CN105044433A - 一种抗干扰可调巨磁阻效应电流传感器 - Google Patents

一种抗干扰可调巨磁阻效应电流传感器 Download PDF

Info

Publication number
CN105044433A
CN105044433A CN201510393733.0A CN201510393733A CN105044433A CN 105044433 A CN105044433 A CN 105044433A CN 201510393733 A CN201510393733 A CN 201510393733A CN 105044433 A CN105044433 A CN 105044433A
Authority
CN
China
Prior art keywords
magnetoresistance effect
giant magnetoresistance
current sensor
access division
effect chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510393733.0A
Other languages
English (en)
Other versions
CN105044433B (zh
Inventor
向勇
高奇文
刘恒
冯雪松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Institute of electronic and information engineering, University of Electronic Science and technology of China
Original Assignee
Institute of Electronic and Information Engineering of Dongguan UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic and Information Engineering of Dongguan UESTC filed Critical Institute of Electronic and Information Engineering of Dongguan UESTC
Priority to CN201510393733.0A priority Critical patent/CN105044433B/zh
Publication of CN105044433A publication Critical patent/CN105044433A/zh
Application granted granted Critical
Publication of CN105044433B publication Critical patent/CN105044433B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

本发明涉及一种抗干扰可调巨磁阻效应电流传感器,包括巨磁阻效应芯片、与巨磁阻效应芯片平行设置的永磁铁、螺旋测微器、绝缘挡板、外壳和信号处理电路,信号处理电路与巨磁阻效应芯片相连;巨磁阻效应芯片和永磁铁竖直固定设置在外壳内,螺旋测微器的测杆前端垂直穿入外壳,所述螺旋测微器的测杆前端垂直固定有绝缘挡板,绝缘挡板与巨磁阻效应芯片平行设置,所述巨磁阻效应芯片置于绝缘挡板与永磁铁之间;待测通电导线的外壁与绝缘挡板压接,压接点为所述螺旋测微器与绝缘挡板的连接点。本发明通过在巨磁阻效应电流传感器上设置螺旋测微器,可灵活调节和测量巨磁阻效应芯片与待测通电导线之间的距离,提高电流传感器测量结果的准确度。

Description

一种抗干扰可调巨磁阻效应电流传感器
技术领域
本发明涉及电力系统测量技术领域,具体涉及一种夹式抗干扰可调巨磁阻效应电流传感器。
背景技术
随着电力电子技术的不断发展,人们对电流传感器的可靠性、便利性的要求也越来越高。传统的电磁式电流互感器是基于线圈原理,通过线圈的感应来测量电流,这类线圈绕组式电流互感器体积大、频带窄、金属资源消耗大、绝缘要求高,且只能测量交流电流,对于直流、暂态以及高次谐波等信号均不能测量,无法应用于大范围的分布式监测。目前的光纤式电流传感器的结构复杂、造价成本高,难以在大规模商业中应用。霍尔式电流传感器虽然已经在电网中得到较多应用,但是霍尔效应元件的测量耗能高、耐压性不高、整体性能易受温度和工艺的影响,灵敏度很低,无法应用在高精度的电流测量方面。
巨磁阻效应电流传感器对施加磁场具有高灵敏度、高工作带宽范围、温度稳定性极佳、耐高压、低功耗和小型化等特点而成为研究电流测量领域的热点。然而,巨磁阻效应电流传感器对磁场的灵敏度很高,使得它们很容易受到外界杂乱磁场的干扰,外界磁场干扰很容易使传感器产生较大的输出误差,影响测量结果的准确度。这些杂乱磁场的场源包括电机和变压器等电器设备,或者传感器周围的载流导体等。同时,因为通电导线产生的磁场大小与效应芯片到导体的距离成反比,使得巨磁阻效应芯片到所处导体的距离对磁场有很大的影响。
现有的巨磁阻效应传感器制造工艺复杂、温漂现象严重,会引起一定的输出误差,且电路结构复杂。现有的检测集成电路电流导线的电流,需要将测量电流接入集成电路中,限制了测量电流的大小,且集成电流传感器中两条电流导线的距离很近,会产生邻近效应,干扰很大。同时,现有的巨磁阻效应芯片与导体的距离不能灵活改变,不方便测量。
发明内容
本发明所要解决的技术问题是现有巨磁阻效应电流传感器不能灵活调整和测量巨磁阻效应芯片与待测通电导线之间的距离。
本发明解决上述技术问题的技术方案如下:一种抗干扰可调巨磁阻效应电流传感器,包括巨磁阻效应芯片、与巨磁阻效应芯片平行设置的永磁铁、螺旋测微器、绝缘挡板、外壳和信号处理电路,所述信号处理电路与巨磁阻效应芯片相连;
所述巨磁阻效应芯片和永磁铁竖直固定设置在外壳内;
所述螺旋测微器包括测杆和套筒,所述测杆套接在套筒内,所述测杆与套筒转动连接,所述套筒穿入外壳并与外壳固定连接,所述套筒前端与永磁铁之间的距离和巨磁阻效应芯片与永磁铁之间的距离相等;所述测杆前端置于外壳内,所述测杆前端垂直固定有绝缘挡板,所述绝缘挡板与巨磁阻效应芯片平行设置,所述巨磁阻效应芯片置于绝缘挡板与永磁铁之间,所述巨磁阻效应芯片和永磁铁位于测杆的一侧;待测通电导线卡接在外壳内,且待测通电导线的外壁与绝缘挡板压接,压接点为所述螺旋测微器与绝缘挡板的连接点。
本发明的有益效果是:本发明通过在巨磁阻效应电流传感器上设置螺旋测微器,可灵活调节和测量巨磁阻效应芯片与待测通电导线之间的距离,提高电流传感器测量结果的准确度。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述外壳为夹状磁屏蔽壳1,包括形状结构相同的上夹和下夹,所述上夹和下夹呈镜像对称设置,所述上夹包括第一连接部和第一卡接部,所述下夹包括第二连接部和第二卡接部,所述巨磁阻效应芯片和永磁铁固定设置在第一连接部或第二连接部的内壁上;所述第一连接部和第二连接部之间通过扭簧连接,所述第一卡接部和第二卡接部通过扭簧带动实现上夹和下夹的开合;所述螺旋测微器的套筒从第一连接部和第一卡接部的过渡处穿过或从第二连接部和第二卡接部的过渡处穿过。
采用上述进一步方案的有益效果是:本发明进一步的方案中,将电流传感器的外壳设置成夹状磁屏蔽壳,使得电流传感器通过夹子上的磁屏蔽层隔绝外界干扰,夹状结构的设置还可以将电流传感器直接夹在不同大小的通电导线上进行测量,方便实用。
进一步,所述第一卡接部及第二卡接部的截面均呈三角形,所述第一卡接部及第二卡接部从外侧至内侧依次包括截面呈水平放置的“7”字型的塑料外壳层、合金磁屏蔽层和高压绝缘层,所述第一卡接部及第二卡接部的高压绝缘层内侧固定连接有截面呈三角形的弹性接触层。
采用上述进一步方案的有益效果是:通过设置三角形的第一卡接部和第二卡接部,两个卡接端闭合后,中间形成的空间用于卡接通电导线,且在两个卡接端的内层设置与卡接端形状相同的弹性接触层,能够将通电导线有效夹紧。
进一步,所述第一卡接部及第二卡接部内侧的两个所述弹性接触层与待测通电导线的接触的面为内凹面。
采用上述进一步方案的有益效果是:通过将弹性接触层与待测通电导线的接触面设置成内凹面,为不同粗细的导线提供了一定的缓冲空间,避免夹持过紧。
进一步,所述内凹面包括第一接触面和第二接触面,未夹持待测通电导线时,所述第一接触面与第二接触面之间的夹角为100°-130°。
进一步,所述内凹面为内凹弧面。
采用上述进一步方案的有益效果是:通过将内凹面设置成弧面结构,方便与待测通电导线外壁的贴合。
进一步,所述永磁铁与巨磁阻效应芯片之间的距离为2mm-5mm;所述巨磁阻效应芯片与绝缘挡板之间的距离为5mm-5cm。
采用上述进一步方案的有益效果是:将永磁铁放置在距离巨磁阻芯片合适的位置,给巨磁阻芯片提供稳定的偏置磁场。
进一步,所述塑料外壳层的材质为丙烯腈-丁二烯-苯乙烯共聚物,所述合金磁屏蔽层的材质为坡莫合金,所述高压绝缘层的材质为D602-1环氧亚胺玻璃粉云母带,所述弹性接触层的材质为乙丙橡胶。
采用上述进一步方案的有益效果为:通过在夹状磁屏蔽壳外层设置一层固化的绝缘塑料,可以避免人与合金磁屏蔽层的接触,免除静电对人体的危害;通过在夹状磁屏蔽壳内部增加一层D602-1环氧亚胺玻璃粉云母带结构的绝缘材料,可以有效防止测量高压电线时,出现击穿的危险;通过在夹状磁屏蔽壳内部放置大量的超弹性橡胶材料,可以将待测导线固定在该电流探测器的中部,使得该巨磁阻电流传感器可以同时适应不同直径的通电导线,乙丙橡胶还可以有效防止待测导线抖动,避免抖动引起的待测导线与巨磁阻效应芯片之间距离的变化,防止测量误差。
进一步,所述信号处理电路包括巨磁阻效应芯片供电电压转换电路、仪表放大电路和电压跟随电路,所述巨磁阻效应芯片供电电压转换电路的输出电压连接到巨磁阻效应芯片的电源引脚,所述仪器放大电路同相输入端和反相输入端分别与巨磁阻效应芯片的正输出端和负输出端相连;所述仪器放大电路的输出端与电压跟随电路相连,所述电压跟随电路与示波器相连。
进一步,所述巨磁阻效应芯片内部为惠斯通电桥结构。
附图说明
图1为本实施例抗干扰可调巨磁阻效应电流传感器的截面结构示意图;
图2为图1中去除待测通电导线后的电流传感器的截面结构示意图;
图3为本实施例抗干扰可调巨磁阻效应电流传感器的立体结构示意图;
图4为图1的俯视透视结构示意图;
图5为本实施例扭簧的侧视结构示意图;
附图中,各标号所代表的部件列表如下:
1、夹状磁屏蔽壳;11、上夹;111、第一连接部;112、第一卡接部;1121、塑料外壳层;1122、合金磁屏蔽层;1123、高压绝缘层;1124、弹性接触层;113、内凹面;1131、第一接触面;1132、第二接触面;12、下夹;121、第二连接部;122、第二卡接部;2、待测通电导线;3、绝缘挡板;4、巨磁阻效应芯片;5、永磁铁;6、螺旋测微器;61、测杆;62、套筒;7、扭簧;A、仪表放大器;AMP、运算放大器;R、电压跟随电阻;d、绝缘挡板与巨磁阻效应芯片之间的距离。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1-图3所示,本实施例的一种抗干扰可调巨磁阻效应电流传感器,包括巨磁阻效应芯片4、与巨磁阻效应芯片4平行设置的永磁铁5、螺旋测微器6、绝缘挡板3、外壳和信号处理电路,信号处理电路与巨磁阻效应芯片4相连,信号处理电路包括巨磁阻效应芯片供电电压转换电路、仪表放大电路和电压跟随电路,巨磁阻效应芯片供电电压转换电路的输出电压连接到巨磁阻效应芯片的电源引脚,仪器放大电路同相输入端和反相输入端分别与巨磁阻效应芯片的正输出端和负输出端相连;仪器放大电路的输出端与电压跟随电路相连,电压跟随电路与示波器相连。巨磁阻效应芯片为多层膜结构的巨磁阻效应芯片,巨磁阻效应芯片内部为惠斯通电桥结构。
如图1-图3所示,本实施例的外壳为夹状磁屏蔽壳1,绝缘挡板3为塑料挡板;巨磁阻效应芯片4和永磁铁5竖直固定设置在外壳内;螺旋测微器包括测杆61和套筒62,测杆61套接在套筒62内,套筒62穿入外壳并与之固定连接。如图4所示,套筒62前端与永磁铁5之间的距离和巨磁阻效应芯片4与永磁铁5之间的距离相等;测杆外壁设有外螺纹,套筒内壁设有与之对应的内螺纹,测杆和套筒通过螺纹旋接;螺旋测微器6的测杆61前端置于外壳内,螺旋测微器6的测杆61前端垂直固定有绝缘挡板3,绝缘挡板3与巨磁阻效应芯片4平行设置,巨磁阻效应芯片4置于绝缘挡板3与永磁铁5之间,永磁铁5与巨磁阻效应芯片4之间的距离为2mm-5mm;巨磁阻效应芯片4与绝缘挡板3之间的距离为5mm-5cm;待测通电导线2可卡接在外壳内,且待测通电导线2的外壁与绝缘挡板3压接,压接点为所述螺旋测微器与绝缘挡板的连接点,即巨磁阻效应芯片的敏感轴方向与通电导线磁环内的磁通方向在同一条直线上。通过在巨磁阻效应电流传感器上设置螺旋测微器,可灵活调节和测量巨磁阻效应芯片与待测通电导线之间的距离,提高电流传感器测量结果的准确度。
如图1-图3所示,本实施例的夹状磁屏蔽壳包括形状结构相同的上夹11和下夹12,上夹11和下夹12呈镜像对称设置,上夹11包括第一连接部111和第一卡接部112,下夹12包括第二连接部121和第二卡接部122,巨磁阻效应芯片4和永磁铁5固定设置在第一连接部111或第二连接部121的内壁上,巨磁阻效应芯片4和永磁铁5可设置在螺旋测微器6测杆61的左侧或右侧(如图4所示);第一连接部111和第二连接部121之间通过扭簧7连接,扭簧的结构如图5所示,第一卡接部112和第二卡接部122通过扭簧7带动实现上夹11和下夹12的开合;螺旋测微器6的套筒前端从第一连接部111和第一卡接部112的过渡处穿过或从第二连接部121和第二卡接部122的过渡处穿过,且与之转动连接;螺旋测微器的测杆转动一周,测杆前移0.5mm,当套筒前端和绝缘挡板并拢时,可动刻度的零点应恰好与固定刻度的零点重合,套筒前端与永磁铁之间的距离和巨磁阻效应芯片与永磁铁之间的距离相等,测杆前端的绝缘挡板向前移动,即可测量绝缘挡板与套筒前端之间的距离,该距离即为巨磁阻效应芯片与待测通电导线之间的距离。本实施例将电流传感器的外壳设置成夹状磁屏蔽壳,使得电流传感器通过夹子上的磁屏蔽层隔绝外界干扰,夹状结构的设置还可以将电流传感器直接夹在不同大小的通电导线上进行测量,方便实用。
如图1所示,本实施例中,第一卡接部112及第二卡接部122截面呈三角形,第一卡接部112及第二卡接部122从外侧至内侧依次包括横截面呈水平放置的“7”字型的塑料外壳层1121、合金磁屏蔽层1122和高压绝缘层1123,高压绝缘层1123内侧固定连接有横截面呈三角形的弹性接触层1124。塑料外壳层1121的材质为丙烯腈-丁二烯-苯乙烯共聚物,合金磁屏蔽层1122的材质为坡莫合金,高压绝缘层1123的材质为D602-1环氧亚胺玻璃粉云母带,弹性接触层1124的材质为乙丙橡胶。通过设置三角形的第一卡接部和第二卡接部,两个卡接端闭合后,中间形成的空间用于卡接通电导线,且在两个卡接端的内层设置与卡接端形状相同的弹性接触层,能够将通电导线有效夹紧。通过在夹状磁屏蔽壳外层设置一层固化的绝缘塑料,可以避免人与合金磁屏蔽层的接触,免除静电对人体的危害;通过在夹状磁屏蔽壳内部增加一层D602-1环氧亚胺玻璃粉云母带结构的绝缘材料,可以有效防止测量高压电线时,出现击穿的危险;通过在夹状磁屏蔽壳内部放置大量的超弹性橡胶材料,可以将待测导线固定在该电流探测器的中部,使得该巨磁阻电流传感器可以同时适应不同直径的通电导线,乙丙橡胶还可以有效防止待测导线抖动,避免抖动引起的待测导线与巨磁阻效应芯片之间距离的变化,防止测量误差。
如图1-图3所示,本实施例中的弹性接触层与待测通电导线的接触面为内凹面。通过将弹性接触层与待测通电导线的接触面设置成内凹面,为不同粗细的导线提供了一定的缓冲空间,避免夹持过紧。
内凹面优选方案一:如图2和图3所示,上述内凹面113包括第一接触面1131和第二接触面1132,未夹持待测通电导线时,第一接触面1131与第二接触面1132之间的夹角为100°-130°。
内凹面优选方案二:如图1所示,上述内凹面113为内凹弧面。通过将内凹面设置成弧面结构,方便与待测通电导线外壁的贴合。
本发明的工作工作过程为:本发明的夹式抗干扰可调巨磁阻效应电流传感器,包括多层膜结构的巨磁阻效应芯片、永磁铁、螺旋测微器、绝缘挡板、夹式磁屏蔽壳、仪器放大器A、运算放大器AMP、电压跟随电阻R,将多层膜结构的巨磁阻效应芯片设置在待测通电导线的一侧,巨磁阻效应芯片的敏感轴方向与通电导线磁环内的磁通方向在同一条直线上。打开巨磁阻电流传感器夹,将待测通电导线夹持住,夹子内侧壁上的超弹性橡胶收缩挤压通电导线,将通电导线固定住;如图1所示,多层膜结构的巨磁阻芯片的正输出端和负输出端分别与仪器放大器A的同相输入端和反向输入端连接,仪器放大器A的输出端和运算放大器AMP的同相输入端连接,电压跟随电阻R并联在运算放大器AMP的反向输入端和输出端,运算放大器AMP的输出端直接接示波器。当通电导线的电流较小时,巨磁阻效应芯片可能不能准确测量出磁场的大小,而通电导线产生的磁场与通电导线和巨磁阻效应芯片之间的距离d成反比,此时,需要旋转螺旋测微器来测量和调整绝缘挡板和巨磁阻效应芯片之间的距离d,使巨磁阻效应芯片处于一个大小合适的磁场中。巨磁阻效应芯片的内部是惠斯通电桥结构,恒压电通过该巨磁阻效应芯片时,输出电压信号与被测电流产生的磁场成线性关系。图1中,将永磁铁放置在距离巨磁阻效应芯片合适的位置上,给巨磁阻效应芯片提供稳定的偏置磁场,巨磁阻效应芯片通过测量距离通电导线d处的磁场大小,输出电压信号,经过仪表放大器A、电压跟随器AMP、电压跟随电阻R进行信号放大转换,输出电压信号可以直接示波器查看电流的实时波形,显示的电流信号与被测通电导线中的电流成比例关系。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种抗干扰可调巨磁阻效应电流传感器,其特征在于,包括巨磁阻效应芯片(4)、与巨磁阻效应芯片(4)平行设置的永磁铁(5)、螺旋测微器(6)、绝缘挡板(3)、外壳和信号处理电路,所述信号处理电路与巨磁阻效应芯片(4)相连;
所述巨磁阻效应芯片(4)和永磁铁(5)竖直固定设置在外壳内壁上;
所述螺旋测微器包括测杆(61)和套筒(62),所述测杆(61)套接在套筒(62)内,所述测杆(61)与套筒(62)转动连接,所述套筒(62)穿入外壳并与外壳固定连接,所述套筒(62)前端与永磁铁(5)之间的距离和巨磁阻效应芯片(4)与永磁铁(5)之间的距离相等;所述测杆(61)前端置于外壳内,所述测杆(61)前端垂直固定有绝缘挡板(3),所述绝缘挡板(3)与巨磁阻效应芯片(4)平行设置,所述巨磁阻效应芯片(4)置于绝缘挡板(3)与永磁铁(5)之间,所述巨磁阻效应芯片(4)和永磁铁(5)位于测杆(61)的一侧;待测通电导线(2)卡接在外壳内,且待测通电导线(2)的外壁与绝缘挡板(3)压接,压接点为所述螺旋测微器(6)与绝缘挡板(3)的连接点。
2.根据权利要求1所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述外壳为夹状磁屏蔽壳(1),包括形状结构相同的上夹(11)和下夹(12),所述上夹(11)和下夹(12)呈镜像对称设置,所述上夹(11)包括第一连接部(111)和第一卡接部(112),所述下夹(12)包括第二连接部(121)和第二卡接部(122),所述巨磁阻效应芯片(4)和永磁铁(5)固定设置在第一连接部(111)或第二连接部(121)的内壁上;所述第一连接部(111)和第二连接部(121)之间通过扭簧(7)连接,所述第一卡接部(112)和第二卡接部(122)通过扭簧带动实现上夹和下夹的开合;所述螺旋测微器(6)的套筒从第一连接部(111)和第一卡接部(112)的过渡处穿过或从第二连接部(121)和第二卡接部(122)的过渡处穿过。
3.根据权利要求2所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述第一卡接部(112)及第二卡接部(122)的截面均呈三角形,所述第一卡接部(112)及第二卡接部(122)从外侧至内侧依次包括截面呈水平放置的“7”字型的塑料外壳层(1121)、合金磁屏蔽层(1122)和高压绝缘层(1123),所述第一卡接部(112)及第二卡接部(122)的高压绝缘层(1123)内侧固定连接有截面呈三角形的弹性接触层(1124)。
4.根据权利要求3所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述第一卡接部(112)及第二卡接部(122)内侧的两个所述弹性接触层与待测通电导线的接触的面为内凹面(113)。
5.根据权利要求4所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述内凹面(113)包括第一接触面(1131)和第二接触面(1132),未夹持待测通电导线时,所述第一接触面(1131)与第二接触面(1132)之间的夹角为100°-130°。
6.根据权利要求4所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述内凹面(113)为内凹弧面。
7.根据权利要求1所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述永磁铁(5)与巨磁阻效应芯片(4)之间的距离为2mm-5mm;所述巨磁阻效应芯片(4)与绝缘挡板(3)之间的距离为5mm-5cm。
8.根据权利要求3所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述塑料外壳层(1121)的材质为丙烯腈-丁二烯-苯乙烯共聚物,所述合金磁屏蔽层(1122)的材质为坡莫合金,所述高压绝缘层(1123)的材质为D602-1环氧亚胺玻璃粉云母带,所述弹性接触层(1124)的材质为乙丙橡胶。
9.根据权利要求1所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述信号处理电路包括巨磁阻效应芯片供电电压转换电路、仪表放大电路和电压跟随电路,所述巨磁阻效应芯片供电电压转换电路的输出电压连接到巨磁阻效应芯片的电源引脚,所述仪器放大电路同相输入端和反相输入端分别与巨磁阻效应芯片的正输出端和负输出端相连;所述仪器放大电路的输出端与电压跟随电路相连,所述电压跟随电路与示波器相连。
10.根据权利要求1所述一种抗干扰可调巨磁阻效应电流传感器,其特征在于,所述巨磁阻效应芯片(4)内部为惠斯通电桥结构。
CN201510393733.0A 2015-07-03 2015-07-03 一种抗干扰可调巨磁阻效应电流传感器 Active CN105044433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510393733.0A CN105044433B (zh) 2015-07-03 2015-07-03 一种抗干扰可调巨磁阻效应电流传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510393733.0A CN105044433B (zh) 2015-07-03 2015-07-03 一种抗干扰可调巨磁阻效应电流传感器

Publications (2)

Publication Number Publication Date
CN105044433A true CN105044433A (zh) 2015-11-11
CN105044433B CN105044433B (zh) 2018-02-16

Family

ID=54451123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510393733.0A Active CN105044433B (zh) 2015-07-03 2015-07-03 一种抗干扰可调巨磁阻效应电流传感器

Country Status (1)

Country Link
CN (1) CN105044433B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334373A (zh) * 2015-11-29 2016-02-17 国网江西省电力科学研究院 一种采用压电/弹性金属矩形鼓的小型电流传感器
CN109313222A (zh) * 2016-06-21 2019-02-05 3M创新有限公司 具有自对准特征的用于围绕线路导体保持电流传感器的保持器
CN112526293A (zh) * 2020-12-30 2021-03-19 北京合锐赛尔电力科技股份有限公司 一种配电线路在线故障监测装置、系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038305A (zh) * 2007-03-06 2007-09-19 吉林大学 阵列式巨磁阻抗效应电流传感器
CN201152885Y (zh) * 2008-01-15 2008-11-19 上海市七宝中学 非接触式测量电流的装置
CN101699309A (zh) * 2009-10-13 2010-04-28 清华大学 一种基于柔性电路板的巨磁阻抗效应传感探头
CN201622299U (zh) * 2009-06-19 2010-11-03 钱正洪 新型巨磁阻集成电流传感器
CN102707247A (zh) * 2012-06-06 2012-10-03 电子科技大学 一种自偏置巨磁阻抗传感器探头及其制备方法
CN103134967A (zh) * 2011-10-25 2013-06-05 霍尼韦尔国际公司 基于高电流范围磁阻的电流传感器
CN103454597A (zh) * 2012-05-29 2013-12-18 北京嘉岳同乐极电子有限公司 电流感应测量装置、测量方法及灵敏度调节方法
US20140103908A1 (en) * 2011-09-13 2014-04-17 Alps Green Devices Co., Ltd. Current sensor
JP2015011021A (ja) * 2013-07-02 2015-01-19 スタッフ株式会社 電流センサー

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038305A (zh) * 2007-03-06 2007-09-19 吉林大学 阵列式巨磁阻抗效应电流传感器
CN201152885Y (zh) * 2008-01-15 2008-11-19 上海市七宝中学 非接触式测量电流的装置
CN201622299U (zh) * 2009-06-19 2010-11-03 钱正洪 新型巨磁阻集成电流传感器
CN101699309A (zh) * 2009-10-13 2010-04-28 清华大学 一种基于柔性电路板的巨磁阻抗效应传感探头
US20140103908A1 (en) * 2011-09-13 2014-04-17 Alps Green Devices Co., Ltd. Current sensor
CN103134967A (zh) * 2011-10-25 2013-06-05 霍尼韦尔国际公司 基于高电流范围磁阻的电流传感器
CN103454597A (zh) * 2012-05-29 2013-12-18 北京嘉岳同乐极电子有限公司 电流感应测量装置、测量方法及灵敏度调节方法
CN102707247A (zh) * 2012-06-06 2012-10-03 电子科技大学 一种自偏置巨磁阻抗传感器探头及其制备方法
JP2015011021A (ja) * 2013-07-02 2015-01-19 スタッフ株式会社 電流センサー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱旺峰 等: "一种基于磁阻芯片的电流互感器闭环式设计", 《浙江理工大学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334373A (zh) * 2015-11-29 2016-02-17 国网江西省电力科学研究院 一种采用压电/弹性金属矩形鼓的小型电流传感器
CN105334373B (zh) * 2015-11-29 2017-12-12 国网江西省电力科学研究院 一种采用压电/弹性金属矩形鼓的小型电流传感器
CN109313222A (zh) * 2016-06-21 2019-02-05 3M创新有限公司 具有自对准特征的用于围绕线路导体保持电流传感器的保持器
CN109313222B (zh) * 2016-06-21 2021-05-28 3M创新有限公司 具有自对准特征的用于围绕线路导体保持电流传感器的保持器
CN112526293A (zh) * 2020-12-30 2021-03-19 北京合锐赛尔电力科技股份有限公司 一种配电线路在线故障监测装置、系统及方法

Also Published As

Publication number Publication date
CN105044433B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
TWI751219B (zh) 非接觸式電流測量系統
US20080303511A1 (en) Precision flexible current sensor
CN105547126A (zh) 一种电涡流位移传感器
CN102169133B (zh) 一种电流测量装置
US20120200293A1 (en) Non-contact current and voltage sensing method
CN205537488U (zh) 一种电涡流位移传感器
CN103901363A (zh) 一种单芯片z轴线性磁阻传感器
CN109283380A (zh) 电力系统中线路电流的测量方法、装置、设备及存储介质
JP2015038464A (ja) 電流センサ
CN105044433A (zh) 一种抗干扰可调巨磁阻效应电流传感器
CN103454597A (zh) 电流感应测量装置、测量方法及灵敏度调节方法
CN203480009U (zh) 一种单芯片z轴线性磁电阻传感器
CN104697677B (zh) 一种压磁式应力传感器
CN110806529A (zh) 一种电容型设备绝缘性能在线监测系统
Ripka Contactless measurement of electric current using magnetic sensors
CN103235189A (zh) 一种基于双电流电压比率法的微电阻高精度测量方法及实现该方法的测量系统
CN102707248B (zh) 一种双通道电容法测量磁致伸缩的装置及其方法
Yang et al. A non-intrusive voltage measurement scheme based on MEMS electric field sensors: Theoretical analysis and experimental verification of AC power lines
CN202033405U (zh) 一种电流测量装置
CN205263204U (zh) 瞬态电场传感器
CN110095643A (zh) 一种单磁芯四气隙开环霍尔电流传感器
CN104076180A (zh) 一种基于双探头免定标的光学电流传感器及方法
JP2012098205A (ja) 電流測定方法、および磁気センサ装置
CN204989291U (zh) 一种隧道磁电阻电流传感器
CN112161560B (zh) 一种基于永磁磁通测量的位移传感装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 523000, No. two, No. 17, Songshan hi tech Industrial Development Zone, Guangdong, Dongguan

Patentee after: Guangdong Institute of electronic and information engineering, University of Electronic Science and technology of China

Address before: 523000, No. two, No. 17, Songshan hi tech Industrial Development Zone, Guangdong, Dongguan

Patentee before: Institute of Electronic and Information Engineering In Dongguan, UESTC

CP01 Change in the name or title of a patent holder