得到其像,像面宽度像素数为;
然后,将该幅成像子孔径图像重构为三维子孔径图像,在三维子孔径图像上得到标准线段的球面像,其沿宽度方向的弧长像素数即为缺陷宽度像素数;由于采集高倍图像时,特征位于视场的中心,沿成像光轴方向的信息压缩可以忽略,因此缺陷的实际宽度与标准线段的实际宽度相等;
将缺陷的实际宽度与缺陷宽度的像素数的对应关系的离散点进行分段拟合,获得最佳的拟合曲线,即为定标传递函数;利用定标传递函数计算球面任意的宽度像素数对应的实际宽度。
CN201510535230.2A 2014-09-18 2015-08-27 球面光学元件表面缺陷评价方法 Active CN105092607B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510535230.2A CN105092607B (zh) 2015-08-27 2015-08-27 球面光学元件表面缺陷评价方法
US15/509,159 US10444160B2 (en) 2014-09-18 2015-09-09 Surface defects evaluation system and method for spherical optical components
PCT/CN2015/089217 WO2016041456A1 (zh) 2014-09-18 2015-09-09 球面光学元件表面缺陷评价系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510535230.2A CN105092607B (zh) 2015-08-27 2015-08-27 球面光学元件表面缺陷评价方法

Publications (2)

Publication Number Publication Date
CN105092607A true CN105092607A (zh) 2015-11-25
CN105092607B CN105092607B (zh) 2018-01-30

Family

ID=54573522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510535230.2A Active CN105092607B (zh) 2014-09-18 2015-08-27 球面光学元件表面缺陷评价方法

Country Status (1)

Country Link
CN (1) CN105092607B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018414A (zh) * 2016-05-17 2016-10-12 浙江大学 高次曲面光学元件表面缺陷的定量检测方法
CN108152302A (zh) * 2017-12-27 2018-06-12 合肥知常光电科技有限公司 一种曲面光学元件表面疵病的检测装置及方法
CN108872256A (zh) * 2018-09-13 2018-11-23 广东中航特种玻璃技术有限公司 一种在线检测玻璃原片杂质的方法
CN109900722A (zh) * 2019-04-01 2019-06-18 苏州凌云视界智能设备有限责任公司 一种玻璃弧面图像采集方法、系统及应用
CN110595380A (zh) * 2019-08-21 2019-12-20 南京理工大学 一种微球表面子孔径拼接方法
CN110836843A (zh) * 2019-11-11 2020-02-25 南京理工大学 一种用于球体全表面形貌检测的子孔径排布方法
CN111183351A (zh) * 2018-09-11 2020-05-19 合刃科技(深圳)有限公司 图像传感器表面缺陷检测方法及检测系统
CN112581424A (zh) * 2020-10-26 2021-03-30 浙江大学 一种光学元件表面与亚表面缺陷的分类提取方法
CN113884505A (zh) * 2021-09-01 2022-01-04 中国科学院上海光学精密机械研究所 球面元件表面缺陷散射探测装置和测量方法
CN113970560A (zh) * 2021-10-28 2022-01-25 中国科学院光电技术研究所 一种基于多传感融合的缺陷三维检测方法
CN114113150A (zh) * 2021-11-05 2022-03-01 浙江大学 一种小口径球面透镜表面缺陷检测装置和检测方法
CN114581415A (zh) * 2022-03-08 2022-06-03 成都数之联科技股份有限公司 Pcb缺陷的检测方法、装置、计算机设备及存储介质
CN116577931A (zh) * 2023-07-14 2023-08-11 中国科学院长春光学精密机械与物理研究所 基于仪器传递函数的光学元件拼接检测方法
CN117232790A (zh) * 2023-11-07 2023-12-15 中国科学院长春光学精密机械与物理研究所 基于二维散射实现光学元件表面缺陷的评估方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000296A (zh) * 2006-12-20 2007-07-18 西北师范大学 基于数字图像技术三维重构金相组织微观浮凸的方法
CN101251373A (zh) * 2008-03-28 2008-08-27 北京工业大学 微结构三维尺寸立体图像快速检测方法
CN102680477A (zh) * 2012-04-24 2012-09-19 浙江大学 大尺寸光学元件高精度调平方法与装置
JP2013040915A (ja) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd ガラス基板の表面不良検査装置および検査方法
WO2014016839A1 (en) * 2012-07-24 2014-01-30 Nova Measuring Instruments Ltd. Optical method and system for measuring isolated features of a structure
CN104215646A (zh) * 2014-09-18 2014-12-17 浙江大学 大口径球面光学元件表面疵病检测系统及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000296A (zh) * 2006-12-20 2007-07-18 西北师范大学 基于数字图像技术三维重构金相组织微观浮凸的方法
CN101251373A (zh) * 2008-03-28 2008-08-27 北京工业大学 微结构三维尺寸立体图像快速检测方法
JP2013040915A (ja) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd ガラス基板の表面不良検査装置および検査方法
CN102680477A (zh) * 2012-04-24 2012-09-19 浙江大学 大尺寸光学元件高精度调平方法与装置
WO2014016839A1 (en) * 2012-07-24 2014-01-30 Nova Measuring Instruments Ltd. Optical method and system for measuring isolated features of a structure
CN104215646A (zh) * 2014-09-18 2014-12-17 浙江大学 大口径球面光学元件表面疵病检测系统及其方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PIN CAO等: "Automated discrimination between digs and dust particles on optical surfaces with dark-field scattering microscopy", 《APPLIED OPTICS》 *
YONGYING YANG等: "Alignment methods for micron-scale surface defects automatic evaluation of large-aperture fine optics", 《CHINESE OPTICS LETTERS》 *
杨甬英等: "光学元件表面缺陷的显微散射暗场成像及数字化评价系统", 《光学学报》 *
谢世斌等: "精密表面疵病检测美标数字化评价实现算法", 《应用光学》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018414B (zh) * 2016-05-17 2018-11-30 浙江大学 高次曲面光学元件表面缺陷的定量检测方法
CN106018414A (zh) * 2016-05-17 2016-10-12 浙江大学 高次曲面光学元件表面缺陷的定量检测方法
CN108152302A (zh) * 2017-12-27 2018-06-12 合肥知常光电科技有限公司 一种曲面光学元件表面疵病的检测装置及方法
CN111183351A (zh) * 2018-09-11 2020-05-19 合刃科技(深圳)有限公司 图像传感器表面缺陷检测方法及检测系统
CN108872256A (zh) * 2018-09-13 2018-11-23 广东中航特种玻璃技术有限公司 一种在线检测玻璃原片杂质的方法
CN109900722A (zh) * 2019-04-01 2019-06-18 苏州凌云视界智能设备有限责任公司 一种玻璃弧面图像采集方法、系统及应用
CN109900722B (zh) * 2019-04-01 2021-08-03 苏州凌云视界智能设备有限责任公司 一种玻璃弧面图像采集方法、系统及应用
CN110595380A (zh) * 2019-08-21 2019-12-20 南京理工大学 一种微球表面子孔径拼接方法
CN110836843B (zh) * 2019-11-11 2022-02-15 南京理工大学 一种用于球体全表面形貌检测的子孔径排布方法
CN110836843A (zh) * 2019-11-11 2020-02-25 南京理工大学 一种用于球体全表面形貌检测的子孔径排布方法
CN112581424A (zh) * 2020-10-26 2021-03-30 浙江大学 一种光学元件表面与亚表面缺陷的分类提取方法
CN112581424B (zh) * 2020-10-26 2022-04-26 浙江大学 一种光学元件表面与亚表面缺陷的分类提取方法
CN113884505A (zh) * 2021-09-01 2022-01-04 中国科学院上海光学精密机械研究所 球面元件表面缺陷散射探测装置和测量方法
CN113884505B (zh) * 2021-09-01 2024-04-12 中国科学院上海光学精密机械研究所 球面元件表面缺陷散射探测装置和测量方法
CN113970560A (zh) * 2021-10-28 2022-01-25 中国科学院光电技术研究所 一种基于多传感融合的缺陷三维检测方法
CN113970560B (zh) * 2021-10-28 2023-05-30 中国科学院光电技术研究所 一种基于多传感融合的缺陷三维检测方法
CN114113150A (zh) * 2021-11-05 2022-03-01 浙江大学 一种小口径球面透镜表面缺陷检测装置和检测方法
CN114113150B (zh) * 2021-11-05 2023-10-20 浙江大学 一种小口径球面透镜表面缺陷检测装置和检测方法
CN114581415A (zh) * 2022-03-08 2022-06-03 成都数之联科技股份有限公司 Pcb缺陷的检测方法、装置、计算机设备及存储介质
CN116577931A (zh) * 2023-07-14 2023-08-11 中国科学院长春光学精密机械与物理研究所 基于仪器传递函数的光学元件拼接检测方法
CN116577931B (zh) * 2023-07-14 2023-09-22 中国科学院长春光学精密机械与物理研究所 基于仪器传递函数的光学元件拼接检测方法
CN117232790A (zh) * 2023-11-07 2023-12-15 中国科学院长春光学精密机械与物理研究所 基于二维散射实现光学元件表面缺陷的评估方法及系统
CN117232790B (zh) * 2023-11-07 2024-02-02 中国科学院长春光学精密机械与物理研究所 基于二维散射实现光学元件表面缺陷的评估方法及系统

Also Published As

Publication number Publication date
CN105092607B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN105092607A (zh) 球面光学元件表面缺陷评价方法
US11551341B2 (en) Method and device for automatically drawing structural cracks and precisely measuring widths thereof
Tang et al. Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision
CN105809668B (zh) 基于线扫描三维点云的物体表面变形特征提取方法
CN102288613B (zh) 一种灰度和深度信息融合的表面缺陷检测方法
US7769243B2 (en) Method and apparatus for image inspection
CN106885532B (zh) 一种高精度的铁轨几何轮廓的检测方法
CN103578088B (zh) 一种星空图像处理方法
CN108362469B (zh) 基于压敏漆与光场相机的尺寸与表面压力测量方法与装置
CN102661956B (zh) 超光滑表面缺陷检测系统的畸变校正方法
CN102800096B (zh) 一种摄像机参数的鲁棒性估计算法
CN102607820B (zh) 一种微透镜阵列焦距测量方法
CN106018414B (zh) 高次曲面光学元件表面缺陷的定量检测方法
CN108535097A (zh) 一种三轴试验试样柱面变形全场测量的方法
CN105953741B (zh) 一种钢结构局部几何变形的测量系统和方法
Zhang et al. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system
CN101706951B (zh) 一种基于特征融合的气动光学图像质量客观评价方法、装置及系统
CN103593663A (zh) 一种钞券印版的图像定位方法
CN105043720A (zh) 基于单摄像机的红外滤光片折射率的测量方法
CN105526906A (zh) 大角度动态高精度激光测角方法
CN110047111A (zh) 一种基于立体视觉的停机坪廊桥对接误差测量方法
CN109974618A (zh) 多传感器视觉测量系统的全局标定方法
CN203011419U (zh) 一种多光学传感器光轴平行性数字检校仪
CN106500625A (zh) 一种远心立体视觉测量装置及其应用于物体三维形貌微米级精度测量的方法
CN115578315A (zh) 一种基于无人机图像的桥梁应变近景摄影测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant