CN105092212A - Array corner reflector pointing accuracy measurement system and method - Google Patents
Array corner reflector pointing accuracy measurement system and method Download PDFInfo
- Publication number
- CN105092212A CN105092212A CN201510404024.8A CN201510404024A CN105092212A CN 105092212 A CN105092212 A CN 105092212A CN 201510404024 A CN201510404024 A CN 201510404024A CN 105092212 A CN105092212 A CN 105092212A
- Authority
- CN
- China
- Prior art keywords
- semi
- corner reflector
- array corner
- array
- pointing accuracy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005259 measurement Methods 0.000 title abstract description 22
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000004069 differentiation Effects 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims 1
- 230000013011 mating Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明涉及阵列角反射器指向精度测量系统及方法,包括光源、星点板、平行光管、半透半反平面镜、缩束镜头、滤光片、CCD相机以及PC机,光源经过星点板、平行光管发出平行光,平行光垂直入射半透半反平面镜,待测阵列角反射器位于半透半反平面镜的反射光路上,半透半反平面镜的透射光路上依次摆放有缩束镜头、滤光片以及CCD组件,CCD组件与PC机连接。本发明解决了现有的阵列角反射器的角锥棱镜指向精度测量方法存在测量过程复杂、测量效率低的技术问题,本发明可对大口径阵列角反射器子角锥指向精度进行直接测量,不需要进行多次数据拼接和判读,减小了多次测量带来的误差。
The invention relates to an array corner reflector pointing accuracy measurement system and method, which includes a light source, a star point plate, a parallel light pipe, a semi-transparent and semi-reflective plane mirror, a shrinking lens, a filter, a CCD camera and a PC. The light source passes through the star point plate. , the parallel light pipe emits parallel light, and the parallel light is perpendicularly incident on the semi-transparent plane mirror. The array corner reflector to be tested is located on the reflective light path of the semi-transparent plane mirror, and shrinking beams are placed on the transmission light path of the semi-transparent plane mirror. Lens, filter and CCD component, the CCD component is connected to the PC. The present invention solves the technical problems of complicated measurement process and low measurement efficiency in existing methods for measuring the pointing accuracy of corner cubes of array corner reflectors. The present invention can directly measure the pointing accuracy of sub-corner cubes of large-diameter array corner reflectors. There is no need to perform multiple data splicing and interpretations, which reduces errors caused by multiple measurements.
Description
技术领域technical field
本发明属于阵列角反射器领域,尤其涉及阵列角反射器指向精度测量系统及测量方法。The invention belongs to the field of array corner reflectors, and in particular relates to a pointing precision measurement system and a measurement method for array corner reflectors.
背景技术Background technique
角锥棱镜的工作原理:从角锥棱镜的一个对角面进入一束平行光,经过其它三个对角面的内反射,再从该对角面出射,主要应用于精确测量领域。The working principle of the corner cube prism: a beam of parallel light enters from one diagonal surface of the corner cube prism, is internally reflected by the other three diagonal surfaces, and then exits from the diagonal surface. It is mainly used in the field of precise measurement.
按照设计要求和实际的应用,阵列角反射器已经应用于航天和军事各个领域。阵列角反射器由于角锥棱镜数量多,要求每一个角锥棱镜都和中间角锥棱镜的指向精度偏差小于10″。对指向精度偏差较大的角锥棱镜进行及时校正,保证满足设计指标的需求。According to the design requirements and practical applications, array corner reflectors have been used in various fields of aerospace and military. Due to the large number of corner cubes in the array corner reflector, it is required that the pointing accuracy deviation of each corner cube and the intermediate corner cube is less than 10". Correct the corner cubes with large pointing accuracy deviations in time to ensure that the design specifications are met need.
现有阵列角反射器的角锥棱镜指向精度检验方法,使用经纬仪利用自准直方法进行检验,虽然也能实现低要求的测量,但是还存在以下缺陷:1、经纬仪视场小,通光口径小,要进行多次测量,然后将多次测量的结果进行对比,判读指向精度的偏差大小,测量过程复杂。The corner cube prism pointing accuracy inspection method of the existing array corner reflector uses theodolite to utilize the self-collimation method to inspect, although the measurement with low requirements can also be realized, the following defects still exist: 1, the theodolite field of view is small, and the light-through aperture Small, it is necessary to perform multiple measurements, and then compare the results of multiple measurements to judge the deviation of the pointing accuracy, and the measurement process is complicated.
2、经纬仪的工作距离要求长,往往自准回来的十字分化板像比较弱,能量低,判断角锥指向精度误差比较大。2. The working distance of the theodolite is required to be long, and the cross-differentiated plate image returned by the self-calibration is often relatively weak, the energy is low, and the error in judging the pointing accuracy of the pyramid is relatively large.
3、根据人眼判读指向精度误差比较大,不同的人读数误差不同。3. According to the human eye, the error of pointing accuracy is relatively large, and the reading error is different for different people.
发明内容Contents of the invention
为了解决现有的阵列角反射器的角锥棱镜指向精度测量方法存在测量过程复杂、测量效率低的技术问题,本发明提供一种阵列角反射器指向精度测量系统及方法。In order to solve the technical problems of complex measurement process and low measurement efficiency in the existing method for measuring the pointing accuracy of corner cubes of arrayed corner reflectors, the present invention provides a system and method for measuring pointing accuracy of arrayed corner reflectors.
本发明的技术解决方案:Technical solution of the present invention:
阵列角反射器指向精度测量系统,其特殊之处在于:包括光源、星点板、平行光管、半透半反平面镜、缩束镜头、滤光片、CCD相机以及PC机,The array corner reflector pointing accuracy measurement system is special in that it includes a light source, a star point plate, a collimator, a semi-transparent and semi-reflective plane mirror, a shrinking lens, a filter, a CCD camera, and a PC.
所述光源经过星点板、平行光管发出平行光,平行光垂直入射半透半反平面镜,待测阵列角反射器位于半透半反平面镜的反射光路上,半透半反平面镜的透射光路上依次摆放有缩束镜头、滤光片以及CCD组件,所述CCD组件与PC机连接。The light source emits parallel light through the star point plate and the collimator, and the parallel light is vertically incident on the semi-transparent mirror. A shrinking lens, an optical filter and a CCD assembly are placed in sequence on the road, and the CCD assembly is connected to a PC.
上述光源为白炽灯。The above-mentioned light sources are incandescent lamps.
上述星点板放置在平行光管的焦面位置。The above-mentioned star point plate is placed on the focal plane of the collimator.
上述星点板的中心孔直径为0.01mm-0.05mm。The diameter of the center hole of the above-mentioned star point plate is 0.01mm-0.05mm.
上述半透半反平面镜的与水平面的夹角为45°。The angle between the above-mentioned semi-transparent and semi-reflective plane mirror and the horizontal plane is 45°.
阵列角反射器指向精度测量方法,其特殊之处在于:包括以下步骤:The method for measuring the pointing accuracy of the array corner reflector is special in that it includes the following steps:
1)搭建权利要求1所述的阵列角反射器指向精度测量系统;1) build the array corner reflector pointing accuracy measurement system described in claim 1;
2)光源经过星点板及平行光管产生平行光,入射半透半反平面镜;2) The light source passes through the star point plate and collimator to generate parallel light, which is incident on the semi-transparent and semi-reflective plane mirror;
3)经半透半反平面镜反射至待测阵列角反射器,待测阵列角反射器接收星点像;3) reflected by the semi-transparent and semi-reflective plane mirror to the array corner reflector to be tested, and the array corner reflector to be tested receives the star point image;
4)待测阵列角反射器将星点像反射后透过半透半反平面镜进入缩束镜头,然后经过滤光片聚焦在CCD组件的靶面上;4) The array corner reflector to be tested reflects the star point image and enters the narrowing lens through the semi-transparent and semi-reflective plane mirror, and then focuses on the target surface of the CCD component through the filter;
5)通过PC机的屏幕观察不同角反射器反射的星点像成像位置,测量指向精度:5) Observe the imaging position of the star point image reflected by the reflector at different angles through the screen of the PC, and measure the pointing accuracy:
如果PC机屏幕上成的像为一个星点像,则阵列角反射器所有的角反射器的指向一致;If the image formed on the PC screen is a star point image, all the corner reflectors of the array corner reflectors point to the same direction;
如果PC机屏幕上成的像为多个星点像,则阵列角反射器所有的角反射器的指向不一致。If the image formed on the PC screen is a multiple star point image, the pointing of all the corner reflectors of the array corner reflector is inconsistent.
上述步骤1)中所搭建系统的半透半反平面镜处于45°角位置,具体确定方法包括以下步骤为:The semi-transparent and semi-reflective plane mirror of the system built in the above step 1) is at an angle of 45°, and the specific determination method includes the following steps:
a利用五棱镜工作原理建立第一经纬仪9和第二经纬仪10的位置夹角90°基准:a Utilize the working principle of the pentaprism to establish the 90° benchmark of the position included angle of the first theodolite 9 and the second theodolite 10:
将第一经纬仪9放置在五棱镜的入射面位置,将第二经纬仪10放置在五棱镜出射面位置,通过第一经纬仪9的十字分划板观察第二经纬仪10的像面十字分划板,保证两个分划板十字中心重合,建立两个经纬仪的90°基准;The first theodolite 9 is placed on the incident surface position of the pentaprism, the second theodolite 10 is placed on the pentaprism exit surface position, observes the image plane cross reticle of the second theodolite 10 by the cross reticle of the first theodolite 9, Ensure that the cross centers of the two reticles coincide, and establish the 90° datum of the two theodolites;
b确定半透半反平面镜位置:b Determine the position of the half-transparent mirror:
将步骤a中的五棱镜更换为半透半反平面镜,通过第一经纬仪9、半透半反平面镜观察第二经纬仪10的十字分划板,调整半透半反平面镜位置,直到两个经纬仪的十字分划板中心重合,此时半透半反平面镜45°的位置确定。The pentaprism in the step a is replaced with a semi-transparent and semi-anti-plane mirror, observe the cross reticle of the second theodolite 10 by the first theodolite 9, the semi-transparent and semi-anti-plane mirror, adjust the semi-transparent and semi-anti-plane mirror position, until the two theodolites The center of the cross reticle coincides, and the position of the semi-transparent and semi-reflective plane mirror at 45° is determined at this moment.
上述步骤1)中所搭建系统的待测阵列角反射器位置确定包括以下步骤为:The determination of the position of the array corner reflector to be tested in the system built in the above step 1) includes the following steps:
将上述步骤b中的第一经纬仪9的位置处放置待测阵列角反射器,调整待测阵列角反射器的位置,直到在第二经纬仪10上能观察到阵列角反射器反射回来的自准直像和第二经纬仪10的十字分化板十字中心重合,阵列角反射器的位置确定。Place the array corner reflector to be measured at the position of the first theodolite 9 in the above-mentioned steps b, adjust the position of the array corner reflector to be measured, until the self-alignment reflected by the array corner reflector can be observed on the second theodolite 10 The straight image coincides with the center of the cross of the cross differentiation plate of the second theodolite 10, and the position of the array corner reflector is determined.
上述步骤1)中所搭建系统的平行光管位置确定方法包括以下步骤为:The method for determining the collimator position of the system built in the above step 1) includes the following steps:
首先,将平行光管放置在半透半反平面镜的与待测阵列角反射器垂直的反射光路上,并在平行光管的后端安装自准直望远镜;First, place the collimator on the reflective light path perpendicular to the array corner reflector to be measured of the half-transparent mirror, and install an autocollimating telescope at the rear end of the collimator;
然后,通过自准直望远镜观察通过半透半反平面镜和待测阵列角反射器反射回来的自准直十字像,保证自准直像十字像和自准直望远镜的分化十字像完全重合平行光管的位置确定。Then, through the self-collimating telescope, observe the self-collimating cross image reflected by the semi-transparent and semi-reflective plane mirror and the array corner reflector to be tested, and ensure that the self-collimating cross image and the differentiated cross image of the self-collimating telescope are completely coincident parallel light The position of the tube is determined.
本发明所具有的优点:The advantages that the present invention has:
1、本发明系统可对大口径阵列角反射器子角锥指向精度进行直接测量,不需要进行多次数据拼接和判读,减小了多次测量带来的误差。1. The system of the present invention can directly measure the pointing accuracy of the sub-pyramids of the large-aperture array corner reflector without the need for multiple data splicing and interpretation, which reduces the errors caused by multiple measurements.
2、本发明对阵列角反射器子角锥指向精度的测量,经过软件数据处理,减小了人为原因引起的误差,测量精度高。2. The present invention measures the pointing accuracy of the sub-pyramids of the array corner reflector, after software data processing, the error caused by human factors is reduced, and the measurement accuracy is high.
附图说明Description of drawings
图1为本发明阵列角反射器指向精度测量系统结构示意图;Fig. 1 is a schematic structural diagram of the pointing accuracy measurement system of the array corner reflector of the present invention;
图2为本发明光学原理图;Fig. 2 is the optical principle diagram of the present invention;
图3-图4为本发明确定半透半反平面镜的过程示意图;Fig. 3-Fig. 4 is the schematic diagram of the process of determining the semi-transparent and semi-reflective plane mirror in the present invention;
图5为本发明确定待测阵列角反射器的过程示意图;Fig. 5 is a schematic diagram of the process of determining the array corner reflector to be tested in the present invention;
图6为本发明确定平行光管的过程示意图;Fig. 6 is a schematic diagram of the process of determining the collimator in the present invention;
图7为本发明确定星点板的过程示意图;Fig. 7 is a schematic diagram of the process of determining the star point board in the present invention;
图8为本发明确定缩束镜头的过程示意图;Fig. 8 is a schematic diagram of the process of determining the zoom lens in the present invention;
其中附图标记为:1-待测阵列角反射器,2-半透半反平面镜,3-光源,4-星点板,5-平行光管,6-滤光片,7-CCD组件,8-PC机,9-第一经纬仪,10-第二经纬仪,11-五棱镜,12-自准直望远镜,13-缩束镜头。Wherein the reference signs are: 1-array corner reflector to be tested, 2-semi-transparent and semi-reflective plane mirror, 3-light source, 4-star plate, 5-collimator, 6-filter, 7-CCD assembly, 8-PC, 9-the first theodolite, 10-the second theodolite, 11-penta prism, 12-autocollimating telescope, 13-beam reduction lens.
具体实施方式Detailed ways
实施例1:Example 1:
如图1所示,阵列角反射器指向精度测量系统的结构示意图,包括光源3、星点板4、平行光管5、半透半反平面镜2、缩束镜头13、滤光片6、CCD相机7以及PC机8,光源经过星点板、平行光管发出平行光,平行光垂直入射半透半反平面镜,待测阵列角反射器1位于半透半反平面镜的反射光路上,半透半反平面镜的透射光路上依次摆放有缩束镜头、滤光片以及CCD组件,CCD组件与PC机连接。As shown in Figure 1, the structural diagram of the pointing accuracy measurement system of the array corner reflector, including the light source 3, the star point plate 4, the collimator 5, the semi-transparent and semi-reflective plane mirror 2, the beam reduction lens 13, the optical filter 6, and the CCD Camera 7 and PC 8, the light source sends parallel light through the star point plate and collimator, the parallel light is vertically incident on the semi-transparent mirror, and the array corner reflector 1 to be tested is located on the reflected light path of the semi-transparent mirror. A shrinking lens, a filter and a CCD assembly are placed in sequence on the transmitted light path of the half mirror, and the CCD assembly is connected to a PC.
星点板3经过平行光管出射平行光路,平行光通过半透半反平面镜折射到待测角阵列反射器上,待测阵列角反射器将接收到的星点像反射后穿过半透半反平面镜进入测量缩束镜头,然后经过滤光片(主要是为了控制CCD组件接收信号的强弱)聚焦在CCD组件的靶面上,通过PC机的屏幕观察不同角反射器反射的星点像成像位置,如果所有的角反射器的指向一致,PC机屏幕上成的像就会成一个星点像,如果不一致就形成很多星点像。The star point plate 3 exits the parallel light path through the parallel light tube, and the parallel light is refracted to the angular array reflector to be measured through the semi-transparent and semi-reflective plane mirror, and the array angle reflector to be measured reflects the received star point image and passes through the semi-transparent and semi-reflective The plane mirror enters the measurement narrowing lens, and then focuses on the target surface of the CCD component through the filter sheet (mainly to control the strength of the signal received by the CCD component), and observes the star point images reflected by the reflectors at different angles through the screen of the PC. position, if all the corner reflectors point to the same point, the image formed on the PC screen will form a star point image, if not, many star point images will be formed.
星点板是放在光管的焦面位置上的,是平行光管的附件。光经过星点板的中心孔形成一个光斑,然后光斑在平行光管的焦面位置上就形成一个目标源)The star point plate is placed on the focal plane of the light pipe and is an accessory of the collimator. The light passes through the central hole of the star point plate to form a spot, and then the spot forms a target source on the focal plane of the collimator)
通过调整阵列角反射器角锥棱镜的位置关系,控制星点像在屏幕上显示在一定的区域之内达到检测阵列角反射器指向精度的目的。By adjusting the positional relationship of the corner cube prism of the array corner reflector, the star point image is controlled to be displayed on the screen within a certain area to achieve the purpose of detecting the pointing accuracy of the array corner reflector.
实施例2:搭建阵列角反射器指向精度测量系统过程:Embodiment 2: The process of building the pointing accuracy measurement system of the array corner reflector:
一、半透半反平面镜45°角位置确定:1. Determination of the 45° angle position of the semi-transparent and semi-reflective plane mirror:
1、利用五棱镜11工作原理建立第一经纬仪9和第二经纬仪10的位置夹角90°基准:1. Utilize the working principle of pentaprism 11 to establish the 90° benchmark of the position included angle of the first theodolite 9 and the second theodolite 10:
按图3所示位置放置五棱镜11,然后将第一经纬仪9放置在五棱镜11的前端面(入射面口径),将第二经纬仪10放置在五棱镜11出射面位置,通过第一经纬仪9的十字分划板观察第二经纬仪10的像面十字分划板,保证两个分划板十字中心重合,建立两个经纬仪的90°基准。Place the pentaprism 11 by the position shown in Figure 3, then the first theodolite 9 is placed on the front end face (incident surface aperture) of the pentaprism 11, the second theodolite 10 is placed on the pentaprism 11 exit surface position, by the first theodolite 9 Observation of the cross reticle of the second theodolite 10 on the image plane cross reticle of the second theodolite ensures that the cross centers of the two reticles coincide, and establishes the 90° reference of the two theodolites.
2、确定半透半反平面镜位置:确定好两个经纬仪的相对位置后,将五棱镜11更换为半透半反平面镜2(位置如图4所示),通过第一经纬仪9、半透半反平面镜2观察第二经纬仪10的十字分划板,调整半透半反平面镜2的位置,直到两个经纬仪的分化十字中心重合,半透半反平面镜45°的位置就可以确定2, determine the semi-transparent and semi-anti-plane mirror position: after determining the relative positions of the two theodolites, the pentaprism 11 is replaced with the semi-transparent and semi-anti-plane mirror 2 (position as shown in Figure 4), through the first theodolite 9, the semi-transparent and semi-anti-plane mirrors Anti-plane mirror 2 observes the cross reticle of the second theodolite 10, adjusts the position of semi-transparent and semi-anti-plane mirror 2, until the differentiation cross center of two theodolites coincides, the position of semi-transparent and semi-anti-plane mirror 45 ° can be determined
二、确定阵列角反射器的位置:确定好半透半反平面镜2位置后,将第一经纬仪9更换为待测阵列角反射器1,如图5所示。调整角反射器的位置,直到在第二经纬仪10上能观察到待测阵列角反射器反射回来的自准直像和第二经纬仪10的十字分化板十字中心重合,待测阵列角反射器的位置确定。2. Determine the position of the array corner reflector: After determining the position of the transflective mirror 2, replace the first theodolite 9 with the array corner reflector 1 to be measured, as shown in FIG. 5 . Adjust the position of the corner reflector until the self-collimation image reflected by the array corner reflector to be measured coincides with the center of the cross of the second theodolite 10 on the second theodolite 10, the array corner reflector to be measured The location is OK.
三、确定平行光管的位置3. Determine the position of the collimator
确定好待测阵列角反射器位置后,将平行光管5放置如图6所示位置,并将自准直望远镜12安装在平行光管5后端面,通过自准直望远镜12观察通过半透半反平面镜和待测阵列角反射器反射回来的自准直十字像,保证两个自准直像十字像和自准直望远镜的分化十字像完全重合,即可确定平行光管的位置。After determining the position of the array corner reflector to be tested, place the collimator 5 at the position shown in Figure 6, and install the autocollimating telescope 12 on the rear end face of the collimator 5, and observe through the selfcollimating telescope 12 through the translucent The position of the collimator can be determined by ensuring that the two self-collimating cross-images and the differentiated cross-image of the self-collimating telescope completely coincide with the self-collimating cross image reflected by the semi-reflective plane mirror and the array corner reflector to be tested.
四、确定星点板的位置:确定好平行光管的位置后,将自准直望远镜12取下来,然后将自准直望远镜12从平行光管上拆卸下来,然后将星点板(星点孔直径0.05mm)放在平行光管的焦面位置,在光管的后端面放置100W的白炽灯作为光源,如图7所示。4. Determine the position of the star point plate: After determining the position of the collimator, take off the self-collimating telescope 12, then disassemble the self-collimating telescope 12 from the collimator, and then install the star point plate (star point Hole diameter 0.05mm) is placed on the focal plane position of the collimated light pipe, and a 100W incandescent lamp is placed on the rear end of the light pipe as a light source, as shown in Figure 7.
五、将缩束镜头13放置如图8所示位置,保证待测阵列角反射器的口径充满缩束镜头口径。将滤光片片和CCD组件搭接在系统中。5. Place the attenuator lens 13 at the position shown in FIG. 8 to ensure that the caliber of the array corner reflector to be tested is filled with the attenuator lens caliber. Lap the optical filter and CCD assembly in the system.
这样整个检测阵列角反射角锥棱镜指向精度的系统搭接完成。In this way, the system overlapping of the pointing accuracy of the whole detection array corner reflector corner cube is completed.
实施例3:Example 3:
阵列角反射器指向精度测量方法,包括以下步骤:The method for measuring pointing accuracy of an array corner reflector comprises the following steps:
1)搭建阵列角反射器指向精度测量系统;1) Build a pointing accuracy measurement system for arrayed corner reflectors;
2)光源经过星点板及平行光管产生平行光,入射半透半反平面镜;2) The light source passes through the star point plate and collimator to generate parallel light, which is incident on the semi-transparent and semi-reflective plane mirror;
3)经半透半反平面镜反射至待测阵列角反射器,待测阵列角反射器接收星点像;3) reflected by the semi-transparent and semi-reflective plane mirror to the array corner reflector to be tested, and the array corner reflector to be tested receives the star point image;
4)待测阵列角反射器将星点像反射后透过半透半反平面镜进入缩束镜头,然后经过滤光片聚焦在CCD组件的靶面上;4) The array corner reflector to be tested reflects the star point image and enters the narrowing lens through the semi-transparent and semi-reflective plane mirror, and then focuses on the target surface of the CCD component through the filter;
5)通过PC机的屏幕观察不同角反射器反射的星点像成像位置,测量指向精度:5) Observe the imaging position of the star point image reflected by the reflector at different angles through the screen of the PC, and measure the pointing accuracy:
如果PC机屏幕上成的像为一个星点像,则阵列角反射器所有的角反射器的指向一致;If the image formed on the PC screen is a star point image, all the corner reflectors of the array corner reflectors point to the same direction;
如果PC机屏幕上成的像为多个星点像,则阵列角反射器所有的角反射器的指向不一致。If the image formed on the PC screen is a multiple star point image, the pointing of all the corner reflectors of the array corner reflector is inconsistent.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510404024.8A CN105092212B (en) | 2015-07-10 | 2015-07-10 | Array corner reflector pointing accuracy measurement system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510404024.8A CN105092212B (en) | 2015-07-10 | 2015-07-10 | Array corner reflector pointing accuracy measurement system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105092212A true CN105092212A (en) | 2015-11-25 |
CN105092212B CN105092212B (en) | 2019-06-28 |
Family
ID=54573143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510404024.8A Active CN105092212B (en) | 2015-07-10 | 2015-07-10 | Array corner reflector pointing accuracy measurement system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105092212B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106442544A (en) * | 2016-10-18 | 2017-02-22 | 凌云光技术集团有限责任公司 | Panoramic imaging system |
CN108152013A (en) * | 2017-12-28 | 2018-06-12 | 西安应用光学研究所 | Electro-optical system pointing accuracy measuring device light path adjusting process |
CN109682398A (en) * | 2018-12-25 | 2019-04-26 | 中国科学院长春光学精密机械与物理研究所 | Tridimensional mapping camera complete machine elements of interior orientation calibrating method, apparatus and system |
CN118732270A (en) * | 2024-04-30 | 2024-10-01 | 北京灵犀微光科技有限公司 | A self-collimation adjustment system and method for near-eye display device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10111365A (en) * | 1996-10-04 | 1998-04-28 | Omron Corp | Reflection type photoelectric sensor |
JP2009229116A (en) * | 2008-03-19 | 2009-10-08 | Nikon Corp | Optical measuring apparatus |
CN101718534A (en) * | 2009-12-22 | 2010-06-02 | 中国科学院长春光学精密机械与物理研究所 | Parallelism detector for optical axis of multi-optical system |
CN103335819A (en) * | 2013-06-12 | 2013-10-02 | 中国科学院光电技术研究所 | Device and method for optical detection of high-precision pyramid prism |
CN104062097A (en) * | 2014-06-30 | 2014-09-24 | 中国科学院西安光学精密机械研究所 | Device and method for calibrating return light characteristic of corner reflector |
CN104748945A (en) * | 2015-03-27 | 2015-07-01 | 中国科学院西安光学精密机械研究所 | System and method for detecting optical axis pointing consistency of corner reflector or corner reflector array |
CN205192727U (en) * | 2015-07-10 | 2016-04-27 | 中国科学院西安光学精密机械研究所 | Array corner reflector pointing accuracy measurement system |
-
2015
- 2015-07-10 CN CN201510404024.8A patent/CN105092212B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10111365A (en) * | 1996-10-04 | 1998-04-28 | Omron Corp | Reflection type photoelectric sensor |
JP2009229116A (en) * | 2008-03-19 | 2009-10-08 | Nikon Corp | Optical measuring apparatus |
CN101718534A (en) * | 2009-12-22 | 2010-06-02 | 中国科学院长春光学精密机械与物理研究所 | Parallelism detector for optical axis of multi-optical system |
CN103335819A (en) * | 2013-06-12 | 2013-10-02 | 中国科学院光电技术研究所 | Device and method for optical detection of high-precision pyramid prism |
CN104062097A (en) * | 2014-06-30 | 2014-09-24 | 中国科学院西安光学精密机械研究所 | Device and method for calibrating return light characteristic of corner reflector |
CN104748945A (en) * | 2015-03-27 | 2015-07-01 | 中国科学院西安光学精密机械研究所 | System and method for detecting optical axis pointing consistency of corner reflector or corner reflector array |
CN205192727U (en) * | 2015-07-10 | 2016-04-27 | 中国科学院西安光学精密机械研究所 | Array corner reflector pointing accuracy measurement system |
Non-Patent Citations (2)
Title |
---|
王虎等: "光学系统星点实时测量系统", 《光学技术》 * |
董瑶海: "《航天器微振动 理论与实践》", 31 January 2015, 北京:中国宇航出版社 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106442544A (en) * | 2016-10-18 | 2017-02-22 | 凌云光技术集团有限责任公司 | Panoramic imaging system |
CN106442544B (en) * | 2016-10-18 | 2018-11-20 | 凌云光技术集团有限责任公司 | Omnidirectional imaging system |
CN108152013A (en) * | 2017-12-28 | 2018-06-12 | 西安应用光学研究所 | Electro-optical system pointing accuracy measuring device light path adjusting process |
CN109682398A (en) * | 2018-12-25 | 2019-04-26 | 中国科学院长春光学精密机械与物理研究所 | Tridimensional mapping camera complete machine elements of interior orientation calibrating method, apparatus and system |
CN109682398B (en) * | 2018-12-25 | 2022-07-08 | 中国科学院长春光学精密机械与物理研究所 | Method, device and system for calibrating azimuth elements in the whole stereo surveying and mapping camera |
CN118732270A (en) * | 2024-04-30 | 2024-10-01 | 北京灵犀微光科技有限公司 | A self-collimation adjustment system and method for near-eye display device |
Also Published As
Publication number | Publication date |
---|---|
CN105092212B (en) | 2019-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100451540C (en) | Device for detecting three-axle parallel of large photoelectric monitoring equipment using thermal target technology | |
CN101718534B (en) | Multi-optical system optical axis parallelism detector | |
CN110207588B (en) | A method for assembling and adjusting the optical vertex aiming device of a corner cube prism | |
CN109870294B (en) | A large-scale diameter expansion optical axis parallelism detection device | |
CN101408413A (en) | Device for detecting wide distance light beam parallelism | |
CN105783788B (en) | With a wide range of expanding and self-checking function multiaxis device for detecting parallelism | |
CN105092212B (en) | Array corner reflector pointing accuracy measurement system and method | |
CN103528539A (en) | Nonzero-digit interference system based on point source array | |
CN102393255A (en) | System and method capable of solving optical axis deflection problem in small-field-of-view lens wave aberration detection | |
CN110082071A (en) | A kind of measuring device and method of right-angle prism optical parallelism error | |
CN103615971B (en) | For detecting the optical interdferometer of cylindrical outer surface | |
CN115371965A (en) | Portable adjustable multi-optical-axis consistency detection device and detection method | |
CN107817095A (en) | A kind of high accuracy double optical axises and more plain shaft parallelism adjusting process in the same direction | |
CN104748945B (en) | System and method for detecting optical axis pointing consistency of corner reflector or corner reflector array | |
CN102175150B (en) | Infrared interference detection device with point aligning and detecting double probe | |
CN103134443B (en) | Large-caliber large-diameter-thickness ratio reflector surface shape auto-collimation detection device and method | |
CN1258072C (en) | A Method for Testing the Parallelism of the Optical Axis of the Refracting Light Tube | |
CN106767555B (en) | A kind of combination detection device and method that shafting shakes and beats | |
CN205192727U (en) | Array corner reflector pointing accuracy measurement system | |
CN109253867B (en) | Optical system focal length measuring system and method | |
CN111426449A (en) | Method for calibrating parallelism of optical axes of multiple autocollimators | |
CN103217066A (en) | Double-auto-collimation optical system checking and regulating tube | |
CN114199521B (en) | Optical lens parameter measurement device and method | |
CN101975562A (en) | Method for measuring surface flatness of light wave array surface or optical reflective surface | |
CN102003950A (en) | Device and method for measuring surface flatness of light wave array surface or optical reflecting surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230914 Address after: Room 403, Building 2, Changling Industrial Park, No. 901, West Section of Biyuan 1st Road, High tech Zone, Xi'an City, Shaanxi Province, 710065 Patentee after: Xi'an zhongkexi optical Photoelectric Technology Co.,Ltd. Address before: 710119, No. 17, information Avenue, new industrial park, hi tech Zone, Shaanxi, Xi'an Patentee before: XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS |