CN105063449B - 聚晶金刚石复合片、其制造方法和各种应用 - Google Patents

聚晶金刚石复合片、其制造方法和各种应用 Download PDF

Info

Publication number
CN105063449B
CN105063449B CN201510507019.XA CN201510507019A CN105063449B CN 105063449 B CN105063449 B CN 105063449B CN 201510507019 A CN201510507019 A CN 201510507019A CN 105063449 B CN105063449 B CN 105063449B
Authority
CN
China
Prior art keywords
diamond
pcd
composite polycrystal
substrate
pdc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510507019.XA
Other languages
English (en)
Other versions
CN105063449A (zh
Inventor
K·E·贝尔塔尼奥利
D·P·米斯
钱江
J·K·威金斯
M·A·韦尔
D·穆霍帕德海艾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Synthetic Corp
Original Assignee
US Synthetic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43589480&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105063449(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by US Synthetic Corp filed Critical US Synthetic Corp
Publication of CN105063449A publication Critical patent/CN105063449A/zh
Application granted granted Critical
Publication of CN105063449B publication Critical patent/CN105063449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
    • E21B10/55Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/573Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts characterised by support details, e.g. the substrate construction or the interface between the substrate and the cutting element
    • E21B10/5735Interface between the substrate and the cutting element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/26Brasses; Bushes; Linings made from wire coils; made from a number of discs, rings, rods, or other members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2352/00Apparatus for drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/24996With internal element bridging layers, nonplanar interface between layers, or intermediate layer of commingled adjacent foam layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Earth Drilling (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明涉及聚晶金刚石复合片、其制造方法和各种应用。本发明的实施方案涉及表现出增强的金刚石与金刚石接合的聚晶金刚石(“PCD”)。在一种实施方案中,聚晶金刚石复合片(“PDC”)包括具有最大厚度的PCD台。所述PCD台的至少一部分包括多个金刚石晶粒,这些金刚石晶粒限定出多个间隙区域。金属溶剂催化剂占据所述多个间隙区域的至少一部分。所述多个金刚石晶粒和金属溶剂催化剂共同表现出约115奥斯特(“Oe”)以上的矫顽力和约15高斯·cm3/克(“G·cm3/g”)以下的比磁饱和。该PDC包括接合至PCD台的具有界面表面的基底。该界面表面表现出基本上平坦的形貌。其它实施方案针对于形成PCD和PDC的方法,以及此类PCD和PDC在旋转钻头、轴承装置和拉丝模具中的各种应用。

Description

聚晶金刚石复合片、其制造方法和各种应用
相关申请的交叉引用
本专利申请是优先权日为2010年1月21日、发明名称为“聚晶金刚石复合片、其制造方法和各种应用”的中国发明专利申请第201080061915.3号(国际专利申请号为PCT/US2010/059619)的分案申请。
本申请要求在2010年1月21日提交的美国专利申请No.12/690,998的优先权,通过引用将其整体并入本文。
技术领域
本发明涉及聚晶金刚石复合片领域。
背景技术
耐磨的超硬磨料复合片被用于各种机械应用中。例如,聚晶金刚石复合片(“PDC”)(polycrystalline diamond compact)被用于钻具(例如,切削元件、修孔器等)、机加工设备、轴承装置、拉丝机具和其它的机械装置中。
PDC已得到特殊应用,作为在旋转钻头(如牙轮钻头和固定切削刃钻头)中的超硬磨料切削元件。PDC切削元件通常包括常被称为金刚石台的超硬磨料金刚石层。可使用高压、高温(“HPHT”)工艺形成金刚石台并将其与基底接合。PDC切削元件也可被直接钎焊到在旋转钻头的钻头本体内形成的预制的凹部、槽口或其它容座中。基底常常可被钎焊或以另外方式连接到附加部件,例如柱型背衬。旋转钻头通常包括固定于钻头本体上的若干PDC切削元件。还可使用承载PDC的栓钉作为PDC切削元件,这时通过压力配合、钎焊或其它的方式将栓钉(stud)固定于在钻头本体中形成的容座内来将其安装到旋转钻头的钻头本体上。
一般通过如下方式来制造常规的PDC:将烧结碳化物基底放入具有大量金刚石颗粒的容器内,所述金刚石颗粒被置于所述烧结碳化物基底邻近。可以将若干这种容器(cartridge)装载到HPHT压机中。然后在HPHT条件下在催化剂材料的存在下处理所述基底和所述大量金刚石颗粒,所述催化剂材料引起金刚石颗粒相互接合从而形成接合的金刚石晶粒的基质,其限定出与基底接合的聚晶金刚石(“PCD”)台。催化剂材料通常是被用于促进金刚石颗粒的交互生长的金属溶剂催化剂(例如,钴、镍、铁、或其合金)。例如,在HPHT过程期间,烧结碳化物基底的组分(例如来自钴烧结的碳化钨基底的钴)液化并从所述大量金刚石颗粒邻近的区域扫掠(sweep)到金刚石颗粒之间的间隙区域中。钴充当催化剂从而促进金刚石颗粒之间的交互生长,这导致形成接合的金刚石晶粒。
由于PCD台和烧结碳化物基底之间的不同热膨胀系数和弹性模量,可能在PCD台和烧结碳化物基底的不同区域内形成变化幅度的残余应力。这样的残余应力可在冷却以及从HPHT过程释放压力之后保留在PCD台和烧结碳化物基底中。这些复杂应力可集中在PCD台/基底界面附近。在PCD台和烧结碳化物基底之间的界面处的残余应力可导致在冷却时或在随后于热应力和外加力下使用期间PDC的过早失效。
为了帮助减少PCD台从烧结碳化物基底的分离(de-bonding),一些PDC设计者已使得接合至PCD台的烧结碳化物基底的界面表面非常不平坦。例如,已建议和/或使用各种非平坦的基底界面表面,诸如多个间隔的突起物、蜂窝型突起物图案和各种其它构造。
发明内容
本发明的实施方案涉及表现出增强的金刚石与金刚石接合的PCD。在一种实施方案中,PCD包括多个金刚石晶粒,所述多个金刚石晶粒限定出多个间隙区域。金属溶剂催化剂占据所述多个间隙区域的至少一部分。所述多个金刚石晶粒和金属溶剂催化剂共同可表现出约115奥斯特(Oe)以上的矫顽力和约15高斯·cm3/克(“G·cm3/g”)以下的比磁饱和。
在一种实施方案中,PCD包括多个金刚石晶粒,所述多个金刚石晶粒限定出多个间隙区域。金属溶剂催化剂占据所述多个间隙区域。所述多个金刚石晶粒和金属溶剂催化剂共同可表现出约15G·cm3/g以下的比磁饱和。所述多个金刚石晶粒和金属溶剂催化剂限定出至少约0.050cm3的体积。
在一种实施方案中,制造PCD的方法包括:将表现出约30微米以下的平均颗粒尺寸的多个金刚石颗粒和金属溶剂催化剂包封在压力传递介质中,以便形成单元组件。该方法进一步包括使该单元组件经受至少约1000℃的温度和至少约7.5GPa的压力传递介质中的压力,以便形成PCD。
在一种实施方案中,PDC包括接合至基底的PCD台。该PCD台的至少一部分可包括本文所公开的任何PCD实施方案。在一种实施方案中,基底包括界面表面,该界面表面接合至聚晶金刚石台并且表现出基本上平坦的形貌。根据一种实施方案,该界面表面可包括多个突起物,并且不存在所述多个突起物时的界面表面的表面积与具有所述多个突起物的界面表面的表面积的比率是大于约0.600。
在一种实施方案中,制造PDC的方法包括将组合体包封在压力传递介质中以形成单元组件。该组合体包括位于基底至少邻近处的多个金刚石颗粒,所述金刚石颗粒表现出约30微米以下的平均颗粒尺寸,所述基底具有基本上平坦的界面表面。该方法还包括使所述单元组件经受至少约1000℃的温度和至少约7.5GPa的在压力传递介质中的压力,从而形成与基底邻近的PCD台。
另外的实施方案涉及在各种制品和装置中利用所公开的PCD和PDC的应用,例如旋转钻头,轴承装置、拉丝模具、机加工设备和其它制品和装置。
来自任一所公开实施方案中的特征可以不受限制地相互组合使用。另外,通过考虑下面的详细描述和附图,本公开的其它特征和优点对于本领域技术人员来说将是清楚的。
附图说明
附图显示出本发明的若干实施方案,其中,在不同的视图或附图所示的实施方案中,相同的附图标记指代相同的要素或特征。
图1A是配置用以磁化PCD样品大致达到饱和的磁饱和装置的实例的示意图。
图1B是配置用以测量PCD样品的饱和磁化强度的磁饱和测量装置的实例的示意图。
图2是配置用以确定PCD样品的矫顽力的矫顽力测量装置的实例的示意图。
图3A是包括由本文公开的任意PCD实施方案形成的PCD台的PDC的实施方案的截面视图。
图3B是根据一种实施方案制造如图3A所示PDC的方法的示意图解。
图3C是残余主应力相对于基底厚度的坐标图,在以高于约7.5GPa压力制造的PDC的PCD台和常规形成的PDC的PCD台中测得。
图4A是包含具有界面表面的PDC的分解等距视图,所述界面表面表现出根据一种实施方案的选定的基本上平坦的形貌。
图4B是图4A中所示PDC沿4B-4B线截取的组装截面视图。
图5A是包含具有界面表面的PDC的截面视图,所述界面表面表现出根据另一实施方案的选定的基本上平坦的形貌。
图5B是图5A中所示基底的等距视图。
图6A是可使用所公开的一种或多种PDC实施方案的旋转钻头的一种实施方案的等距视图。
图6B是图6A中所示旋转钻头的顶部正视图。
图7是可使用所公开的一种或多种PDC实施方案的止推轴承(thrust-bearing)装置的一种实施方案的等距剖视图。
图8是可使用所公开的一种或多种PDC实施方案的径向轴承(radial bearing)装置的一种实施方案的等距剖视图。
图9是包括图7中所示止推轴承装置的地下钻掘系统的一种实施方案的示意性等距剖视图。
图10是使用依照本文所述原理制造的PDC的拉丝模具的一种实施方案的侧部截面图。
具体实施方式
本发明的实施方案涉及表现出增强的金刚石与金刚石接合的PCD。发明人目前认为,由于在用于制造此类PCD的HPHT过程期间使用的烧结压力从石墨-金刚石平衡线离开进一步移动到金刚石稳定区域中,因此金刚石成核和生长的速率增加。金刚石颗粒之间(对于给定的金刚石颗粒配制物)的这种增加的金刚石成核和生长可导致形成的PCD表现出一种或多种下列性质:相对较低的金属溶剂催化剂含量、较高的矫顽力、较低的比磁饱和、或较低的比磁导率(即比磁饱和与矫顽力的比率),相比于在较低烧结压力下形成的PCD而言。实施方案还涉及具有含此类PCD的PCD台的PDC,制造此类PCD和PDC的方法,和此类PCD和PDC在旋转钻头、轴承装置、拉丝模具、机加工装置和其它的制品和装置中的应用。
PCD实施方案
根据各种实施方案,在至少约7.5GPa压力下烧结的PCD可表现出115Oe以上的矫顽力、高度的金刚石与金刚石接合、约15G·cm3/g以下的比磁饱和、和约7.5重量%(wt%)以下的金属溶剂催化剂含量。该PCD包括通过金刚石与金刚石接合(例如,sp3接合)而直接接合在一起的多个金刚石晶粒,从而限定出多个间隙区域。至少一部分间隙区域或者在一些实施方案中基本上全部间隙区域可被金属溶剂催化剂所占据,例如铁、镍、钴、或任何前述金属的合金。例如,该金属溶剂催化剂可以是包括至少50重量%钴的钴基材料,例如钴合金。
金刚石晶粒可表现出约50微米以下的平均晶粒尺寸,例如约30微米以下或约20微米以下。例如,金刚石晶粒的平均晶粒尺寸可为约10微米至约18微米,并且在一些实施方案中为约15微米至约18微米。在一些实施方案中,金刚石晶粒的平均晶粒尺寸可为约10微米以下,例如约2微米至5微米或为亚微米。金刚石晶粒的金刚石晶粒尺寸分布可表现出单一模式,或者可以为双模式以上的晶粒尺寸分布。
占据间隙区域的金属溶剂催化剂在PCD中的存在量可为约7.5wt%以下。在一些实施方案中,金属溶剂催化剂在PCD中的存在量可以为约3wt%至约7.5wt%,例如约3wt%至约6wt%。在其它实施方案中,金属溶剂催化剂在PCD中的存在含量可小于约3wt%,例如约1wt%至约3wt%,或残余量至约1wt%。通过将金属溶剂催化剂含量维持在低于约7.5wt%,该PCD可表现出适用于地下钻掘应用的期望的热稳定性水平。
可通过测量PCD的某些磁性能来确定PCD的许多物理特性,因为金属溶剂催化剂可以是铁磁性的。PCD中的金属溶剂催化剂存在量可与测得的PCD比磁饱和相关联。相对较大的比磁饱和表明PCD中存在相对较多的金属溶剂催化剂。
PCD的相邻金刚石晶粒之间的平均自由程可与测得的PCD矫顽力相关联。相对大的矫顽力表明相对较小的平均自由程。该平均自由程代表了PCD的相邻金刚石晶粒之间的平均距离,且因此可指示PCD中金刚石与金刚石接合的程度。良好烧结的PCD中,相对较小的平均自由程可表示相对较多的金刚石与金刚石接合。
仅仅作为一个例子,ASTM B886-03(2008)提供了用于测量比磁饱和的适宜标准,并且ASTM B887-03(2008)e1提供了用于测量PCD矫顽力的适宜标准。尽管ASTM B886-03(2008)和ASTM B887-03(2008)e1两者均针对于测量烧结碳化物材料的磁性能的标准,然而可使用其中任一标准来确定PCD的磁性能。KOERZIMAT CS 1.096仪器(可商购自宾夕法尼亚州,匹兹堡的Foerster Instruments)是一种可用于测量PCD的比磁饱和以及矫顽力的适合仪器。
一般而言,当用于形成PCD的烧结压力增加时,矫顽力可增加并且磁饱和可降低。由接合的金刚石晶粒和金属溶剂催化剂共同限定的PCD可表现出约115Oe以上的矫顽力以及小于约7.5wt%的金属溶剂催化剂含量,如约15G·cm3/g以下的比磁饱和所指示。在更详细的实施方案中,该PCD的矫顽力可为约115Oe至约250Oe,且该PCD的比磁饱和可为大于0G·cm3/g至约15G·cm3/g。在更加详细的实施方案中,该PCD的矫顽力可为约115Oe至约175Oe,且该PCD的比磁饱和可为约5G·cm3/g至约15G·cm3/g。在又一更详细的实施方案中,该PCD的矫顽力可为约155Oe至约175Oe,且该PCD的比磁饱和可为约10G·cm3/g至约15G·cm3/g。PCD的比磁导率(即比磁饱和与矫顽力的比率)可为约0.10以下,例如约0.060至约0.090。尽管在一些实施方案中接合金刚石晶粒的平均晶粒尺寸小于约30微米,但是PCD中的金属溶剂催化剂含量可小于约7.5wt%,从而导致期望的热稳定性。
在一种实施方案中,将平均颗粒尺寸为约18微米至约20微米的金刚石颗粒放置到钴烧结碳化物基底的邻近,并且在约1390℃至约1430℃的温度和约7.8GPa至约8.5GPa的压力下进行HPHT过程。以接合到基底的PCD台形式如此形成的PCD可表现出约155Oe至约175Oe的矫顽力,约10G·cm3/g至约15G·cm3/g的比磁饱和,以及约5wt%至约7.5wt%的钴含量。
在一种或多种实施方案中,PCD中金属溶剂催化剂的比磁饱和常数可以为约185G·cm3/g至约215G·cm3/g。例如,PCD中金属溶剂催化剂的比磁饱和常数可以为约195G·cm3/g至约205G·cm3/g。应注意,PCD中金属溶剂催化剂的比磁饱和常数可以是组成相关的。
通常,当烧结压力增加到高于7.5GPa时,如此形成的PCD的耐磨性可增加。例如,G比率可为至少约4.0×106,例如约5.0×106至约15.0×106,或者更具体为约8.0×106至约15.0×106。在一些实施方案中,G比率可为至少约30.0×106。G比率是在切削过程期间切去的工件体积与磨损掉的PCD体积的比率。可用于确定PCD的G比率的适宜参数的例子是:约0.254mm的PCD切削元件的切割深度,约20度的PCD切削元件的后倾角,约6.35mm/rev的PCD切削元件的进给量,约101rpm的待切割工件的旋转速度,以及工件可由外直径914mm且内直径254mm的Barre花岗岩制成。在G比率测试期间,用冷却剂例如水来冷却工件。
除上述G比率之外,尽管在PCD中存在金属溶剂催化剂,但PCD可表现出接近于、基本上等同于、或大于部分沥滤(leached)PCD材料的热稳定性,所述部分沥滤PCD材料是通过在较低的烧结压力(例如至多约5.5GPa)下烧结基本上相似的金刚石颗粒配制物形成,并且从其中沥滤金属溶剂催化剂(例如钴)至距离其工作表面约60微米至约100微米的深度。可通过在立式车床试验(例如立式转塔车床或立式镗床)中在不使用冷却剂的情况下,测量在灾难性失效之前工件中的切削距离来评价PCD的热稳定性。可用于确定PCD热稳定性的适宜参数的例子是:约1.27mm的PCD切削元件的切割深度,约20度的PCD切削元件的后倾角,约1.524mm/rev的PCD切削元件的进给量,约1.78m/秒的待切割工件的切削速率,以及工件可由外直径914mm且内直径254mm的Barre花岗岩制成。在一种实施方案中,在上述立式车床试验中测得的灾难性失效之前工件中的切削距离可至少为约1300m,例如约1300m至约3950m。
通过如下方式形成的PCD可表现出约100Oe以下的矫顽力和/或约16G·cm3/g以上的的比磁饱和:烧结具有与本发明PCD实施方案相同的金刚石颗粒尺寸分布的金刚石颗粒,但是在例如至多约5.5GPa的压力以及金刚石稳定的温度下进行烧结。因此在本发明的一种或多种实施方案中,PCD表现出小于7.5wt%的金属溶剂催化剂含量,以及与在较低压力下烧结但却具有相同的前体金刚石颗粒尺寸分布和催化剂的PCD相比而言更大量的金刚石晶粒之间的金刚石与金刚石接合。
发明人目前认为,通过在至少约7.5GPa的压力下烧结金刚石颗粒形成PCD可促进被烧结的金刚石颗粒之间的金刚石成核与生长,使得如此形成的PCD的间隙区域的体积降低,相比于如果在例如至多约5.5GPa的压力和金刚石稳定的温度下烧结相同的金刚石颗粒分布的间隙区域的体积而言。例如,金刚石可从由下列提供的碳而成核和生长:浸渗到被烧结的金刚石颗粒中的金属溶剂催化剂(例如液化的钴)中的溶解碳、部分石墨化的金刚石颗粒、来自基底的碳、来自其它来源的碳(例如与金刚石颗粒混合的石墨颗粒和/或富勒烯),或者前述的组合。与至少约7.5GPa烧结压力结合的这种金刚石成核和生长可有助于使如此形成的PCD具有小于约7.5wt%的金属溶剂催化剂含量。
图1A、图1B和图2示意显示了可使用装置例如(KOERZIMAT CS 1.096仪器)来测定PCD的比磁饱和与矫顽力的方式。图1A是配置用以将PCD样品磁化至饱和的磁饱和装置100的实例的示意图。该磁饱和装置100包括具有的强度足以将PCD样品104磁化至饱和的饱和磁体102。该饱和磁体102可以是永磁体或电磁体。在所示实施方案中,饱和磁体102是限定出气隙106的永磁体,并且PCD样品104可位于气隙106内的样品支架108上。当PCD样品104重量轻时,可使用例如双面胶带或其它粘结剂将其固定到样品支架108,使得PCD样品104不会因受来自饱和磁体102的磁场影响而移动,并且PCD样品104被磁化至少大致达到饱和。
参照图1B的示意图,在使用磁饱和装置100将PCD样品104磁化至少大致达到饱和之后,可使用磁饱和测量装置120来测量PCD样品104的磁饱和。磁饱和测量装置120包括限定出通路的亥姆霍兹测量线圈122,该通路经尺寸调整使得磁化的PCD样品104可在其中定位于样品支架124上。一旦定位在通路中,支持磁化的PCD样品104的样品支架124可沿轴方向126轴向移动,从而在亥姆霍兹测量线圈122中引起电流。测量电子装置128与亥姆霍兹测量线圈122耦合并且经配置用以基于流过亥姆霍兹测量线圈122的实测电流来计算磁饱和。当已知PCD样品104中的金属溶剂催化剂的组成和磁特性时,例如对于铁、镍、钴、及其合金,测量电子装置128还可被配置用以测量PCD样品104中磁性材料的重量百分比。可基于PCD样品104的计算的磁饱和以及测量的重量来计算比磁饱和。
可使用许多不同的分析技术来测定PCD样品104中的金属溶剂催化剂的量。例如,可以使用能量色散谱(例如,EDAX)、波长分散X射线光谱(例如,WDX)、卢瑟福背散射谱、或它们的组合来确定PCD样品104中的金属溶剂催化剂的量。
如果需要,可使用迭代法来确定PCD样品104中的金属溶剂催化剂含量的具体磁饱和常数。可以反复选择PCD样品104中的金属溶剂催化剂的具体磁饱和常数的值,直到通过使用所选值通过市售的KOERZIMAT CS 1.096仪器的分析软件计算的金属溶剂催化剂含量基本上匹配通过一种或多种分析技术(例如能量色散谱、波长分散X射线光谱、或卢瑟福背散射谱)确定的金属溶剂催化剂含量。
图2是配置用以测定PCD样品的矫顽力的矫顽力测量装置200的示意图。该矫顽力测量装置200包括线圈202和测量电子装置204,该测量电子装置与线圈202耦合。配置所述测量电子装置204以便使电流通过线圈202,从而产生磁场。可将样品支架206放置在线圈202内,所述样品支架206上具有PCD样品208。可将磁化传感器210与测量电子装置204耦合并放置在PCD样品208的邻近,所述磁化传感器210被配置用以测量PCD样品208的磁化强度。
在测试期间,线圈202产生的磁场将PCD样品208磁化至少大致达到饱和。然后,测量电子装置204施加电流,使得线圈202产生的磁场逐渐反转。磁化传感器210测量该PCD样品208的由向PCD样品208施加该反向磁场而产生的磁化强度。测量电子装置204测定PCD样品208的矫顽力,该矫顽力是当PCD样品208的磁化强度为零时反向磁场的强度的测量值。
制造PCD方法的实施方案
可通过在金属溶剂催化剂的存在下烧结多个金刚石颗粒的物料来形成PCD。这些金刚石颗粒可表现出约50微米以下的平均颗粒尺寸,例如约30微米以下,约20微米以下,约10微米至约18微米,或者约15微米至约18微米。在一些实施方案中,金刚石颗粒的平均颗粒尺寸可为约10微米以下,例如约2微米至约5微米或为亚微米。
在一种实施方案中,金刚石颗粒物料的金刚石颗粒可包含相对较大的尺寸和至少一个相对较小的尺寸。本文中所使用的短语“相对较大”和“相对较小”指的是相差至少两倍的颗粒尺寸(例如,30微米和15微米)(通过任何适当的方法)。根据各种实施方案,金刚石颗粒物料可包括表现出相对较大尺寸(例如,30微米、20微米、15微米、12微米、10微米、8微米)的部分和表现至少一个相对较小尺寸(例如,6微米、5微米、4微米、3微米、2微米、1微米、0.5微米、小于0.5微米、0.1微米、小于0.1微米)的另一部分。在一种实施方案中,金刚石颗粒物料可包括表现约10微米至约40微米的相对较大尺寸的部分和表现约1微米至约4微米的相对较小尺寸的另一部分。在一些实施方案中,金刚石颗粒物料可包含三种或更多种不同的尺寸(例如,一个相对较大尺寸和两个以上的相对较小尺寸),但不限于此。
应注意的是,由于各种不同的物理过程、例如晶粒生长、金刚石颗粒碎裂、由其它碳源提供的碳(例如所述金属溶剂催化剂中的溶解碳)、或前述的组合,烧结态的金刚石晶粒尺寸不同于烧结之前的金刚石颗粒物料的平均颗粒尺寸。可以按如下形式提供金属溶剂催化剂(例如铁、镍、钴、或它们的合金):与金刚石颗粒混合的微粒形式、与金刚石颗粒物料邻近放置的薄箔或板、来自包括金属溶剂催化剂的烧结碳化物基底、或者前述的组合。
为了有效地烧结金刚石颗粒物料,可将所述物料包封在压力传递介质中,例如难熔金属罐、石墨结构、叶蜡石(pyrophyllite)、它们的组合、或形成单元组件的其它适宜的压力传递结构。美国专利US6,338,754和美国专利申请11/545,929中公开了适用于制造PCD的适宜密封材料和单元结构的例子,通过引用将它们分别整体并入本文。适宜的压力传递材料的另一实例是叶蜡石,其可商购自南非的Wonderstone Ltd.。包括压力传递介质和其中的金刚石颗粒物料的单元组件经受使用超高压力压机的HPHT过程,温度为至少约1000℃(例如,约1100℃至约2200℃,或者约1200℃至约1450℃),并且压力传递介质中的压力可以为至少约7.5GPa(例如,约7.5GPa至约15GPa、约9GPa至约12GPa、或约10GPa至约12.5GPa),持续足以在金属溶剂催化剂的存在下将金刚石颗粒烧结在一起并且形成PCD的时间,该PCD包含接合的金刚石晶粒,所述接合的金刚石晶粒限定出被金属溶剂催化剂占据的间隙区域。例如,在HPHT过程中使用的压力传递介质中的压力可为至少约8.0GPa、至少约9.0GPa、至少约10.0GPa、至少约11.0GPa、至少约12.0GPa、或至少约14GPa。
本文公开的在HPHT过程中使用的压力值是指室温下(例如约25℃)利用超高压力压机施加压力时压力传递介质中的压力,而并非施加到单元组件外部的压力。烧结温度下压力传递介质中的实际压力可稍微更高。可在室温下通过在压力传递介质中嵌入至少一种在已知压力下改变结构的校准材料来校准所述超高压力压机,所述校准材料例如为PbTe、铊、钡或铋。任选地,可跨所述至少一种校准材料测量因其相变引起的电阻变化。例如,PbTe在室温下在约6.0GPa下表现出相变,而铋在室温下在约7.7GPa下表现出相变。下述文献中公开了适宜的压力校准技术的实例:G.Rousse,S.Klotz,A.M.Saitta,J.Rodriguez-Carvajal,M.I.McMahon,B.Couzinet,and M.Mezouar,“Structure of the IntermediatePhase of PbTe at High Pressure,”Physical Review B:Condensed Matter andMaterials Physics,71,224116(2005)和D.L.Decker,W.A.Bassett,L.Merrill,H.T.Hall,and J.D.Barnett,“High-Pressure Calibration:A Critical Review,”J.Phys.Chem.Ref.Data,1,3(1972)。
在一种实施方案中,通过使用顶砧(anvil)向包封待烧结的金刚石颗粒物料的立方体高压单元组件施加压力,可在压力传递介质中产生至少约7.5GPa的压力,每个顶砧向立方体高压组件的不同面施加压力。在这样的实施方案中,可对所述顶砧的每个顶砧面的表面积进行选择性地尺寸调节,以利于向被烧结的金刚石颗粒物料施加至少约7.5GPa的压力。例如,每个顶砧的表面积可小于约16.0cm2,例如小于约16.0cm2,约8cm2至约10cm2。顶砧可由钴-烧结的碳化钨或具有足够的压缩强度的其它材料制成,以有助于在大批量商业制造环境中减少因反复使用对其造成的损伤。作为对每个顶砧面的表面积进行选择性尺寸调节的替代方案或者附加方案,可在立方体高压单元组件中嵌入两个以上的内顶砧以进一步增强压力。例如,通过引用将论文W.Utsumi,N.Toyama,S.Endo and F.E.Fujita,“X-raydiffraction under ultrahigh pressure generated with sintered diamond anvils,”J.Appl.Phys.,60,2201(1986)整体并入本文,该论文公开了可在立方体压力传递介质中嵌入烧结的金刚石顶砧用以增强超高压力压机对也嵌入该立方体压力传递介质中的工件施加的压力。
PDC实施方案和制造PDC的方法
参考图3A,PCD实施方案可应用于切削应用、轴承应用或许多其它应用中的PDC。图3A是PDC 300的一种实施方案的截面视图。PDC 300包括与PCD台304接合的基底302。PCD台304可由根据本文所公开的任意PCD实施方案的PCD形成。PCD台304具有至少一个工作表面306和至少一个横向尺寸“D”(例如,直径)。虽然图3A显示工作表面306基本上是平坦的,但是工作表面306可以是凹面、凸面或其它非平坦几何形状。此外,PCD台304的其它区域可以充当工作区,例如外围侧表面和/或边缘。基底302通常可以是圆柱体或其它选定的构造,但不限于此。虽然图3A显示基底302的界面表面308基本是平坦的,但是该界面表面308可以表现出选定的非平坦形态,例如带槽的、脊隆的或其它非平坦的界面表面。基底302可包括但不限于烧结碳化物,例如用铁、镍、钴、或其合金烧结的碳化钨、碳化钛、碳化铬、碳化铌、碳化钽、碳化钒或它们的组合。例如,在一种实施方案中,基底302包括钴-烧结碳化钨。
在一些实施方案中,PCD台304可包括两个以上的分层区域310和312,这些区域表现出不同的组成和/或不同的平均金刚石晶粒尺寸。例如,区域310位于基底302的界面表面308附近并且具有第一金刚石晶粒尺寸,而区域312远离基底302并且具有第二平均金刚石晶粒尺寸,所述第二平均金刚石晶粒尺寸小于所述第一平均金刚石晶粒尺寸。例如,所述第二平均金刚石晶粒尺寸可以是所述第一金刚石晶粒尺寸的约90%至约98%(例如约90至约95%)。在另一实施方案中,所述第二平均金刚石晶粒尺寸可大于所述第一平均金刚石晶粒尺寸。例如,所述第一平均金刚石晶粒尺寸可以是所述第二金刚石晶粒尺寸的约90%至约98%(例如约90至约95%)。
作为表现出不同金刚石晶粒尺寸的第一区域和第二区域的替代方案或附加方案,在一种实施方案中,区域310的组成可不同于区域312的组成。区域310可包括约15wt%以下的、散布于金刚石晶粒之间的含钨材料(例如钨和/或碳化钨)以便改善韧性,而区域312可基本上不含钨。例如,该含钨材料在区域310中的存在量可为约1wt%至约10wt%,约5wt%至约10wt%,或约10wt%。
图3B是用于制造图3A中所示PDC 300的方法的一种实施方案的示意图解。参考图3B,具有任意前述平均颗粒尺寸和分布(例如,约50微米以下的平均颗粒尺寸)的金刚石颗粒物料305被放置在基底302的界面表面308邻近。如前所述,基底302可包括金属溶剂催化剂。可利用上文针对本文公开的烧结PCD实施方案所述的任何条件对金刚石颗粒物料305和基底302进行HPHT过程。如此形成的PDC 300包括具有由本文所公开的任意PCD实施方案形成的PCD的PCD台304,与基底302整体形成并接合至基底302的界面表面308。如果基底302包括金属溶剂催化剂,则该金属溶剂催化剂可液化并浸渗金刚石颗粒物料305以促进金刚石颗粒物料305的相邻金刚石颗粒之间的生长,从而形成包含大量(a body of)接合的金刚石晶粒的PCD台304,其具有以填隙方式位于接合的金刚石晶粒之间的浸渗金属溶剂催化剂。例如,如果基底302为钴-烧结碳化钨基底,则来自基底302的钴可被液化并浸渗金刚石颗粒物料305以便催化PCD台304的形成。
在一些实施方案中,金刚石颗粒物料305可包括两个或更多个层,这些层表现出不同的组成和/或不同的平均金刚石颗粒尺寸。例如,第一层可位于基底302的界面表面308邻近并且具有第一金刚石颗粒尺寸,而第二层可位于远离基底302并且具有第二平均金刚石颗粒尺寸,所述第二平均金刚石颗粒尺寸小于所述第一平均金刚石颗粒尺寸。例如,所述第二平均金刚石颗粒尺寸可以是所述第一金刚石颗粒尺寸的约90%至约98%(例如约90至约95%)。在另一实施方案中,所述第二平均金刚石颗粒尺寸可大于所述第一平均金刚石颗粒尺寸。例如,所述第一平均金刚石颗粒尺寸可以是所述第二金刚石颗粒尺寸的约90%至约98%(例如约90至约95%)。
作为表现出不同金刚石颗粒尺寸的第一层和第二层的替代方案或附加方案,在一种实施方案中,第一层的组成可不同于第二层的组成。第一层可包括约15wt%以下的、与金刚石颗粒混合的含钨材料(例如钨和/或碳化钨),而第二层可基本上不含钨。例如,该含钨材料在第一层中的存在量可为约1wt%至约10wt%,约5wt%至约10wt%,或约10wt%。
在用于处理金刚石颗粒物料305和基底302的超高压力压机中采用选择性尺寸调节的顶砧面和/或内顶砧使得能够将PCD台304的至少一个横向尺寸d形成为约0.80cm以上。再次参考图3A,例如,所述至少一个横向尺寸“D”可为约0.80cm至约3.0cm,在一些实施方案中,为约1.3cm至约1.9cm或者为约1.6cm至约1.9cm。利用选择性尺寸调节的顶砧面和/或内顶砧形成的PCD台304(或本文公开的任何PCD制品)的代表性体积可为至少约0.050cm3。例如,该体积可为约0.25cm3到至少约1.25cm3,或者约0.1cm3到至少约0.70cm3。PDC300的代表性体积可为约0.4cm3到至少约4.6cm3,例如约1.1cm3到至少约2.3cm3
在其它实施方案中,可利用HPHT烧结工艺单独地形成根据一种实施方案的PCD台(即预烧结的PCD台),并随后利用独立的HPHT接合工艺或任何其它适宜的结合技术通过钎焊接合至基底302的界面表面308。在另一实施方案中,可通过经由化学气相沉积向单独形成的PCD台上沉积无粘结剂的碳化物(例如,碳化钨)来形成基底。
在本文公开的任意实施方案中,可从PCD台中去除(例如,经由沥滤)基本上全部或所选部分的金属溶剂催化剂。在一种实施方案中,PCD台中的金属溶剂催化剂可被去除至距离至少一个外部工作表面(例如,PCD台304的工作表面306和/或侧壁工作表面)的选定深度,使得仅部分间隙区域被金属溶剂催化剂占据。例如,可从PDC 300的PCD台304中去除基本上全部或选定部分的金属溶剂催化剂至距离工作表面306的选定深度。
在另一实施方案中,可根据所公开的任意实施方案在第一HPHT过程中制造PCD台,进行沥滤以便从接合的金刚石晶粒之间的间隙区域去除基本上全部的金属溶剂催化剂,以及随后在第二HPHT过程中接合至基底。在第二HPHT过程中,来自例如烧结碳化物基底的浸渗剂(infiltrant)可浸渗到其中耗尽金属溶剂催化剂的间隙区域中。例如,浸渗剂可以是从钴-烧结碳化钨基底中扫掠(swept-in)的钴。在一种实施方案中,所述第一和/或第二HPHT过程可在至少约7.5GPa的压力下进行。在一种实施方案中,在第二HPHT过程后,可利用第二酸沥滤过程从浸渗的PCD台中沥滤浸渗剂。
在一些实施方案中,用于制造PDC 300的HPHT过程中所用压力可足以减小在HPHT过程期间因基底302和PCD台304之间热膨胀失配所引起的在PCD台304中的残余应力。在这样的实施方案中,在PDC 300的工作表面306上测得的主应力可具有约-345MPa至约0MPa的值,例如约-289MPa。例如,在工作表面306上测得的主应力可具有约-345MPa至约0MPa的值。利用HPHT过程在低于约7.5GPa压力下制造的常规PDC可得到其PCD台,该PCD台在其工作表面上表现出约-1724MPa至约-414MPa的主应力,例如约-770MPa。
可在PDC 300的PCD台304的工作表面306上测量残余应力,如T.P.Lin,M.Hood,G.A.Cooper,和R.H.Smith,“Residual stresses in polycrystalline diamondcompacts,”J.Am.Ceram.Soc.77,6,1562-1568(1994)中所述。更具体而言,可利用与工作表面306结合的菊花形应变计来测量残余应变。可对基底302的不同去除水平(例如,从基底302的背面去除材料)测量这种应变。可由所测量的残余应变数据计算残余应力。
图3C是在根据本发明一种实施方案在高于约7.5GPa压力下制造的PDC的PCD台中和常规形成的PDC的PCD台中测量的残余主应力相对于基底厚度的坐标图。每个PDC的基底具有基本上平坦的界面表面。利用以上引用的Lin等人的论文中所描述的技术来测定残余主应力。曲线310示出在高于约7.5GPa压力下制造的PDC的工作表面上的测量的残余主应力。在高于约7.5GPa压力下制造的PDC具有约1mm的PCD台厚度尺寸,并且基底的厚度尺寸为约7mm且直径为约13mm。曲线312示出在低于约7.5GPa压力下常规制造的PDC的PCD台的工作表面上的实测残余主应力。在低于约7.5GPa压力下制造的PDC具有约1mm的PCD台厚度尺寸,并且基底的厚度尺寸为约7mm且直径为约13mm。在约7mm的全部基底长度上出现残余主应力的最高绝对值。如曲线310和312所示,将用于制造PDC的HPHT过程中采用的压力增加到高于约7.5GPa可将其PCD台中的残余主应力的最高绝对值相对于常规制造的PDC减少约60%。例如,在全部基底长度上,在高于约7.5GPa压力下制造的PCD台中的主残余应力的绝对值比常规制造的PDC的PCD台中的主残余应力的绝对值低约60%。
如上文关于图3C所述,在用于制造PDC的HPHT过程中施加较高的压力可显著降低PCD台中的残余压缩应力。典型地,据认为PCD台中的高残余压缩应力是期望的以有助于减少PCD台中的裂纹扩展。本发明人已发现:在将基底钎焊到例如碳化物延伸部(extension)和/或旋转钻头的钻头本体时,在压力至少约7.5GPa的HPHT过程中制造的PDC的PCD台中的降低的残余压缩应力可在PCD台中导致有害的开裂以及PCD台从基底的分离,这取决于基底的界面表面的非平坦性程度。本发明人认为当以至少约7.5GPa的压力制造PDC时,在钎焊温度下,因热膨胀在PCD台中产生的拉伸应力大于如果PCD台具有较高残余压缩应力时的情形。由于在钎焊温度下较高的拉伸应力,由基底的非平坦表面特征(例如突起物)在PCD中产生的环向应力可引起PCD台形成径向延伸和垂直延伸的裂纹和/或与如果在相对较低的压力下制造的情形相比更频繁地从基底分离。通常,常规认识教导:极不平坦的基底界面表面有助于防止PCD台从基底上分离。因此,在图3A-6B中更详细讨论的某些实施方案中,本发明人进行了与常规认识相反的方案,该常规认识教导极不平坦的基底界面表面有助于接合。在这些实施方案中,可控制基底的基底界面表面的形貌使得其仍然基本上平坦并且表现出不超过最大阈值的非平坦度。
再次参照图3A,在一种实施方案中,基底302的界面表面308可以是基本上平坦的。例如,在此意义上,界面表面308包括多个突起物,这些突起物可表现出如下的平均表面起伏高度:约0至小于约0.00010英寸,约0至约0.00050英寸,约0至约0.00075英寸,或者约0.000010英寸至约0.00010英寸。该平均表面起伏是伸出界面表面308的最低点以上的突起物的高度。在没有所述多个突起物时的界面表面(即平坦界面表面)的表面积与具有多个突起物的界面表面的表面积的比率大于约0.600。基本上平坦的界面表面的例子是其中该比率大于约0.600的界面表面。例如该比率可以为约0.600至约0.650,约0.650至约0.725,约0.650至约0.750,约0.650至约0.950,约0.750至小于约1.0,或者约0.750至约1.0。
图4A-6B显示了如下实施方案:其中控制基底界面表面的所选基本上平坦形貌以便减少或基本上消除PDC的PCD台中的裂纹和/或分离。图4A和4B是包含基底402的PDC 400的一种实施方案的分解等距视图和组装等距视图,该基底402包括界面表面404,所述界面表面404具有所选的基本上平坦的形貌。基底402可由与图3A中所示的基底302相同的碳化物材料制成。界面表面404包括多个突起物406,所述多个突起物406彼此间隔并且基本上在基底402的长度的横向上延伸。突起物406限定出在突起物406偶对之间的多个沟槽408。PCD台410可接合至界面表面406。PCD台410可表现出本文所公开的PCD和/或图3A中所示PCD台304的磁性能、机械性能、热稳定性、耐磨性、尺寸、组成、金刚石与金刚石接合、或晶粒尺寸性能中的一些或全部。PCD台410具有最大厚度“T”。由于PCD台410可与基底402整体形成并且由前体金刚石颗粒制造,因此该PCD台410可具有界面表面411,该界面表面411经配置以对应于基底402的界面表面404的形貌。
在没有所述多个突起物406时的界面表面404(即平坦界面表面)的表面积与具有突起物406的界面表面的表面积的比率大于约0.600。例如,该比率可以为约0.600至约0.650,约0.650至约0.725,约0.650至约0.750,约0.650至约0.950,约0.750至小于约1.0,或者约0.750至约1.0。
所述多个突起物406具有平均表面起伏高度“h”,这是突起物406延伸超过界面表面404的最低点的平均高度。例如,h可以为大于0至小于约0.030英寸,大于0至约0.020英寸,大于0至约0.015英寸,或者约0.0050英寸至约0.010英寸,或者约0.0080英寸至约0.010英寸。最大厚度“T”可以为约0.050英寸至约0.20英寸,例如约0.050英寸至约0.16英寸,约0.050英寸至约0.10英寸,约0.050英寸至约0.085英寸,或者约0.070英寸至约0.080英寸。比率h/T可小于约0.25,例如约0.050至约0.125,约0.050至约0.10,约0.070至约0.090,或者约0.050至约0.075。
参照图4B,最外侧的突起物406(以406a和406b表示)可与基底402的外周表面414横向间隔开距离d。当PDC 400是基本上圆柱形时,d与PCD台的半径“R”的比率可为约0.030至约1.0,约0.035至约0.080,或者约0.038至约0.060。
图5A是包含基底502的PDC 500的截面视图,该基底502包括界面表面504,该界面表面504具有根据另一实施方案的选定的基本上平坦的形貌,并且图5B是基底502的等距视图。基底502可由与图3A中所示基底302相同的碳化物材料制成。基底502的界面表面504包括多个六边形突起物,这些突起物从面508向外延伸。所述面508可以是所示实施方案中的凸面,或者是基本上平坦的。这些突起物506的顶部509可大致位于共同平面内。所述多个突起物506限定了多个内部腔洞510。随着它们接近基底502的中心,每个内部腔洞510的深度可减小。每个腔洞510的底部511可依从所述面508的轮廓。
PDC 500还包括具有最大厚度“T”的PCD台512,该PCD台512接合至基底502的界面表面504。PCD台512的厚度随着离开PCD台512中心的横向距离而向着PDC 500的周边513逐渐增加。可配置PCD台512以对应于基底502的界面表面504的形貌。例如PCD台512的突起物513可填充由基底502的突起物506所限定的每个内部腔洞510。PCD台512可表现出本文所公开的PCD和/或图3A中所示PCD台304的磁性能、机械性能、热稳定性、耐磨性、尺寸、组成、金刚石与金刚石接合、或晶粒尺寸性能中的一些或全部。六边形突起物506的封闭特征包括拔模角度α,例如约5度至约15度。
无突起物506时的界面表面504(即平坦界面表面)的表面积与具有突起物506的界面表面的表面积的比率大于约0.600。例如,该比率可以为约0.600至约0.650,约0.650至约0.725,约0.650至约0.750,约0.650至约0.950,约0.750至小于约1.0,或者约0.750至约1.0。
所述多个突起物506具有平均表面起伏高度“h”,这是突起物506延伸超过界面表面504的最低点的平均高度。例如,h可以为大于0至小于约0.030英寸,大于0至约0.020英寸,大于0至约0.015英寸,约0.0050英寸至约0.010英寸,或者约0.0080英寸至约0.010英寸。最大厚度“T”可以为约0.050英寸至约0.10英寸,例如约0.050英寸至约0.085英寸,或者约0.070英寸至约0.080英寸。比率h/T可小于约0.25,例如约0.050至约0.125,约0.050至约0.10,约0.070至约0.090,或者约0.050至约0.075。
应注意的是,以PDC 400和500所示的界面表面几何形状仅仅是适宜的界面表面几何形状的两个实例。可以使用不同于以图4A-5B的PDC 400和500所示界面表面几何形状的其它界面表面几何形状。
工作实施例
下面的工作实施例提供关于根据本发明的一些具体实施方案的原理制造的PDC的PCD台的磁性能的进一步细节。利用可商购自宾夕法尼亚州,匹兹堡Foerster Instruments的KOERZIMAT CS l.096仪器来测试表I-IV中列举的每种PCD台的磁性能。根据ASTM B886-03(2008)测量每种PCD台的比磁饱和,以及根据ASTM B887-03(2008)e1,利用KOERZIMAT CSl.096仪器测量每种PCD台的矫顽力。利用能量色散谱法和卢瑟福背散射谱法确定受测PCD台中钴基金属溶剂催化剂的量。利用前述的迭代分析,受测PCD台中钴基金属溶剂催化剂的比磁饱和常数经确定为约201G·cm3/g。将201G·cm3/g的值用作钴基金属溶剂催化剂的比磁饱和常数时,利用KOERZIMAT CS l.096仪器的分析软件得到的受测PCD台中钴基金属溶剂催化剂的计算量基本上匹配于利用能量色散谱法和卢瑟福谱法得到的测量结果。
下表I列出根据上述本发明的某些实施方案的原理制造的PCD台。每种PCD台的制造过程为:在铌容器中将具有所列出的平均金刚石颗粒尺寸的金刚石颗粒物料与钴-烧结碳化钨基底邻近放置,并将该容器置于高压单元介质中,以及利用HPHT立方体压机对其中的高压单元介质和容器进行HPHT过程以形成接合至基底的PCD台。选择HPHT压机的每个顶砧的表面积和用于驱动顶砧的液压管路压力,使得烧结压力为至少约7.8GPa。HPHT过程的温度为约1400℃,且烧结压力为至少约7.8GPa。表I中列出的烧结压力是指室温下高压单元介质中的压力,而烧结温度下的实际烧结压力据认为会更高。在HPHT过程之后,通过研磨掉基底,从基底移出PCD台。然而,也可以利用放电机械加工或其它合适的方法来移除基底。
表I:根据本发明实施方案制造的PCD台的选定磁性能
下表II列出所制造的常规PCD台。表II中列出的每种PCD台的制造方法如下:在铌容器中将具有所列的平均金刚石颗粒尺寸的金刚石颗粒物料与钴-烧结碳化钨基底邻近放置,并将该容器置于高压单元介质中,以及利用HPHT立方体压机对该高压单元介质和容器进行HPHT过程以形成接合至基底的PCD台。选择HPHT压机的每个顶砧的表面积和用于驱动顶砧的液压管线压力,使得烧结压力为约4.6GPa。除了经受约1430℃温度的实施例15、16、18和19以外,HPHT过程的温度为约1400℃,并且烧结压力为约4.6GPa。表II中列出的烧结压力是指室温下高压单元介质中的压力。在HPHT过程之后,通过研磨掉钴-烧结碳化钨基底,从钴-烧结碳化钨基底移出PCD台。
表II:若干常规PCD台的选定磁性质
如表I和II所示,表II中所列的常规PCD台具有比表I中所列的PCD台更高的钴含量,如相对较高的比磁饱和值所指示。此外,表II中所列的常规PCD台具有较低的矫顽力,这指示相对较大的金刚石晶粒间的平均自由程,并且因此可以指示金刚石晶粒间相对较少的金刚石与金刚石接合。因此,表I中所列的根据本发明实施例的PCD台可具有比表II中所列的PCD台显著更少的钴和更低的金刚石晶粒间的平均自由程。
下表III列出由PDC得到的常规PCD台。表III中列出的每种PCD台通过研磨从与其所接合的钴-烧结碳化钨基底分离。
表III:若干常规PCD台的选定磁性质
下表IV列出由PDC得到的常规PCD台。表IV中所列的每种PCD台通过研磨掉基底而从与其所接合的钴-烧结碳化钨基底分离。表IV中所列并测试的每种PCD台具有其中耗尽钴的沥滤区域和其中钴以填隙方式位于接合的金刚石晶粒之间的未沥滤区域。沥滤区域未被移除。然而,为了确定金属溶剂催化剂占据其中的间隙区域的PCD台的未沥滤区域的比磁饱和以及矫顽力,可将沥滤区域研磨掉,使得仅保留PCD台的未沥滤区域。期望的是,与如果移除沥滤区域并测试未沥滤区域的情况相比,沥滤区域使得比磁饱和更低以及使矫顽力更高。
表IV:若干常规沥滤的PCD台的所选磁性能
如表I、III和IV所示,表III和IV的常规PCD台具有高于表I中所列的PCD台的钴含量,如相对较高的比磁饱和值所指示。本发明人认为这是由于如下原因:与用来制造表I中所列PCD台的金刚石颗粒配制物相比,表III和IV中所列的PCD台是通过烧结具有相对更大的微细金刚石颗粒百分比的金刚石颗粒而形成。
实施例41-120测试了四种不同的基底界面表面几何形状以便评价基底的界面表面积的影响。对每种基底界面表面几何形状测试了20个样品。实施例41-120中的所有PDC均是以如下防止制造:在铌容器中将具有约19微米的平均金刚石颗粒尺寸的金刚石颗粒物料与钴-烧结碳化钨基底邻近放置,将该容器置于高压单元介质中,以及利用HPHT立方体压机对其中的高压单元介质和容器进行HPHT过程以形成接合至基底的PCD台。选择HPHT压机的每个顶砧的表面积和用于驱动顶砧的液压管线压力,使得烧结压力为至少约7.7GPa。HPHT过程的温度为约1400℃。7.7GPa的烧结压力是指室温下高压单元介质中的压力,而约1400℃的烧结温度下的实际烧结压力据认为会更高。
实施例41-60的PDC中的基底界面表面是基本上平坦的界面表面,基本上没有表面粗糙度以外的表面形貌。实施例61-80的PDC中的基底界面表面类似于图4A中所示的界面表面404。实施例81-100的PDC中的基底界面表面是略微凸起的,具有多个径向且周向等间隔的圆柱形突起物。实施例101-120的PDC中的基底界面表面类似于图5A和5B中所示的界面表面504。
在制造实施例41-120的PDC之后,将每种PDC的基底钎焊到延伸部钴-烧结碳化钨基底。钎焊合金具有组成:约25wt%Au、约10wt%Ni、约15wt%Pd、约13wt%Mn和约37wt%Cu。在约1013℃的钎焊温度下进行钎焊过程。在钎焊过程之后,使用光学显微镜各个检查实施例41-120的PDC,以确定是否在PCD台中存在裂纹。
下表V列出了基底直径,对于每种类型的基底几何形状基底的界面表面的表面积,基底界面表面积与具有相同直径的基底的平坦界面表面的比率,在钎焊到延伸部钴-烧结碳化钨基底时其中PCD台开裂的PDC样品的数目。如表V中所示,随着基底界面表面的表面积降低,在钎焊时PCD台开裂的发生率(prevalence)降低。
表V:基底界面表面积对钎焊时PCD台开裂的影响
PCD的PDC的应用实施方案
公开的PCD和PDC实施方案可用于若干不同的应用,包括但不限于以下用途:旋转钻头(图6A和6B)、止推轴承装置(图7)、径向轴承装置(图8)、地下钻掘系统(图9)和拉丝模具(图10)。上述各种应用仅仅是其中可以使用PCD和PDC实施方案的应用的一些实例。可以预期其它应用,例如在搅拌摩擦焊接工具中采用所公开的PCD和PDC实施方案。
图6A是旋转钻头600的实施方案的等视距图,并且图6B是旋转钻头600的实施方案的顶部正视图。旋转钻头600包括根据任何前述PDC实施方案配置的至少一个PDC。旋转钻头600包含钻头本体602和用于将钻头本体602连接到钻柱的带螺纹销钉连接608,该钻头本体包括具有前导面606的在径向和纵向延伸的片状结构604。钻头本体602限定出用于通过绕纵轴610的旋转和钻头上重量的施加钻入地下地层中的前端结构。可将根据任何上述PDC实施方案(例如,图3A所示的PDC 300)配置的至少一个PDC切削元件固定到钻头本体602上。参照图6B,多个PDC 612被固定于片状结构604上。例如,各PDC612可包括与基底616接合的PCD台614。更一般而言,PDC 612可包含本文公开的任何PDC,但不限于此。另外,如希望的话,在一些实施方案中,若干PDC 612可是常规的结构。并且,如本领域公知的那样,周向邻近的片状结构604在其间限定出所谓的排屑槽618。另外,旋转钻头600可包括用于将钻井流体(drilling fluid)从旋转钻头600的内部传送到PDC 612的多个喷嘴腔620。
图6A和图6B仅描绘出使用至少一个切削元件的旋转钻头的实施方案,所述切削元件包含根据所公开实施方案制造和构建的PDC,但不限于此。使用旋转钻头600来代表许多钻地工具或钻掘工具,包括但不限于:例如,取芯钻头、牙轮钻头、固定切削刃钻头、偏心钻头、双中心钻头、扩孔器、扩孔器翼、或任何其它的包括PDC的井下工具。
也可在旋转钻头以外的应用中利用本文公开的PCD和/或PDC(例如,图3A所示的PDC 300)。例如,可以在止推轴承组件、径向轴承组件、拉丝模具、人工关节、机械加工元件、和散热器中使用所公开的PDC实施方案。
图7是止推轴承装置700的一种实施方案的等距剖视图,该止推轴承装置700可使用任何所公开的PDC实施方案作为轴承元件。止推轴承装置700包括对应的止推轴承组件702。每个止推轴承组件702包括环形支撑环704,其可由诸如碳钢、不锈钢或其它合适材料的材料制成。每个支撑环704包括容纳对应的轴承元件706的多个凹部(未标示)。每个轴承元件706可通过钎焊、压配、使用紧固件或其它合适的安装技术安装到在对应凹部内的对应的支撑环704上。一个以上或者所有的轴承元件706可根据任何所公开的PDC实施方案配置。例如,每个轴承元件706可包括基底708和PCD台710,其中PCD台710包括轴承表面712。
使用中,止推轴承组件702之一的轴承表面712支承着另一止推轴承组件702的相对的轴承表面712。例如,止推轴承组件702之一可以可操作地连接至轴以随其旋转并且可以被称为“转子”。另一止推轴承组件702可以保持静止并可被称为“定子”。
图8是径向轴承装置800的一种实施方案的等距剖视图,该径向轴承装置800可使用任何所公开的PDC实施方案作为轴承元件。径向轴承装置800包括通常位于外圈804内的内圈802。外圈804包括固定在其上并具有相应的轴承表面808的多个轴承元件806。内圈802也包括固定在其上并具有相应的轴承表面812的多个轴承元件810。一个以上或所有的轴承元件806和810可根据本文所公开的任何PDC实施方案配置。内圈802通常位于外圈804内,因而可配置内圈802和外圈804使得轴承表面808和812可彼此至少部分接触并且在使用期间在内圈802和外圈804相对于彼此旋转时相对于彼此移动。
径向轴承装置800可用于多种机械应用。例如,所谓的“牙轮”旋转钻头可得益于本文所公开的径向轴承装置。更具体而言,内圈802可安装至牙轮的轴上,外圈804可安装至在牙轮内形成的内孔上,并且可将这样的外圈804和内圈802组装以形成径向轴承装置。
参考图9,止推轴承装置700和/或径向轴承装置800可被引入地下钻掘系统中。图9是包括至少一个根据其它实施方案的图7所示的止推轴承装置700的地下钻掘系统900示意性等距剖视图。地下钻掘系统900包括包封井下钻进电动机904(即,能够使输出轴旋转的电动机、涡轮或任何其它装置)的外壳902,其可操作地连接到输出轴906。第一止推轴承装置7001(图7)可操作地连接至井下钻进电动机904。第二止推轴承装置7002(图7)可操作地连接至输出轴906。配置为作用于地下地层并钻掘井眼的旋转钻头908连接至输出轴906。旋转钻头908示出为包括多个牙轮910的牙轮钻头。但是,其它实施方案可使用不同类型的旋转钻头,例如图6A和6B所示的所谓“固定切削刃”钻头。当钻掘井眼时,管道段可连接至地下钻掘系统900以形成能够逐渐地钻掘井眼至地下更大深度的钻柱。
止推轴承装置7001的止推轴承组件702的第一件被配置成不旋转的定子,而止推轴承装置7001的止推轴承组件702的第二件被配置成连接到输出轴906并随输出轴906旋转的转子。可以通过第一止推轴承装置7001(至少部分)实施当钻头908作用于井眼底部时产生的对底部的推力。止推轴承装置7002的止推轴承组件702的第一件被配置成为不旋转的定子,而止推轴承装置7002的止推轴承组件702的第二件被配置为连接到输出轴906并随输出轴906旋转的转子。流过井下钻进电动机904的动力部分的流体流可引起通常称为“离开底部的推力”,这可以(至少部分)通过第二止推轴承装置7002实施。
在操作中,钻井流体可循环通过井下钻进电动机904从而产生转矩并且实现输出轴906和与其相连的旋转钻头908的旋转,使得可以钻掘井眼。部分钻井流体也可用于润滑止推轴承组件702的轴承元件706的相对轴承表面。
图10是采用根据本文所述教导制造的PDC 1002的拉丝模具1000的一种实施方案的侧视截面图。PDC 1002包括内部环形PCD区域1004,该内部环形PCD区域包含接合至外部圆柱形基底1006的本文所述任何PCD台,所述外部圆柱形基底可由与图3A中所示基底302相同的材料制成。PCD区域1004还包括从中穿过形成的模具腔1008,该模具腔经配置用于容纳和成型所拉拔的丝材。拉丝模具1000可包封在外壳(例如,不锈钢外壳)(未示出)中以便于操作。
使用时,沿拉丝轴1012通过模腔1008拉拔出直径d1的丝材1010,从而将丝材1010的直径缩减为减小的直径d2
虽然本文公开了多个方面和实施方案,但是可想到其它的方面和实施方案。本文公开的多个方面和实施方案是出于解释的目的而并不是意图进行限制。因此,本文(包括权利要求书)中使用的措词“包括”、“具有”和其变体(例如,“包括”和“具有”)应具有与措词“包含”及其变体(例如,“包含”和“含有”)相同的含义。

Claims (24)

1.聚晶金刚石复合片,其包括
基底,该基底包括基本上平坦的界面表面,和
聚晶金刚石台,该聚晶金刚石台表现出50微米以下的平均金刚石晶粒尺寸并且包括两个以上的层,所述两个以上的层包括:接合至所述基底的基本上平坦的界面表面的第一聚晶金刚石层,和远离所述基底的至少第二聚晶金刚石层,所述第一聚晶金刚石层表现出第一平均金刚石晶粒尺寸,并且所述第二聚晶金刚石层表现出小于所述第一平均金刚石晶粒尺寸的第二平均金刚石晶粒尺寸,该聚晶金刚石台的至少未沥滤部分包括:
多个金刚石晶粒,所述多个金刚石晶粒限定出多个间隙区域;和
占据所述多个间隙区域的至少一部分的金属溶剂催化剂,在所述至少未沥滤部分中所述金属溶剂催化剂的量为7.5重量%以下;
其中所述多个金刚石晶粒和所述至少未沥滤部分中的金属溶剂催化剂共同表现出115Oe以上的矫顽力和15G·cm3/g以下的比磁饱和。
2.根据权利要求1的聚晶金刚石复合片,其中所述第二平均金刚石晶粒尺寸是所述第一平均金刚石晶粒尺寸的90%至98%。
3.根据权利要求1的聚晶金刚石复合片,其中所述第二平均金刚石晶粒尺寸是所述第一平均金刚石晶粒尺寸的90%至95%。
4.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述平均金刚石晶粒尺寸是30微米以下。
5.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述平均金刚石晶粒尺寸是20微米以下。
6.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述平均金刚石晶粒尺寸是10微米至18微米。
7.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述第一聚晶金刚石层包括含钨材料,该含钨材料包括钨或碳化钨中的至少一种。
8.根据权利要求7的聚晶金刚石复合片,其中所述含钨材料在第一聚晶金刚石层中的存在量是15重量%以下。
9.根据权利要求8的聚晶金刚石复合片,其中所述含钨材料的量是5重量%至10重量%。
10.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述金属溶剂催化剂的量是3重量%至7.5重量%。
11.根据权利要求1的聚晶金刚石复合片,其中所述金属溶剂催化剂的量是0重量%至6重量%。
12.根据权利要求1的聚晶金刚石复合片,其中所述金属溶剂催化剂的量是3重量%至6重量%。
13.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述聚晶金刚石台的至少未沥滤部分的矫顽力是155Oe至175Oe,并且其中比磁饱和是10G·cm3/g至15G·cm3/g。
14.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述聚晶金刚石台的至少未沥滤部分表现出0.10G·cm3/g·Oe以下的比磁导率。
15.根据权利要求14的聚晶金刚石复合片,其中所述比磁导率是0.060G·cm3/g·Oe至0.090G·cm3/g·Oe。
16.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述基底的基本上平坦的界面表面包括多个突起物,不存在所述多个突起物时的基本上平坦的界面表面的表面积与具有所述多个突起物的基本上平坦的界面表面的表面积的比率是大于0.600。
17.根据权利要求16的聚晶金刚石复合片,其中所述比率是0.650至0.950。
18.根据权利要求16的聚晶金刚石复合片,其中所述比率是0.600至0.650。
19.根据权利要求16的聚晶金刚石复合片,其中所述比率是0.750至小于1.0。
20.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述基本上平坦的界面表面是平坦的。
21.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述基底包括碳化钨、碳化铬、或它们的组合。
22.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述聚晶金刚石台包含沥滤区域,并且所述聚晶金刚石台的所述至少未沥滤部分位于所述基底和所述沥滤区域之间。
23.根据权利要求1-3任一项的聚晶金刚石复合片,其中所述聚晶金刚石台的第二聚晶金刚石层包括工作表面。
24.旋转钻头,其包括钻头本体和安装在钻头本体上的多个切削元件,所述多个切削元件中的至少一个被配置为如权利要求1-23任一项所述的聚晶金刚石复合片。
CN201510507019.XA 2010-01-21 2010-12-09 聚晶金刚石复合片、其制造方法和各种应用 Active CN105063449B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/690,998 US8297382B2 (en) 2008-10-03 2010-01-21 Polycrystalline diamond compacts, method of fabricating same, and various applications
US12/690,998 2010-01-21
CN201080061915.3A CN102712970B (zh) 2010-01-21 2010-12-09 聚晶金刚石复合片、其制造方法和各种应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080061915.3A Division CN102712970B (zh) 2010-01-21 2010-12-09 聚晶金刚石复合片、其制造方法和各种应用

Publications (2)

Publication Number Publication Date
CN105063449A CN105063449A (zh) 2015-11-18
CN105063449B true CN105063449B (zh) 2018-04-20

Family

ID=43589480

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080061915.3A Active CN102712970B (zh) 2010-01-21 2010-12-09 聚晶金刚石复合片、其制造方法和各种应用
CN201510507019.XA Active CN105063449B (zh) 2010-01-21 2010-12-09 聚晶金刚石复合片、其制造方法和各种应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201080061915.3A Active CN102712970B (zh) 2010-01-21 2010-12-09 聚晶金刚石复合片、其制造方法和各种应用

Country Status (7)

Country Link
US (6) US8297382B2 (zh)
EP (3) EP3702070B1 (zh)
KR (4) KR101747623B1 (zh)
CN (2) CN102712970B (zh)
CA (2) CA2833616C (zh)
WO (1) WO2011090582A1 (zh)
ZA (2) ZA201204988B (zh)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236074B1 (en) 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US9017438B1 (en) 2006-10-10 2015-04-28 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor
US8034136B2 (en) 2006-11-20 2011-10-11 Us Synthetic Corporation Methods of fabricating superabrasive articles
US8080074B2 (en) 2006-11-20 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8911521B1 (en) 2008-03-03 2014-12-16 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US8999025B1 (en) 2008-03-03 2015-04-07 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts
US9315881B2 (en) 2008-10-03 2016-04-19 Us Synthetic Corporation Polycrystalline diamond, polycrystalline diamond compacts, methods of making same, and applications
US7866418B2 (en) 2008-10-03 2011-01-11 Us Synthetic Corporation Rotary drill bit including polycrystalline diamond cutting elements
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
US8663349B2 (en) 2008-10-30 2014-03-04 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US8071173B1 (en) 2009-01-30 2011-12-06 Us Synthetic Corporation Methods of fabricating a polycrystalline diamond compact including a pre-sintered polycrystalline diamond table having a thermally-stable region
US10309158B2 (en) 2010-12-07 2019-06-04 Us Synthetic Corporation Method of partially infiltrating an at least partially leached polycrystalline diamond table and resultant polycrystalline diamond compacts
US9027675B1 (en) 2011-02-15 2015-05-12 Us Synthetic Corporation Polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein and applications therefor
US8727046B2 (en) 2011-04-15 2014-05-20 Us Synthetic Corporation Polycrystalline diamond compacts including at least one transition layer and methods for stress management in polycrsystalline diamond compacts
US9482056B2 (en) * 2011-12-30 2016-11-01 Smith International, Inc. Solid PCD cutter
US9423370B2 (en) * 2012-02-21 2016-08-23 Varel International Ind., L.P Use of capacitance to analyze polycrystalline diamond
US9316059B1 (en) 2012-08-21 2016-04-19 Us Synthetic Corporation Polycrystalline diamond compact and applications therefor
US9732563B1 (en) 2013-02-25 2017-08-15 Us Synthetic Corporation Polycrystalline diamond compacts including a cemented carbide substrate and applications therefor
US9127708B2 (en) 2013-03-11 2015-09-08 Us Synthetic Corporation Bearing apparatuses including dual material bearing surfaces
US9909450B1 (en) 2013-03-13 2018-03-06 Us Synthetic Corporation Turbine assembly including at least one superhard bearing
US8950649B2 (en) * 2013-03-14 2015-02-10 Us Synthetic Corporation Apparatus for brazing radial bearings and related methods
CN103132913B (zh) * 2013-03-22 2015-10-28 四川圆通建设有限公司 一种可识别是否使用回收牙轮的扩孔器
US9080385B2 (en) 2013-05-22 2015-07-14 Us Synthetic Corporation Bearing assemblies including thick superhard tables and/or selected exposures, bearing apparatuses, and methods of use
AR096578A1 (es) * 2013-06-11 2016-01-20 Ulterra Drilling Tech Lp Elementos de pcd y proceso para elaborarlos
US10022840B1 (en) 2013-10-16 2018-07-17 Us Synthetic Corporation Polycrystalline diamond compact including crack-resistant polycrystalline diamond table
US10807913B1 (en) 2014-02-11 2020-10-20 Us Synthetic Corporation Leached superabrasive elements and leaching systems methods and assemblies for processing superabrasive elements
KR101575035B1 (ko) * 2014-02-11 2015-12-08 일진다이아몬드(주) 다결정 다이아몬드 컴팩트
US9803427B1 (en) 2014-03-27 2017-10-31 U.S. Synthetic Corporation Systems and methods for mounting a cutter in a drill bit
KR20150134706A (ko) * 2014-05-22 2015-12-02 일진다이아몬드(주) 절삭 공구 인서트
US9908215B1 (en) 2014-08-12 2018-03-06 Us Synthetic Corporation Systems, methods and assemblies for processing superabrasive materials
US10173300B1 (en) 2014-10-06 2019-01-08 Us Synthetic Corporation Polycrystalline diamond compact, drill bit incorporating same, and methods of manufacture
US10011000B1 (en) 2014-10-10 2018-07-03 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
US10610999B1 (en) 2014-10-10 2020-04-07 Us Synthetic Corporation Leached polycrystalline diamond elements
US11766761B1 (en) 2014-10-10 2023-09-26 Us Synthetic Corporation Group II metal salts in electrolytic leaching of superabrasive materials
US10030451B1 (en) 2014-11-12 2018-07-24 Us Synthetic Corporation Polycrystalline diamond compacts including a cemented carbide substrate and applications therefor
JP6641925B2 (ja) 2014-11-27 2020-02-05 三菱マテリアル株式会社 掘削チップおよび掘削ビット
US10107043B1 (en) 2015-02-11 2018-10-23 Us Synthetic Corporation Superabrasive elements, drill bits, and bearing apparatuses
US10350734B1 (en) 2015-04-21 2019-07-16 Us Synthetic Corporation Methods of forming a liquid metal embrittlement resistant superabrasive compact, and superabrasive compacts and apparatuses using the same
WO2016175763A1 (en) 2015-04-28 2016-11-03 Halliburton Energy Services, Inc. Polycrystalline diamond compact with gradient interfacial layer
US10723626B1 (en) 2015-05-31 2020-07-28 Us Synthetic Corporation Leached superabrasive elements and systems, methods and assemblies for processing superabrasive materials
CN104962793B (zh) * 2015-06-23 2017-04-26 中南钻石有限公司 一种具有良好导电性能的金刚石聚晶复合片及其制备方法
CN107923226B (zh) * 2015-07-22 2020-06-30 史密斯国际有限公司 具有抗冲击金刚石体的切割元件
US10473154B2 (en) 2015-08-26 2019-11-12 Us Synthetic Corporation Tilting pad bearing assemblies, and bearing apparatuses and methods of using the same
DE102015222020A1 (de) * 2015-11-09 2017-05-11 Thyssenkrupp Ag Werkzeug zur Bearbeitung von abrasiven Materialien
US10544627B2 (en) 2015-12-28 2020-01-28 Smith International, Inc. Polycrystalline diamond constructions with protective element
US10399206B1 (en) 2016-01-15 2019-09-03 Us Synthetic Corporation Polycrystalline diamond compacts, methods of fabricating the same, and methods of using the same
USD835163S1 (en) 2016-03-30 2018-12-04 Us Synthetic Corporation Superabrasive compact
CN105945292B (zh) * 2016-07-04 2019-04-02 株洲肯特硬质合金有限公司 一种金刚石复合片及其制备方法
AT15415U1 (de) * 2016-07-18 2017-08-15 Ceratizit Austria Gmbh Verfahren zum Herstellen eines Hartmetallprodukts und Hartmetallprodukt
CN106545567A (zh) * 2016-12-10 2017-03-29 北京春仑石油技术开发有限公司 一种滑动推力轴承的pdc止推环
US10603719B2 (en) * 2017-08-31 2020-03-31 Baker Hughes, A Ge Company, Llc Cutting elements and methods for fabricating diamond compacts and cutting elements with functionalized nanoparticles
US10900291B2 (en) 2017-09-18 2021-01-26 Us Synthetic Corporation Polycrystalline diamond elements and systems and methods for fabricating the same
WO2019147432A2 (en) 2018-01-23 2019-08-01 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
WO2019245899A1 (en) 2018-06-19 2019-12-26 Us Synthetic Corporation Bearing assemblies, related bearing apparatuses and related methods
EP3830380A4 (en) 2018-08-02 2022-04-06 US Synthetic Corporation CUTTING TOOL WITH PCD INSERTS, SYSTEMS WITH THEM AND RELATIVE METHODS
TWM583351U (zh) * 2019-05-10 2019-09-11 北聯研磨科技股份有限公司 砂輪中心孔保護墊
GB201907508D0 (en) 2019-05-28 2019-07-10 Element Six Uk Ltd Composite polycrystalline diamond (pcd) product and methods of making same
TW202146168A (zh) * 2019-12-11 2021-12-16 美商戴蒙創新公司 多晶鑽石複合片中之鐵梯度;胚料、切刀與包括其之切割工具;及製造方法
US11378122B2 (en) 2020-01-16 2022-07-05 Us Synthetic Corporation Radially adjustable radial PDC bearings
CN111906319B (zh) * 2020-07-27 2022-10-25 苏州思珀利尔工业技术有限公司 金刚石复合片的制备方法
CN114260453A (zh) * 2021-12-24 2022-04-01 郑州新亚复合超硬材料有限公司 一种高性能金刚石复合片及其制造工艺
WO2023164372A1 (en) 2022-02-23 2023-08-31 Us Synthetic Corporation Cutting tool with pcd inserts, systems incorporating same and related methods
CN114833345A (zh) * 2022-05-31 2022-08-02 河南四方达超硬材料股份有限公司 一种聚晶金刚石复合片及其制备方法
CN115846936A (zh) * 2022-12-22 2023-03-28 郑州机械研究所有限公司 一种高强耐磨钎料及其制备方法、pdc钻头的钎焊方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099194A2 (en) * 2005-03-10 2006-09-21 Hyun Sam Cho Double-sided and multi-layered pcbn and pcd abrasive articles
CN101321714A (zh) * 2007-02-02 2008-12-10 住友电工硬质合金株式会社 金刚石烧结体

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3101260A (en) 1957-08-09 1963-08-20 Gen Electric Diamond tool
US3141746A (en) 1960-10-03 1964-07-21 Gen Electric Diamond compact abrasive
US3574580A (en) 1968-11-08 1971-04-13 Atomic Energy Commission Process for producing sintered diamond compact and products
US3829544A (en) 1970-12-09 1974-08-13 Megadiamond Corp Method of making a unitary polycrystalline diamond composite and diamond composite produced thereby
US3909647A (en) 1973-06-22 1975-09-30 Bendix Corp Rotor assembly for permanent magnet generator
US4268276A (en) 1978-04-24 1981-05-19 General Electric Company Compact of boron-doped diamond and method for making same
US4333986A (en) * 1979-06-11 1982-06-08 Sumitomo Electric Industries, Ltd. Diamond sintered compact wherein crystal particles are uniformly orientated in a particular direction and a method for producing the same
US4403015A (en) 1979-10-06 1983-09-06 Sumitomo Electric Industries, Ltd. Compound sintered compact for use in a tool and the method for producing the same
US4468138A (en) 1981-09-28 1984-08-28 Maurer Engineering Inc. Manufacture of diamond bearings
US4410054A (en) 1981-12-03 1983-10-18 Maurer Engineering Inc. Well drilling tool with diamond radial/thrust bearings
US4560014A (en) 1982-04-05 1985-12-24 Smith International, Inc. Thrust bearing assembly for a downhole drill motor
JPS60121251A (ja) 1983-12-02 1985-06-28 Toshiba Tungaloy Co Ltd 工具用ダイヤモンド焼結体及びその製造方法
US4610699A (en) 1984-01-18 1986-09-09 Sumitomo Electric Industries, Ltd. Hard diamond sintered body and the method for producing the same
US4525178A (en) 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
DE3583567D1 (de) * 1984-09-08 1991-08-29 Sumitomo Electric Industries Gesinterter werkzeugkoerper aus diamant und verfahren zu seiner herstellung.
US4643741A (en) 1984-12-14 1987-02-17 Hongchang Yu Thermostable polycrystalline diamond body, method and mold for producing same
US4738322A (en) 1984-12-21 1988-04-19 Smith International Inc. Polycrystalline diamond bearing system for a roller cone rock bit
US4694918A (en) 1985-04-29 1987-09-22 Smith International, Inc. Rock bit with diamond tip inserts
US4610600A (en) * 1985-06-10 1986-09-09 Industrial Air, Inc. Adjustable-pitch axial fan wheel
US4789366A (en) 1987-06-24 1988-12-06 Outboard Marine Corporation Marine propulsion device ball clutch transmission
US4811801A (en) 1988-03-16 1989-03-14 Smith International, Inc. Rock bits and inserts therefor
US4913247A (en) 1988-06-09 1990-04-03 Eastman Christensen Company Drill bit having improved cutter configuration
US5151107A (en) 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
NO169735C (no) 1989-01-26 1992-07-29 Geir Tandberg Kombinasjonsborekrone
GB2234542B (en) 1989-08-04 1993-03-31 Reed Tool Co Improvements in or relating to cutting elements for rotary drill bits
US5154245A (en) 1990-04-19 1992-10-13 Sandvik Ab Diamond rock tools for percussive and rotary crushing rock drilling
SE9002137D0 (sv) 1990-06-15 1990-06-15 Diamant Boart Stratabit Sa Improved tools for cutting rock drilling
US5120327A (en) 1991-03-05 1992-06-09 Diamant-Boart Stratabit (Usa) Inc. Cutting composite formed of cemented carbide substrate and diamond layer
US5092687A (en) 1991-06-04 1992-03-03 Anadrill, Inc. Diamond thrust bearing and method for manufacturing same
ZA937867B (en) 1992-10-28 1994-05-20 Csir Diamond bearing assembly
ZA937866B (en) 1992-10-28 1994-05-20 Csir Diamond bearing assembly
GB2273306B (en) 1992-12-10 1996-12-18 Camco Drilling Group Ltd Improvements in or relating to cutting elements for rotary drill bits
US5355969A (en) * 1993-03-22 1994-10-18 U.S. Synthetic Corporation Composite polycrystalline cutting element with improved fracture and delamination resistance
US5460233A (en) 1993-03-30 1995-10-24 Baker Hughes Incorporated Diamond cutting structure for drilling hard subterranean formations
US5379854A (en) 1993-08-17 1995-01-10 Dennis Tool Company Cutting element for drill bits
US5370195A (en) 1993-09-20 1994-12-06 Smith International, Inc. Drill bit inserts enhanced with polycrystalline diamond
GB9412779D0 (en) 1994-06-24 1994-08-17 Camco Drilling Group Ltd Improvements in or relating to elements faced with superhard materials
US6793681B1 (en) 1994-08-12 2004-09-21 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond articulation surface and a plurality of substrate layers
US5480233A (en) 1994-10-14 1996-01-02 Cunningham; James K. Thrust bearing for use in downhole drilling systems
US5769176A (en) * 1995-07-07 1998-06-23 Sumitomo Electric Industries, Ltd. Diamond sintered compact and a process for the production of the same
WO1997004209A1 (en) * 1995-07-14 1997-02-06 U.S. Synthetic Corporation Polycrystalline diamond cutter with integral carbide/diamond transition layer
US5848348A (en) 1995-08-22 1998-12-08 Dennis; Mahlon Denton Method for fabrication and sintering composite inserts
JP3309897B2 (ja) * 1995-11-15 2002-07-29 住友電気工業株式会社 超硬質複合部材およびその製造方法
US5855996A (en) * 1995-12-12 1999-01-05 General Electric Company Abrasive compact with improved properties
US6090343A (en) * 1997-03-25 2000-07-18 Rutgers University Triphasic composite and method for making same
US6315065B1 (en) 1999-04-16 2001-11-13 Smith International, Inc. Drill bit inserts with interruption in gradient of properties
US6199645B1 (en) 1998-02-13 2001-03-13 Smith International, Inc. Engineered enhanced inserts for rock drilling bits
JP2000054007A (ja) * 1998-07-31 2000-02-22 Sumitomo Electric Ind Ltd ダイヤモンド焼結体及びその製造方法
US6189634B1 (en) 1998-09-18 2001-02-20 U.S. Synthetic Corporation Polycrystalline diamond compact cutter having a stress mitigating hoop at the periphery
GB9820693D0 (en) 1998-09-24 1998-11-18 Camco Int Uk Ltd Improvements in perform cutting elements for rotary drag-type drill bits
US6227318B1 (en) 1998-12-07 2001-05-08 Smith International, Inc. Superhard material enhanced inserts for earth-boring bits
US6290008B1 (en) 1998-12-07 2001-09-18 Smith International, Inc. Inserts for earth-boring bits
US6241035B1 (en) 1998-12-07 2001-06-05 Smith International, Inc. Superhard material enhanced inserts for earth-boring bits
GB2384259B (en) 1999-01-13 2003-09-03 Baker Hughes Inc Polycrystalline diamond cutters having modified residual stresses
US6220375B1 (en) 1999-01-13 2001-04-24 Baker Hughes Incorporated Polycrystalline diamond cutters having modified residual stresses
US6655234B2 (en) * 2000-01-31 2003-12-02 Baker Hughes Incorporated Method of manufacturing PDC cutter with chambers or passages
US6338754B1 (en) * 2000-05-31 2002-01-15 Us Synthetic Corporation Synthetic gasket material
US6592985B2 (en) 2000-09-20 2003-07-15 Camco International (Uk) Limited Polycrystalline diamond partially depleted of catalyzing material
AU2001294082A1 (en) * 2000-10-12 2002-04-22 Elemen Six (Pty) Ltd Polycrystalline abrasive grit
US6550556B2 (en) 2000-12-07 2003-04-22 Smith International, Inc Ultra hard material cutter with shaped cutting surface
US7108598B1 (en) * 2001-07-09 2006-09-19 U.S. Synthetic Corporation PDC interface incorporating a closed network of features
US20040062928A1 (en) 2002-10-01 2004-04-01 General Electric Company Method for producing a sintered, supported polycrystalline diamond compact
AU2003284065A1 (en) * 2002-10-11 2005-05-05 Chien-Min Sung Carbonaceous heat spreader and associated methods
US6904935B2 (en) 2002-12-18 2005-06-14 Masco Corporation Of Indiana Valve component with multiple surface layers
US6915866B2 (en) * 2003-01-21 2005-07-12 Smith International, Inc. Polycrystalline diamond with improved abrasion resistance
EP1628805B1 (en) 2003-05-27 2007-02-07 Element Six (PTY) Ltd Polycrystalline diamond abrasive elements
US20050050801A1 (en) 2003-09-05 2005-03-10 Cho Hyun Sam Doubled-sided and multi-layered PCD and PCBN abrasive articles
US7575805B2 (en) * 2003-12-11 2009-08-18 Roy Derrick Achilles Polycrystalline diamond abrasive elements
US8226922B2 (en) * 2003-12-11 2012-07-24 Sumitomo Electric Industries, Ltd. High-hardness conductive diamond polycrystalline body and method of producing the same
US20050262774A1 (en) 2004-04-23 2005-12-01 Eyre Ronald K Low cobalt carbide polycrystalline diamond compacts, methods for forming the same, and bit bodies incorporating the same
US7608333B2 (en) 2004-09-21 2009-10-27 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
US7754333B2 (en) 2004-09-21 2010-07-13 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
ZA200609062B (en) * 2004-09-23 2008-08-27 Element Six Pty Ltd Coated abrasive materials and method of manufacture
US7681669B2 (en) * 2005-01-17 2010-03-23 Us Synthetic Corporation Polycrystalline diamond insert, drill bit including same, and method of operation
US7350601B2 (en) 2005-01-25 2008-04-01 Smith International, Inc. Cutting elements formed from ultra hard materials having an enhanced construction
US8197936B2 (en) 2005-01-27 2012-06-12 Smith International, Inc. Cutting structures
US7435478B2 (en) 2005-01-27 2008-10-14 Smith International, Inc. Cutting structures
US7543662B2 (en) 2005-02-15 2009-06-09 Smith International, Inc. Stress-relieved diamond inserts
CA2538545C (en) 2005-03-03 2013-01-15 Sidney J. Isnor Fixed cutter drill bit for abrasive applications
US7377341B2 (en) * 2005-05-26 2008-05-27 Smith International, Inc. Thermally stable ultra-hard material compact construction
US20070014965A1 (en) 2005-06-24 2007-01-18 Robert Chodelka Gasket material for use in high pressure, high temperature apparatus
US7462003B2 (en) 2005-08-03 2008-12-09 Smith International, Inc. Polycrystalline diamond composite constructions comprising thermally stable diamond volume
JP4739417B2 (ja) 2005-08-16 2011-08-03 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 微粒多結晶研磨剤
US7559695B2 (en) 2005-10-11 2009-07-14 Us Synthetic Corporation Bearing apparatuses, systems including same, and related methods
US7726421B2 (en) * 2005-10-12 2010-06-01 Smith International, Inc. Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US7628234B2 (en) * 2006-02-09 2009-12-08 Smith International, Inc. Thermally stable ultra-hard polycrystalline materials and compacts
US8066087B2 (en) * 2006-05-09 2011-11-29 Smith International, Inc. Thermally stable ultra-hard material compact constructions
US7516804B2 (en) * 2006-07-31 2009-04-14 Us Synthetic Corporation Polycrystalline diamond element comprising ultra-dispersed diamond grain structures and applications utilizing same
US7493972B1 (en) * 2006-08-09 2009-02-24 Us Synthetic Corporation Superabrasive compact with selected interface and rotary drill bit including same
US8236074B1 (en) 2006-10-10 2012-08-07 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US7552782B1 (en) 2006-11-02 2009-06-30 Us Synthetic Corporation Thrust-bearing assembly
US8080074B2 (en) * 2006-11-20 2011-12-20 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
US7998573B2 (en) 2006-12-21 2011-08-16 Us Synthetic Corporation Superabrasive compact including diamond-silicon carbide composite, methods of fabrication thereof, and applications therefor
KR20150121728A (ko) * 2007-01-26 2015-10-29 다이아몬드 이노베이션즈, 인크. 그레이드된 드릴링 커터
US20100112332A1 (en) * 2007-02-02 2010-05-06 Yoshihiro Kuroda Diamond sintered body and method for producing same
US8028771B2 (en) * 2007-02-06 2011-10-04 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
WO2008135949A2 (en) 2007-05-07 2008-11-13 Element Six (Production) (Pty) Ltd Polycrystalline diamond composites
US20080302579A1 (en) * 2007-06-05 2008-12-11 Smith International, Inc. Polycrystalline diamond cutting elements having improved thermal resistance
GB0810184D0 (en) 2008-06-04 2008-07-09 Element Six Production Pty Ltd Method for producing a compact
US9315881B2 (en) 2008-10-03 2016-04-19 Us Synthetic Corporation Polycrystalline diamond, polycrystalline diamond compacts, methods of making same, and applications
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
US7866418B2 (en) 2008-10-03 2011-01-11 Us Synthetic Corporation Rotary drill bit including polycrystalline diamond cutting elements
US20100242375A1 (en) 2009-03-30 2010-09-30 Hall David R Double Sintered Thermally Stable Polycrystalline Diamond Cutting Elements
US8292006B2 (en) 2009-07-23 2012-10-23 Baker Hughes Incorporated Diamond-enhanced cutting elements, earth-boring tools employing diamond-enhanced cutting elements, and methods of making diamond-enhanced cutting elements
WO2011017592A2 (en) 2009-08-07 2011-02-10 Smith International, Inc. Diamond transition layer construction with improved thickness ratio
AU2010279358A1 (en) 2009-08-07 2012-03-01 Smith International, Inc. Functionally graded polycrystalline diamond insert
AU2010279366B2 (en) 2009-08-07 2016-09-15 Smith International, Inc. Polycrystalline diamond material with high toughness and high wear resistance
WO2011017607A2 (en) 2009-08-07 2011-02-10 Smith International, Inc. Highly wear resistant diamond insert with improved transition structure
WO2011022474A2 (en) 2009-08-18 2011-02-24 Baker Hughes Incorporated Method of forming polystalline diamond elements, polycrystalline diamond elements, and earth boring tools carrying such polycrystalline diamond elements
ZA201007263B (en) 2009-10-12 2018-11-28 Smith International Diamond bonded construction comprising multi-sintered polycrystalline diamond
GB2477646B (en) 2010-02-09 2012-08-22 Smith International Composite cutter substrate to mitigate residual stress
US8727046B2 (en) 2011-04-15 2014-05-20 Us Synthetic Corporation Polycrystalline diamond compacts including at least one transition layer and methods for stress management in polycrsystalline diamond compacts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099194A2 (en) * 2005-03-10 2006-09-21 Hyun Sam Cho Double-sided and multi-layered pcbn and pcd abrasive articles
CN101321714A (zh) * 2007-02-02 2008-12-10 住友电工硬质合金株式会社 金刚石烧结体

Also Published As

Publication number Publication date
KR101747623B1 (ko) 2017-06-27
US20130205677A1 (en) 2013-08-15
KR101747624B1 (ko) 2017-06-27
EP2501834B1 (en) 2020-02-26
CA2833616C (en) 2015-10-06
EP3702070A1 (en) 2020-09-02
US10961785B2 (en) 2021-03-30
US10287822B2 (en) 2019-05-14
US20200141189A1 (en) 2020-05-07
EP2501834A1 (en) 2012-09-26
US20190211629A1 (en) 2019-07-11
CN102712970A (zh) 2012-10-03
US20210262295A1 (en) 2021-08-26
US20130015001A1 (en) 2013-01-17
US8297382B2 (en) 2012-10-30
KR20170001760A (ko) 2017-01-04
CA2786007C (en) 2016-01-26
CN102712970B (zh) 2015-09-16
EP3702070B1 (en) 2022-01-05
WO2011090582A1 (en) 2011-07-28
EP2508636A2 (en) 2012-10-10
EP2508636B1 (en) 2020-05-27
CA2786007A1 (en) 2011-07-28
ZA201204988B (en) 2014-08-27
US10508502B2 (en) 2019-12-17
CA2833616A1 (en) 2011-07-28
KR20120116989A (ko) 2012-10-23
CN105063449A (zh) 2015-11-18
KR20170003740A (ko) 2017-01-09
EP2508636A3 (en) 2012-12-26
KR20120115408A (ko) 2012-10-17
US8616306B2 (en) 2013-12-31
ZA201403663B (en) 2015-07-29
US20110017519A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
CN105063449B (zh) 聚晶金刚石复合片、其制造方法和各种应用
US20200331811A1 (en) Polycrystalline diamond compacts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant