CN105073536B - 用于控制混合式马达推进装置中的能量等效因数的方法和装置 - Google Patents

用于控制混合式马达推进装置中的能量等效因数的方法和装置 Download PDF

Info

Publication number
CN105073536B
CN105073536B CN201380073564.1A CN201380073564A CN105073536B CN 105073536 B CN105073536 B CN 105073536B CN 201380073564 A CN201380073564 A CN 201380073564A CN 105073536 B CN105073536 B CN 105073536B
Authority
CN
China
Prior art keywords
energy
battery
target
soe
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380073564.1A
Other languages
English (en)
Other versions
CN105073536A (zh
Inventor
M·德贝尔
Y·沙马亚尔
G·科林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New H Power Transmission System Holdings Ltd
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of CN105073536A publication Critical patent/CN105073536A/zh
Application granted granted Critical
Publication of CN105073536B publication Critical patent/CN105073536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/001Proportional integral [PI] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

用于对表示热成因能量的给送与电气成因能量的给送之间所应用的加权的一个(多个)等效能量因数加以确定以便在一个运行点最小化包括一个热力发动机和由一个电池提供动力的至少一个电动马达的机动车辆的混合式马达推进装置的总耗能量的方法,其特征在于,此因数是根据电池的瞬时能量状态(soek)并且根据目标能量(soe目标)以及根据车辆的运行状况以一种离散方式来控制的。

Description

用于控制混合式马达推进装置中的能量等效因数的方法和 装置
技术领域
本发明涉及对机动车辆的混合式马达推进装置中的能量通量分布的管理。
更确切地,本发明涉及对表示热成因能量的给送与电气成因能量的给送之间所应用的权重的能量等效因数的确定,以便在一个运行点最小化包括一个热力发动机和由电池提供动力的至少一个电动马达的类型的机动车辆的混合式马达推进装置的总耗能量。
背景技术
带有混合式推进或牵引装置的机动车辆的马达推进装置包括一个热力发动机和由车载安装在该车辆上的至少一个电池提供动力的一个或多个电动机器。
用于控制混合式马达推进装置的系统已经被设计成用于基于运行状况管理不同马达的运行和同步以便限制燃料消耗量并且使得污染颗粒的排放最小化。参照了对热能通量和电能通量的管理来从优化热能通量与电能通量之间的动力分布视角具体指定在控制系统中实施的控制策略。为了选择最佳运行点而实施的原理是由通过对电气成因能量加权一个加权因数或等效因数来最小化耗热量的总和与耗电量的总和构成的。
这一因数对电能和热能加权,即,它给出了对储存在电池中的电能再次充入某一量所需的燃料量,或者相反地给出了通过使用源自电池的某一量的能量而能够节省的燃料量。从而使得能量管理策略在旅行期间是最佳的,有必要使得这一等效因数针对给定的运行状况是独特且不变的。这一因数取决于许多参数,如持续时间、旅行的公里长度、所遇到的海拔轮廓线、驾驶模式、环境状况(城镇、市郊地带、高速公路等等)等。
出版物FR 2 935 123披露了一种用于控制混合式马达推进装置的系统和方法,该推进装置装备有一个用于确定最佳运行模式的模块和一个用于确定在最佳运行模式下该或这些马达的运行点的模块。该系统包括一个加权装置,该加权装置能够影响电能消耗量并且以与电池的电量状态成反比的方式使用可变加权系数,其目的是当电池放电时增加加权值并且当电池充电时减小所述值。
根据本方法,等效因数或加权因数是线性地取决于电池的电量状态的。当电池是空的时,该因数是高的,这趋于对电池再充电,并且当电池是满的时,该因数是低的,这对电池进行放电。这种类型的控制的主要优点是确保了将电池维持在可用极限内,即,在电池的电量状态或“SOC”的0%与100%之间。然而,本方法的缺点如下:
-难于基于环境或驾驶员来修改等效因数,
-低估了电池的总能量使用范围,并且
-没有考虑其他环境因素,如运行状况。
出版物DE 1 032 3722还披露了基于某些运行状况来改变此等效值。然而,所描述的方法并不使其能够考虑道路的坡度或驾驶员的驾驶风格,也不使其能够使用电池的整个能量范围。
发明内容
本发明提供了一种确保对等效因数加以最优控制的控制方法和装置,其目的是考虑所有影响因素,尽可能接近地得出最优解决方案。
以此目标本发明提出了基于电池的瞬时能量状态以及取决于车辆运行状况和/或关于运行状况的预测的目标能量以离散方式控制等效因数。
所提出的装置具体地包括对于表示电池的瞬时能量状态与目标能量状态之间的差值的项的积分器。
附图说明
通过阅读对本发明的非限制性实施例的、通过参考附图给出的以下说明,本发明的进一步特征和优点将变得清楚明了,在附图中单张图示示意性地示出了所实施的装置。
具体实施方式
在这一装置中,第一比较器C1作为输入值接收电池在时刻K的能量状态soek和目标能量状态值soe目标。差(soe目标-soek)乘以校正增益Kp。第二比较器C2对结果[Kp(soe目标-soek)]与积分类型的校正项进行求和,这确保了基于所遇到的运行状况对等效因数的校正。饱和器S使得这个和饱和,这确保了该等效因数将保持在控制极限内。最小饱和度(satmin-1/η)与最大饱和度(satmax-1/η)极限确保了强行充电和放电模式受到控制。
最大饱和度satmax是确保对马达推进组加以控制从而使得电池的能量被充电到最大程度的最大等效值。饱和度satmin是确保对马达推进组加以控制从而使得电池被放电到最大值的最小程度的等效因数。积分器I在比较器C3的帮助下对该饱和器S的输出与其自己的积分值乘以一个校正增益Ki后的结果之间的差值求积分。通过对这个差值求积分,当系统饱和时,积分器就不会失去控制。本方法以名称“抗积分饱和”或防超调(anti-racing)或去饱和器而为人所知。在比较器C4的帮助下,饱和器的输出与“前馈”或预定位项类型的项1/η相加。此“前馈”或预定位项使得能够基于所遇到的和/或所预测的运行情况直接适配等效因数。
总之,所提出的装置包括的环路积分器具有一个表示电池的瞬时能量状态与电池的目标能量状态之间的差值的项、组合有与抗积分饱和装置。它还包括一个比例补偿项。
用这一装置实施的控制还具有一个前馈项。该等效因数是根据以下方程以离散方式控制的:
Sk+1=1/ηc+Kp(soe目标-soek+1)+Kp Ki(soe目标-soek)
在这个方程中,soe目标是有待达到的目标能量状态,并且soek是电池在时刻k时的能量状态。Kp和Ki对应地是比例和积分校正增益;ηc是电能到热能的平均转化产率。平均转化产率ηc因此可以是基于对可预见的运行状况的先验了解或基于对之前的运行状况的分析来计算出的,以便永久地适配这些情况。积分校正提供了对能量等效假设的先验校正。
如果(例如)识别出“处于拥堵”的运行类型,则有可能为转化产率ηc提供适合于拥堵情况的值并且获得与在高速公路上时的等效因数本质上不同的等效因数。
此外,所希望的目标能量soe目标是可以基于运行状况来限定的。如果车辆具有导航系统,则有可能使用由此提供的信息来优化目标。
最后,当等效值饱和,即,等效因数s达到极限值,从而无论如何都会迫使电池充电或放电时,该等效因数s不会超过可接受的(下或上)极限,因为抗积分饱和避免了积分项的任何不合时宜的失控。
总之,本发明使得能够:
-更合适地使用电池中所包含的能量并且从其中汲取所有可能的益处来减少消耗,
-将环境和驾驶员考虑在内,
-在信息是通过导航系统提供的情况下将海拔轮廓线考虑在内,并且
-与基于电池的电量状态相比更多地基于电池的“能量状态”来管理能量通量,就消耗量而言,这更加有利。

Claims (6)

1.一种用于确定能量等效因数的方法,所述能量等效因数表示热成因能量的给送与电气成因能量的给送之间所应用的加权,确定所述能量等效因数以便在一个运行点最小化包括一个热力发动机和由一个电池提供动力的至少一个电动马达的机动车辆的混合式马达推进装置的总耗能量,其特征在于,此能量等效因数是基于该电池的瞬时能量状态(soek)并且基于目标能量状态(soe目标)以及基于该车辆的运行状况以一种离散方式控制的,该能量等效因数具有与该电池的能量状态的估计值相关的一个积分项,该积分项取决于该电池的目标能量状态与瞬时能量状态之间的差值(soe目标-soek)。
2.如权利要求1所述的用于确定能量等效因数的方法,其特征在于,该目标能量状态(soe目标)取决于与该车辆的运行状况相关的预测。
3.如权利要求1所述的用于确定能量等效因数的方法,其特征在于,此积分项的计算是通过与该电池的电量状态相关的积分比例计算来循环的。
4.如权利要求1至3中任一项所述的用于确定能量等效因数的方法,其特征在于,该积分项是通过一个抗积分饱和因数来循环的。
5.如权利要求1至3中任一项所述的用于确定能量等效因数的方法,其特征在于,该能量等效因数被预先补偿了取决于电能到机械能的转化产率(ηc)的一个项。
6.一种用于确定能量等效因数的装置,其特征在于,该装置包括:第一比较器(C1)、第二比较器(C2)、饱和器、第三比较器(C3)和积分器(I),
其中,所述第一比较器(C1)接收作为输入值的电池的瞬时能量状态(soek)和目标能量状态值(soe目标);
第二比较器(C2)将该电池的目标能量状态与瞬时能量状态之间的差值(soe目标-soek)乘以第一校正增益(Kp)的结果加上与该电池的能量状态的估计值相关的一个积分项,这确保了基于车辆的运行状况对所述能量等效因数的校正;
所述饱和器使所述第二比较器(C2)的输出在最小饱和极限(satmin-1/η)与最大饱和极限(satmax-1/η)之间饱和,从而确保了对强制充电和放电模式的控制;
所述积分器(I)在所述第三比较器(C3)的帮助下对所述饱和器的输出与其自己的积分值乘以第二校正增益(Ki)后的结果之间的差值求积分。
CN201380073564.1A 2013-03-29 2013-03-29 用于控制混合式马达推进装置中的能量等效因数的方法和装置 Active CN105073536B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2013/050708 WO2014154951A1 (fr) 2013-03-29 2013-03-29 Procede et dispositif de commande d'un facteur d'equivalence energetique dans un groupe motopropulseur hybride

Publications (2)

Publication Number Publication Date
CN105073536A CN105073536A (zh) 2015-11-18
CN105073536B true CN105073536B (zh) 2018-10-12

Family

ID=48289443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380073564.1A Active CN105073536B (zh) 2013-03-29 2013-03-29 用于控制混合式马达推进装置中的能量等效因数的方法和装置

Country Status (6)

Country Link
US (1) US9796370B2 (zh)
EP (1) EP2978647B1 (zh)
JP (1) JP6505077B2 (zh)
KR (1) KR102028064B1 (zh)
CN (1) CN105073536B (zh)
WO (1) WO2014154951A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038081B1 (fr) * 2015-06-25 2018-05-18 Renault S.A.S Procede de commande d'un facteur d'equivalence energetique pour un vehicule automobile hybride.
JP6347235B2 (ja) * 2015-07-30 2018-06-27 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN109507599A (zh) * 2017-09-12 2019-03-22 北京奔驰汽车有限公司 一种动力电池soe的优化算法
KR102056212B1 (ko) * 2018-12-19 2020-01-23 한양대학교 산학협력단 전장 부하를 고려한 하이브리드 차량의 등가 인자 산출 방법
KR102508409B1 (ko) 2021-01-25 2023-03-13 한국과학기술원 하이브리드 차량의 주행환경을 고려한 동력제어 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759370A2 (en) * 1995-07-24 1997-02-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehiclee control with selection of drive mode according to energy conversion efficiency in electric drive
CN101219664A (zh) * 2008-01-08 2008-07-16 清华大学 一种燃料电池混合动力能量控制方法
CN101391608A (zh) * 2007-09-19 2009-03-25 通用汽车环球科技运作公司 用于管理到机电变速器的转矩输入的方法和设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU35736A1 (zh) 1957-01-28
JP2001195102A (ja) * 2000-01-13 2001-07-19 Seiko Seiki Co Ltd 可変飽和機能を有する制御装置
JP3624839B2 (ja) * 2000-02-07 2005-03-02 日産自動車株式会社 ハイブリッド車両の制御装置
JP3832237B2 (ja) * 2000-09-22 2006-10-11 日産自動車株式会社 ハイブリッド車の制御装置
US6687581B2 (en) * 2001-02-07 2004-02-03 Nissan Motor Co., Ltd. Control device and control method for hybrid vehicle
JP4089325B2 (ja) * 2002-07-17 2008-05-28 アイシン・エィ・ダブリュ株式会社 ハイブリッド車両制御システム
JP3786082B2 (ja) 2002-11-13 2006-06-14 日産自動車株式会社 ハイブリッド車両の制御装置
JP3912362B2 (ja) * 2003-10-30 2007-05-09 日産自動車株式会社 ハイブリッド車両の制御装置
JP2008215112A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd ディーゼルエンジンシステム及びその制御方法
JP4793335B2 (ja) * 2007-06-20 2011-10-12 株式会社デンソー 充放電管理装置および充放電管理装置用のプログラム
KR100992755B1 (ko) * 2007-12-13 2010-11-05 기아자동차주식회사 하이브리드 차량의 soc별 최적 운전점 결정 방법
FR2935123B1 (fr) 2008-08-20 2010-08-27 Renault Sas Systeme de commande d'un groupe motopropulseur hybride pour vehicule automobile, et procede associe
JP4596073B2 (ja) * 2009-01-13 2010-12-08 株式会社デンソー 動力発生源制御装置
JP5332907B2 (ja) * 2009-05-27 2013-11-06 日産自動車株式会社 電動車両のバッテリ充電制御装置
US8825243B2 (en) 2009-09-16 2014-09-02 GM Global Technology Operations LLC Predictive energy management control scheme for a vehicle including a hybrid powertrain system
JP5277198B2 (ja) * 2010-04-01 2013-08-28 日立オートモティブシステムズ株式会社 ハイブリッド車両制御装置
JP5665400B2 (ja) * 2010-07-21 2015-02-04 学校法人慶應義塾 車両用制御装置
JP5603942B2 (ja) * 2010-08-03 2014-10-08 本田技研工業株式会社 車両用プログラム書換えシステム
CN103402809B (zh) * 2011-01-13 2016-11-09 卡明斯公司 用于控制混合动力传动系中的功率输出分布的系统、方法和装置
CN103747993A (zh) * 2011-09-05 2014-04-23 本田技研工业株式会社 混合动力车辆的控制装置和控制方法
US20130073113A1 (en) * 2011-09-16 2013-03-21 Ford Global Technologies, Llc Vehicle and method for estimating a range for the vehicle
JP2013071551A (ja) * 2011-09-27 2013-04-22 Aisin Seiki Co Ltd ハイブリッド車両の制御装置
FR2988674B1 (fr) * 2012-03-28 2015-04-10 Renault Sa Procede et dispositif de commande d'un facteur d'equivalence energetique dans un groupe motopropulseur hybride
US8938327B2 (en) * 2012-05-04 2015-01-20 Ford Global Technologies, Llc Methods and systems for transitioning between driveline braking modes
FR2992618B1 (fr) * 2012-06-27 2015-10-30 Renault Sas Procede de gestion de l'energie sur un vehicule hybride
US9695760B2 (en) * 2014-03-31 2017-07-04 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving energy efficiency of a vehicle based on known route segments
US9605606B2 (en) * 2014-03-31 2017-03-28 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving energy efficiency of a vehicle based on determined relationships between a plurality of routes
US9815373B2 (en) * 2015-02-23 2017-11-14 Ford Global Technologies, Llc Battery state of charge target based on predicted regenerative energy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759370A2 (en) * 1995-07-24 1997-02-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehiclee control with selection of drive mode according to energy conversion efficiency in electric drive
CN101391608A (zh) * 2007-09-19 2009-03-25 通用汽车环球科技运作公司 用于管理到机电变速器的转矩输入的方法和设备
CN101219664A (zh) * 2008-01-08 2008-07-16 清华大学 一种燃料电池混合动力能量控制方法

Also Published As

Publication number Publication date
KR20150139507A (ko) 2015-12-11
KR102028064B1 (ko) 2019-10-02
EP2978647B1 (fr) 2019-02-27
WO2014154951A1 (fr) 2014-10-02
JP6505077B2 (ja) 2019-04-24
EP2978647A1 (fr) 2016-02-03
US9796370B2 (en) 2017-10-24
US20160052507A1 (en) 2016-02-25
JP2016516629A (ja) 2016-06-09
CN105073536A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN105073536B (zh) 用于控制混合式马达推进装置中的能量等效因数的方法和装置
US10675983B2 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
CN105612081B (zh) 用于车辆的蓄电系统
US9751424B2 (en) Method and system for determining a target state of charge to charge a battery in a vehicle using external electric power
JP2014019433A5 (zh)
KR102032214B1 (ko) 하이브리드 차량 내의 에너지 관리를 위한 방법
CN103192833A (zh) 混合动力电动车辆
KR20150133539A (ko) 차량의 회생제동 제어 방법 및 장치
CN102150320A (zh) 电池系统以及电池系统搭载车辆
CN108263222A (zh) 确定电动汽车电池包更换的效用的方法和装置
CN102753415B (zh) 用于运行具有发动机和发电机的车辆的方法
CN104102812A (zh) 一种纯电动汽车剩余行驶里程的计算方法
JP2009071986A (ja) 車載バッテリの劣化度演算装置
AU2011277322A1 (en) Method and device for designing a current supply and collection device for a transportation system using an electric vehicle
US20150091526A1 (en) Battery charge control apparatus
CN107532528A (zh) 交流发电机的控制单元、交流发电机的驱动控制方法、以及发动机车辆的电源管理系统
CN104442798A (zh) 混合动力汽车在串联工作模式下的串联发电控制方法
Marano et al. Comparative study of different control strategies for plug-in hybrid electric vehicles
Li et al. In-wheel motor electric ground vehicle energy management strategy for maximizing the travel distance
GB2561409A (en) Methods and systems for managing range of a vehicle
CN103863137A (zh) 基于最长电池寿命考虑的增程式电动汽车控制方法
WO2013115365A1 (ja) 充放電制御装置、充電制御方法、放電制御方法、及びプログラム
KR101382953B1 (ko) 하이브리드 차량의 배터리 충방전량 제어방법
Sayahan et al. An intelligent alternator control approach for fuel consumption reduction
Singh et al. An implementation perspective of hybrid electric vehicle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240313

Address after: Valladolid, Spain

Patentee after: New H Power Transmission System Holdings Ltd.

Country or region after: Spain

Address before: Bologna-Biyangu, France

Patentee before: RENAULT S.A.S.

Country or region before: France