CN105021863A - 用于监测光纤电流感测系统的系统和方法 - Google Patents

用于监测光纤电流感测系统的系统和方法 Download PDF

Info

Publication number
CN105021863A
CN105021863A CN201510177076.6A CN201510177076A CN105021863A CN 105021863 A CN105021863 A CN 105021863A CN 201510177076 A CN201510177076 A CN 201510177076A CN 105021863 A CN105021863 A CN 105021863A
Authority
CN
China
Prior art keywords
electrical characteristics
component
signal
light
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510177076.6A
Other languages
English (en)
Other versions
CN105021863B (zh
Inventor
D.R.华莱士
P.E.马肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN105021863A publication Critical patent/CN105021863A/zh
Application granted granted Critical
Publication of CN105021863B publication Critical patent/CN105021863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明题为用于监测光纤电流感测系统的系统和方法。一种系统包括:光源,配置成生成光的源;光纤电流传感器(FOCS),配置成检测光的源;以及解码电路,在通信上耦合到FOCS。该系统还包括通信上耦合到解码电路的健康监测电路。健康监测电路配置成接收第一信号的第一电特性分量和第二信号的第二电特性分量,生成第一信号的第一电特性分量和第二信号的第二电特性分量的总和,以及至少部分基于第一电特性分量和第二电特性分量的总和来生成输出信号。输出信号包括光源的操作条件的指示。

Description

用于监测光纤电流感测系统的系统和方法
技术领域
一般来说,本发明涉及光纤电流感测系统,以及更具体来说,涉及监测光纤电流感测系统的一个或多个组件的操作健康和条件。
背景技术
光纤电流传感器(FOCS)和/或光纤电流换能器(FOCT)按照一般可称作法拉第效应的情况来测量电流。具体来说,磁场中光与介质(例如电力导体)的交互作用使光的偏振平面旋转某个角度,其可沿光的传播方向与磁场的分量成线性比例。光的偏振则可测量,以确定流经例如电力导体的电流的幅值。但是,FOCS系统和/或FOCT系统的某些组件可随时间推移易遭受降级。因此,如果没有执行半规则预防维护,则相应系统在测量电流方面可变得不太有效。提供监测FOCS和/或FOCT系统的操作健康的系统会是有用的。
发明内容
下面概述其范围与现有要求保护的本发明相称的某些实施例。这些实施例不是意在限制要求保护的本发明的范围,这些实施例而是仅预计提供本发明的可能形式的概述。实际上,本发明可包含可与下面提出的实施例相似或不同的多种形式。
在第一实施例中,系统包括:光源,配置成生成光的源;光纤电流传感器(FOCS),配置成检测光的源;以及解码电路,在通信上耦合到FOCS。解码电路配置成接收作为电流的测量的指示的光的源,并且以此为基础生成第一信号和第二信号。该系统还包括通信上耦合到解码电路的健康监测电路。健康监测电路配置成接收第一信号的第一电特性分量和第二信号的第二电特性分量,生成第一信号的第一电特性分量和第二信号的第二电特性分量的总和,以及至少部分基于第一电特性分量和第二电特性分量的总和来生成输出信号。输出信号包括光源的操作条件的指示。
在第二实施例中,系统包括光纤检测电路。光纤检测电路包括:电流检测电路,配置成基于经由光纤电流传感器所接收的返回光强度来生成电流测量输出;以及光纤健康检测电路,在通信上耦合到电流检测电路。光纤健康检测电路配置成提取电流测量输出的第一电特性分量和电流测量输出的第二电特性分量,以及至少部分基于第一电特性分量和第二电特性分量的被调整总和来生成输出信号。输出信号包括通信上耦合到光纤电流传感器的光源的操作健康的指示。
在第三实施例中,系统包括:激光器,配置成生成光束;光纤电流换能器(FOCT),配置成检测光束;以及解码电路,在通信上耦合到FOCT。解码电路配置成接收作为电流的测量的指示的光束,并且以此为基础生成第一信号和第二信号。该系统还包括通信上耦合到解码电路的第一监测电路。第一监测电路配置成接收第一信号的直流(DC)分量和第二信号的DC分量,以及至少部分基于第一信号的DC分量和第二信号的DC分量的总和来生成输出信号。输出信号包括激光器或解码电路的操作条件的指示。该系统还包括通信上耦合到解码电路和第一监测电路的第二监测电路。第二监测电路配置成接收第一信号的交流(AC)分量和第二信号的AC分量,以及至少部分基于第一信号的AC分量的第一特性和第二信号的AC分量的第二特性的第二总和来生成第二输出信号。第二输出信号包括解码电路的一个或多个组件的操作条件的第二指示。
技术方案1:一种系统,包括:
光源,配置成生成光的源;
光纤电流传感器(FOCS),配置成检测所述光的源;
解码电路,在通信上耦合到所述FOCS,其中所述解码电路配置成接收作为电流的测量的指示的所述光的源,并且以此为基础生成第一信号和第二信号;以及
健康监测电路,在通信上耦合到所述解码电路,其中所述健康监测电路配置成:
  接收所述第一信号的第一电特性分量和所述第二信号的对应第二电特性分量;
  生成所述第一信号的第一电特性分量和所述第二信号的第二电特性分量的总和;以及
  至少部分基于所述第一电特性分量和所述第二电特性分量的总和来生成输出信号,其中所述输出信号包括所述光源的操作条件的指示。
技术方案2:如技术方案1所述的系统,其中,所述光的源包括第一偏振的光,以及第一偏振包括所述电流的测量的指示。
技术方案3:如技术方案1所述的系统,其中,所述光的源包括第二偏振的光,以及第二偏振包括所述电流的测量的指示。
技术方案4:如技术方案1所述的系统,其中,所述光源包括配置成将所述光的源传送给分光器的激光器,并且所述分光器配置成将所述光的源分为多个光的源。
技术方案5:如技术方案1所述的系统,其中,所述健康监测电路配置成接收作为所述第一电特性分量的第一直流(DC)分量以及作为所述第二电特性分量的第二DC分量。
技术方案6:如技术方案1所述的系统,其中,所述健康监测电路配置成在生成所述输出信号之前调整所述第一电特性分量和所述第二电特性分量的总和的增益。
技术方案7:如技术方案1所述的系统,其中,所述健康监测电路配置成:
接收所述第一信号的第三电特性分量和所述第二信号的对应第四电特性分量;
生成第一信号的所述第三电特性分量和所述第二信号的所述第四电特性分量的总和;以及
至少部分基于所述第三电特性分量和所述第四电特性分量的总和来生成第二输出信号,其中所述第二输出信号包括所述光源的操作条件的第二指示。
技术方案8:如技术方案7所述的系统,其中,所述健康监测电路配置成接收作为所述第三电特性分量的第一交流(AC)分量以及作为所述第四电特性分量的第二AC分量。
技术方案9:如技术方案7所述的系统,其中,所述健康监测电路配置成在生成所述第二输出信号之前调整所述第三电特性分量和所述第四电特性分量的总和的增益。
技术方案10:如技术方案1所述的系统,其中,所述健康监测电路配置成生成多个输出信号,并且所述多个输出信号的各输出信号对应于所述解码电路所接收的多个光的源的相应一个。
技术方案11:一种系统,包括:
光纤检测电路,包括:
  电流检测电路,配置成基于经由光纤电流传感器所接收的返回光强度来生成电流测量输出;以及
  光纤健康检测电路,在通信上耦合到所述电流检测电路,其中所述光纤健康检测电路配置成:
    提取所述电流测量输出的第一电特性分量和所述电流测量输出的第二电特性分量;以及
    至少部分基于所述第一电特性分量和所述第二电特性分量的被调整总和来生成输出信号,其中所述输出信号包括通信上耦合到所述光纤电流传感器的光源的操作健康的指示。
技术方案12:如技术方案11所述的系统,其中,所述指示包括经由所述光纤电流传感器所接收的所述光的功率强度的指示。
技术方案13:如技术方案11所述的系统,其中,所述光纤健康监测电路配置成接收作为所述第一电特性分量的第一直流(DC)分量以及作为所述第二电特性分量的第二DC分量。
技术方案14:如技术方案11所述的系统,其中,所述光纤健康监测电路配置成:
提取所述电流测量输出的第三电特性分量和所述电流测量输出的第四电特性分量;以及
至少部分基于所述第三电特性分量和所述第四电特性分量来生成第二输出信号,其中所述第二输出信号包括所述光纤检测电路的至少一个组件的所述操作健康的第二指示。
技术方案15:如技术方案14所述的系统,其中,所述光纤健康监测电路配置成接收作为所述第三电特性分量的第一交流(AC)分量和作为所述第四电特性分量的第二AC分量,并且所述第二指示包括所述第一AC分量或者所述第二AC分量中的直流(DC)分量的存在或者不存在。
技术方案16:如技术方案11所述的系统,其中,所述光源配置成将光的源传送给所述光纤电流传感器。
技术方案17:一种系统,包括:
激光器,配置成生成光束;
光纤电流换能器(FOCT),配置成检测所述光束;
解码电路,在通信上耦合到所述FOCT,其中所述解码电路配置成接收作为电流的测量的指示的所述光束,并且以此为基础生成第一信号和第二信号;
第一监测电路,在通信上耦合到所述解码电路,其中所述第一监测电路配置成:
  接收所述第一信号的直流(DC)分量和所述第二信号的DC分量;以及
  至少部分基于所述第一信号的DC分量和所述第二信号的DC分量的总和来生成输出信号,其中所述输出信号包括所述激光器或者所述解码电路的操作条件的指示;
以及
第二监测电路,在通信上耦合到所述解码电路和所述第一监测电路,其中所述第二监测电路配置成:
  接收所述第一信号的交流(AC)分量和所述第二信号的AC分量;以及
  至少部分基于所述第一信号的AC分量的第一特性和所述第二信号的AC分量的第二特性的第二总和来生成第二输出信号,其中所述第二输出信号包括所述解码电路的一个或多个组件的操作条件的第二指示。
技术方案18:如技术方案17所述的系统,其中,所述激光器配置成将所述光束传送给分光器,并且所述分光器配置成将所述光束分为多个光束。
技术方案19:如技术方案18所述的系统,其中,所述第一监测电路配置成生成与所述多个光束的每个对应的相应输出信号,并且所述相应输出信号的每个包括所述激光器的操作条件的相应指示。
技术方案20:如技术方案18所述的系统,其中,所述第二监测电路配置成生成与所述多个光束的每个对应的相应输出信号,并且所述相应输出信号的每个包括所述解码电路的一个或多个组件的操作条件的相应指示。
附图说明
可通过参照附图阅读以下详细描述,将会更好地了解本发明的这些及其他特征、方面和优点,附图中,相似符号在附图中通篇表示相似部件,附图包括:
图1是按照本实施例的光纤电流感测系统的一实施例的框图;
图2是按照本实施例、图1的包括监测电路的光纤电流感测系统的一实施例;以及
图3是按照本实施例、图2的包括组件的减少的光纤电流感测系统的一实施例。
图4是按照本实施例、图2的包括附加监测电路的光纤电流感测系统的一实施例。
图5是按照本实施例、图4的包括偏移指示电路的光纤电流感测系统的一实施例。
具体实施方式
下面将描述本发明的一个或多个具体实施例。在提供这些实施例的简要描述的过程中,本说明书中可能没有描述实际实现的所有特征。应当理解,在任何这种实际实现的开发中,如同任何工程或设计项目中那样,必须进行许多实现特定的判定以便实现开发人员的特定目标,例如符合系统相关和业务相关限制,这些限制可对每个实现而改变。此外,应当理解,这种开发工作可能是复杂且费时的,但仍然是获益于本公开的技术人员进行的设计、制作和制造的日常事务。
在介绍本发明的各个实施例的元件时,限定词“一”、“一个”、“该”和“所述”预计表示存在元件的一个或多个。术语“包含”、“包括”和“具有”预计包含在内,并且表示可存在除了列示元件之外的附加元件。
本实施例涉及光纤电流感测装置,其可包括光纤操作健康监测电路,以提供与光纤电流感测装置的操作和功能性有关的诊断信息。例如,操作健康监测电路可作为光纤电流感测装置的组成部分来包含,以提供与光纤电流感测装置本身的操作有关的诊断数据。具体来说,操作健康监测电路可监测所检测电流信号的直流(DC)分量的超出预计和/或指定电压范围的偏移电压的变化,其可指示光纤电流感测装置的光源或其他组件的不合格操作健康或条件。在另一个实施例中,操作健康监测电路可监测作为一个或多个高通滤波器(其可包含在光纤操作健康监测电路中)的不合格操作健康的指示的所检测电流信号的交流(AC)分量。这样,操作健康监测电路可产生外部输出信号(例如,其可输出到保护装置或者公用事业控制中心),其可用来监测光源的操作健康和/或健壮性,并且指示是否可要求预防维护和/或可要求预防维护的时间。具体来说,通过提供光纤操作健康监测电路,公用事业或其他公用事业服务提供商可提供有与例如光源的功率衰减或增益、插入损耗和/或隔离等有关的实时或近时诊断信息。这可促成光纤电流感测装置的更大可靠性,并且因而允许光纤电流感测装置所进行的电流测量的精度的增加以及光纤电流感测装置的广泛利用,与诸如基于核心的电流变压器(CT)和/或罗果夫斯基线圈之类的其他电流传感器相反。
鉴于以上所述,描述光纤电流感测系统、例如图1所示的光纤电流感测系统10的一实施例会是有用的。光纤电流感测系统10可包括用于测量流经例如一个或多个电力导体的电流的系统。如所示,系统10可包括光纤电流传感器(FOCS)12(例如或者其他光纤电流换能器(FOCT)),其可耦合到光源16,光源16沿例如光纤向分光器20和光学循环器22输出光18。如进一步所示,光纤电流传感器12可在通信上耦合到解码电路14。光纤电流传感器12可包括光盒(optical box)24、火石玻璃纤维26和反射表面28。
在一个实施例中,光18可以是波长在大约1310-1550纳米(nm)之间的非偏振光束。备选地,光18可以是任何形式的光,其可在允许光纤电流传感器12和解码电路14检测电流方面是有用的。如进一步所示,光18可传递到分光器20。在某些实施例中,分光器20可包括1:10(1-to-10)分光器,其在大约十个通道或以上之间分离光18方面是有用的。也就是说,光源16的输出可分离,以产生各通道的独立光18。
在某些实施例中,光学循环器22可包括三端口循环器,其允许进入一个端口的光(例如光18)从另一端口退出。具体来说,光18可在第一端口30进入光学循环器22,并且在第二端口34退出光学循环器22。在某些实施例中,退出第二端口34的光可经由多向光纤提供给光纤电流传感器12的光盒24。光18可进入光盒24,并且可经过火石玻璃纤维26来传送。光18然后可从反射表面28(例如反射镜)反射,并且经由火石玻璃纤维26返回到光盒24。
当电流流经例如电力导体(例如配电线和/或输电线)(光纤电流传感器12可与其耦合)时,光18的偏振角可旋转与经过导体的电流的幅值成比例的某个量(例如通过法拉第效应)。如将进一步理解,光盒24则可输出作为两个不同偏振的旋转光18,即x偏振光35和y偏振光37。y偏振光37的偏振可相对x偏振光35偏移90°。如果没有电流流经例如电力导体,则x偏振光35的幅值可等于y偏振光37的幅值。另一方面,如果电流流经导体,则x偏振光35的幅值和y偏振光37的幅值可以不相等。
在某些实施例中,x偏振光35可沿多向光纤33传播,并且在第二端口34进入光学循环器22。x偏振光35则可在第三端口32退出光学循环器22,并且可提供给监测电路14的一个或多个二极管40(例如PIN二极管)。具体来说,监测电路14可包括x偏振光35处理电路36和y偏振处理电路38。y偏振光37可经由类似光纤提供给y偏振处理电路38的类似二极管40(例如PIN二极管)。一个或多个二极管40可将x偏振光35和y偏振光37分别转换为所示第一和第二电信号39和41。
在某些实施例中,x偏振处理电路36可分离电信号39,并且经过高通滤波器42和低通滤波器44传递电信号39。高通滤波器42可隔离电信号39的交流(AC)分量,以及第一低通滤波器44隔离电信号39的直流(DC)分量。如进一步所示,除法器46可将电信号39的AC分量除以电信号39的DC分量。具体来说,除法器46的输出可表示光纤电流传感器12所监测的导体(例如电力线)的电流幅值。
类似地,y偏振处理电路38可分离电信号41,并且经过高通滤波器48和低通滤波器50传递电信号41。高通滤波器48可隔离电信号41的AC分量,以及低通滤波器50可隔离电信号41的DC分量。除法器52则可将电信号41的AC分量除以电信号41的DC分量。在一些实施例中,y偏振光37可与x偏振光35异相大约180°,并且因而y偏振处理电路38还可包括倒数器54(例如,其可经由硬件、软件或者其组合来实现),其可用来生成除法器52的输出的倒数值。在一些实施例中,相应信号39和41的DC分量可指示光源16的功率或强度(单位为瓦特(W))。例如,在一个实施例中,在系统10的正常操作条件期间,光源16的功率可包括大约100微瓦(μW)的光强度。但是,应当理解,光源16可输出具有光强度的不同值的输出光18。
如图1进一步所示,解码电路14还可包括加法器56,其例如可通过硬件、软件或者其组合来实现,并且可用来接收和相加除法器46和倒数器54的相应输出。输出除法器56则可将加法器56的输出乘以二分之一、例如输出乘法器和/或除法器58。由输出除法器56所提供的信号输出可以是指示流经例如一个或多个电力导体(光纤电流传感器12可与其耦合)的电流的电压信号输出。如将进一步理解,在某些实施例中,监测光纤电流感测系统10的操作健康和条件、以及更具体来说的光源16和/或光纤传感器12的操作健康和条件会是有用的,以便允许评估与经过电力导体(例如电力线)的电流相关的更准确信息。
具体来说,在一些实施例中,光源16可随时间推移易遭受降级,以及乃至光源16的输出(例如光18)可易遭受不合需要的衰减。如果保持未校验或者没有预防维护,则光源16并且乃至光纤传感器12在提供流经例如电力导体的电流的准确测量方面可变得不太有效。但是,公用事业维护人员或工程师可能没有关于光源16和/或光纤传感器12的操作健康的任何指示,并且因而光源16和/或光纤传感器12在使用中也许可能在准确测量电流输出(例如图1所示的电流信号输出)方面变得低效。例如,如果电流信号输出测量大约0安培的值或者另一异常低的值,则公用事业和/或公用事业维护人员可能没有关于这是丢失电力线的结果还是光纤电流感测系统10的一个或多个组件可能出故障的任何指示。相应地,会有用的是,提供作为解码电路14的一部分的光纤传感器健康监测电路,其可用来产生指示光源16和/或光纤传感器12的操作健康的外部信号。
现在来看图2,其示出光纤电流感测系统10的一实施例,其中解码电路14可包括健康监测电路60。在某些实施例中,健康监测电路60可包括在监测光源16和/或光纤传感器12的操作健康和/或操作状态方面有用的硬件、软件或者硬件和软件的组合。如图2所示,健康监测电路60可作为解码电路14的一部分来包含。但是,在其他实施例中,应当理解,健康监测电路60可作为解码电路14的外部系统来提供。
在某些实施例中,健康监测电路60可基于例如指示光源16的光18的功率或强度的输出信号的偏移来提供光源16和/或光纤传感器12的操作健康和/或操作状态的指示。具体来说,健康监测电路60可基于相应信号39和41(例如y1、y2)的DC分量来提供光源16和/或光纤传感器12的操作健康和/或操作状态的指示。因此,如所示,健康监测电路60可耦合(例如电耦合)到低通滤波器44的输出(例如输出y1)和低通滤波器50的输出(例如输出y2)。
在某些实施例中,通过监测信号39的DC分量和信号41的DC分量,监测电路60可提供光源16和/或光纤传感器12的操作健康和/或操作状态的指示,因为当光源16和光纤传感器12的操作健康和/或操作状态起作用时,信号39和41的相应DC分量(例如DC偏移)可处于预计电压和/或电流范围之内。因此,从预计和/或指定电压范围的变化可指示光源16和/或光纤传感器12的不合格操作健康或者低于光源16和/或光纤传感器12的合乎需要操作健康。
在某些实施例中,如图2进一步所示,健康监测电路60可接收信号39和41(例如y1、y2)的相应DC分量(例如DC偏移),并且经由加法装置61来相加相应DC分量。加法装置61在一些实施例中可包括在组合两个或更多信号方面有用的硬件和软件系统的组合。加法装置61则可将信号39和41(例如y1、y2)的DC分量之和传递给放大器62。放大器62可包括例如一个或多个有源固态装置(例如晶体管、场效应晶体管(FET)等)或者其他放大电子装置(例如运算放大器(OpAmp)),其可用来将功率增益(G)(例如作为输出功率与输入功率的比率(单位为分贝dB)所测量的功率级的增加或降低)提供给加法装置61的输出信号并且因此提供给放大器62的输入信号。因此,放大器62可放大信号39和41(例如y1、y2)的DC分量之和。在一个实施例中,放大器62的功率增益(G)可以是大约0.05的增益比率值。但是,应当理解,可使用其他增益值。
如进一步所示,放大器62的输出可经由加法装置64与除法器46的输出(例如,与电信号39的AC分量和DC分量的商值对应的输出)和倒数器54的输出(例如,与电信号41的AC分量和DC分量的商值的倒数值对应的输出)相加。具体来说,上述信号可相加,以减少将要提供给外部控制系统(例如,如图2所示的外部监测器)的输出的数量。这样,单个输出可作为光源16、光纤传感器12和/或解码电路14的某些组件的操作健康的指示来提供,与多个输出相反。但是,在其他实施例中,应当理解,相应信号本身可提供光源16、光纤传感器12和/或解码电路14的某些组件的操作健康的至少某个指示。
在某些实施例中,加法装置64可与加法装置61基本上相似。健康监测电路60的乘法器66则可接收加法装置64的输出,并且提供与例如二分之一相乘的输出。如所示,监测电路60的输出可提供光源16、光纤传感器12和/或解码电路14的某些组件的操作健康和/或操作状态的指示。这样,监测电路60可产生外部输出信号(例如,其可输出到公用事业控制中心),其用来诊断光源16(例如激光器)的健康和/或健壮性,并且确定可要求预防维护的时间。
在某些实施例中,监测电路60也可提供一个或多个特定优点,例如在实施例中,当光纤传感器12可耦合到沿高压输电线的串联电容器安装时。具体来说,在这种实施例中,光纤电流感测系统10的某些组件在正常操作条件下可能不是可访问的,并且因而只能够在例如停电期间来访问。因此,通过提供监测电路60,公用事业或者其他公用事业服务提供商可提供有与例如光源16的功率衰减、光学循环器22的插入损耗和/或隔离、解码电路14的低通滤波器42、44、48和50中的放大器的健康等有关的实时或者近时诊断信息。监测电路60还可提供关于光纤(例如携带光信号的光纤)是起作用的以及还有关于解码电路14的其他组件是起作用的指示。此外,如先前所述,应当理解,光纤电流感测系统10可包括多个输出通道(例如9-10个输出通道),并且各通道可由监测电路60来监测。因此,监测电路60可提供关于各通道的组件的功能性的指示。
在其他实施例中,监测电路60可基于例如解码电路14的测量电流信号输出的值间断地监测光纤电流感测系统10的一个或多个组件的操作健康。例如,如果电流信号输出测量大约0安培或者其他异常低和/或高的值,则监测电路60可对外部控制系统和/或其他保护装置(例如基于微处理器的保护继电器)生成输出,作为光纤电流感测系统10的一个或多个组件(例如光源16、光纤电流传感器12等)的操作健康的指示。具体来说,在某些实施例中,监测电路60的输出信号可包括光源16和低通滤波器44和50的操作健康的指示以及所检测电流信号输出。这样,因为连同电流信号输出一起包含操作健康指示,所以外部控制系统和/或外部保护装置可接收各通道的指示,并且确定可用来生成对某个时间段的某些数据趋势的光源16的总功率级。此外,利用本技术,公用事业和/或公用事业维护人员例如可具有关于电流输出信号的异常低和/或高的值是否归因于例如丢失电力线或者光纤电流感测系统10的一个或多个组件是否变成不操作的指示。
在另一个实施例中,如图3所示,放大器62的输出可以没有与除法器46的输出(例如,与电信号39的AC分量和DC分量的商值对应的输出)和倒数器54的输出(例如,与电信号41的AC分量和DC分量的商值的倒数值对应的输出)相加。放大器62的输出而是可如所示与除法器46的输出和电流信号输出直接相加。这样,可产生健康监测电路60的输出,同时降低健康监测电路60以及乃至解码电路14的硬件和/或系统复杂度。
在某些实施例中,如图4所示,作为健康监测电路60的补充或替代,解码电路14还可包括滤波器健康监测电路68。具体来说,滤波器健康监测电路68可接收信号39和41(例如x1、x2)的相应AC分量,以及提供例如相应高通滤波器42和48的操作分离和/或功能性的指示。如所示,滤波器健康监测电路48还可包括用来接收信号39的AC分量的低通滤波器70以及用来接收信号41的AC分量的低通滤波器72。低通滤波器70和72可分别滤出信号39和41(例如x1、x2)的高频分量(例如AC分量),并且产生相应DC信号。具体来说,如果高通滤波器开始出故障或者变得部分不操作,则DC分量可开始在信号39和41(例如x1、x2)中变得明显。
在某些实施例中,加法装置74则可相加从低通滤波器70和72所接收的相应DC信号(例如对应于高通滤波器42和48的输出)。如先前针对图2所述,信号39和41的相应分量可相加,以减少将要提供给外部控制系统和/或外部保护装置的输出的数量。这样,单个输出可作为高通滤波器42和48的操作健康的指示来提供,与多个输出相反。加法装置74(例如,其可与监测电路60的加法装置61相似)则可将DC信号(例如,信号39和41(x1、x2)的DC分量)之和传递给放大器76。
如针对放大器62类似地所述,放大器76可包括例如一个或多个有源固态装置(例如晶体管、FET等)或者其他放大电子装置(例如OpAmp),其可用来将功率增益(G)提供给加法装置74的输出信号并且因而放大输出信号。放大器76则可输出外部信号(例如,其可输出到公用事业控制中心)。具体来说,放大器76的输出的某些电特性(例如频率、信号失真、信号噪声、频率抖动、信号不稳定性等)可经过分析,以确定高通滤波器42和48的操作健康。这样,滤波器监测电路68的输出可提供高通滤波器42和48的操作健康和/或操作状态的指示。以及乃至解码电路14的操作健康和/或操作状态的指示。
现在来看图5,在其他实施例中,作为健康监测电路60和滤波器健康监测68的补充或替代,解码电路14还可包括偏移监测电路,其可以可用于监测放大器和/或除法器46和52的操作状态或操作健康。如所示,来自相应除法器46和52的信号可传递给加法装置78。在一个实施例中,由于除法器46和52的输出信号之间的相位关系,加法装置78的输出可以是大约零的预计值。因此,加法装置78的非零输出值可指示放大器和/或除法器46和52的不合格操作健康或者其他不利操作状态。
例如,相加信号可传递给低通滤波器80,并且然后传递给放大器82。如果例如经滤波和放大的信号值包括较大的非零值(例如大约10 VDC或以上的电压值),则偏移监测电路可提供解码电路14的一个或多个电子组件(例如乘法器和/或除法器46和52)的不合格操作健康的指示。另一方面,例如,如果经滤波和放大的信号值包括较小的非零值(例如小于大约9-10 VDC的电压值),则偏移监测电路可提供与光纤电流传感器12关联的偏移的指示,并且因而可提供光纤电流传感器12的操作健康的指示。
所公开实施例的技术效果涉及光纤电流感测装置,其可包括光纤操作健康监测电路,以提供与光纤电流感测装置的操作和功能性有关的诊断信息。例如,操作健康监测电路可作为光纤电流感测装置的组成部分来包含,以提供与光纤电流感测装置本身的操作有关的诊断数据。具体来说,操作健康监测电路可监测所检测电流信号的直流(DC)分量中的超出预计和/或指定电压范围的偏移电压的变化,其可指示光纤电流感测装置的光源或其他组件的不合格操作健康或条件。在另一个实施例中,操作健康监测电路可监测作为一个或多个高通滤波器(其可包含在光纤操作健康监测电路中)的不合格操作健康的指示的所检测电流信号的交流(AC)分量。这样,操作健康监测电路可产生外部输出信号(例如,其可输出到保护装置或者公用事业控制中心),其可用来监测光源的操作健康和/或健壮性,并且指示是否可要求预防维护和/或可要求预防维护的时间。具体来说,通过提供光纤操作健康监测电路,公用事业或其他公用事业服务提供商可提供有与例如光源的功率衰减或增益、插入损耗和/或隔离等有关的实时或近时诊断信息。
本书面描述使用包括最佳模式的示例来公开本发明,并且还使本领域的技术人员能够实施本发明,包括制作和使用任何装置或系统,以及执行任何结合方法。本发明的专利范围可由权利要求书来限定,并且可包括本领域的技术人员想到的其他示例。如果这类其他示例具有与权利要求的文字语言完全相同的结构单元,或者如果它们包括具有与权利要求的文字语言的非实质差异的等效结构单元,则预计它们落入权利要求的范围之内。

Claims (10)

1. 一种系统,包括:
光源,配置成生成光的源;
光纤电流传感器(FOCS),配置成检测所述光的源;
解码电路,在通信上耦合到所述FOCS,其中所述解码电路配置成接收作为电流的测量的指示的所述光的源,并且以此为基础生成第一信号和第二信号;以及
健康监测电路,在通信上耦合到所述解码电路,其中所述健康监测电路配置成:
  接收所述第一信号的第一电特性分量和所述第二信号的对应第二电特性分量;
  生成所述第一信号的第一电特性分量和所述第二信号的第二电特性分量的总和;以及
  至少部分基于所述第一电特性分量和所述第二电特性分量的总和来生成输出信号,其中所述输出信号包括所述光源的操作条件的指示。
2. 如权利要求1所述的系统,其中,所述光的源包括第一偏振的光,以及第一偏振包括所述电流的测量的指示。
3. 如权利要求1所述的系统,其中,所述光的源包括第二偏振的光,以及第二偏振包括所述电流的测量的指示。
4. 如权利要求1所述的系统,其中,所述光源包括配置成将所述光的源传送给分光器的激光器,并且所述分光器配置成将所述光的源分为多个光的源。
5. 如权利要求1所述的系统,其中,所述健康监测电路配置成接收作为所述第一电特性分量的第一直流(DC)分量以及作为所述第二电特性分量的第二DC分量。
6. 如权利要求1所述的系统,其中,所述健康监测电路配置成在生成所述输出信号之前调整所述第一电特性分量和所述第二电特性分量的总和的增益。
7. 如权利要求1所述的系统,其中,所述健康监测电路配置成:
接收所述第一信号的第三电特性分量和所述第二信号的对应第四电特性分量;
生成第一信号的所述第三电特性分量和所述第二信号的所述第四电特性分量的总和;以及
至少部分基于所述第三电特性分量和所述第四电特性分量的总和来生成第二输出信号,其中所述第二输出信号包括所述光源的操作条件的第二指示。
8. 如权利要求7所述的系统,其中,所述健康监测电路配置成接收作为所述第三电特性分量的第一交流(AC)分量以及作为所述第四电特性分量的第二AC分量。
9. 如权利要求7所述的系统,其中,所述健康监测电路配置成在生成所述第二输出信号之前调整所述第三电特性分量和所述第四电特性分量的总和的增益。
10. 如权利要求1所述的系统,其中,所述健康监测电路配置成生成多个输出信号,并且所述多个输出信号的各输出信号对应于所述解码电路所接收的多个光的源的相应一个。
CN201510177076.6A 2014-04-15 2015-04-15 用于监测光纤电流感测系统的系统和方法 Active CN105021863B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/253300 2014-04-15
US14/253,300 US9377489B2 (en) 2014-04-15 2014-04-15 Systems and methods for monitoring fiber optic current sensing systems

Publications (2)

Publication Number Publication Date
CN105021863A true CN105021863A (zh) 2015-11-04
CN105021863B CN105021863B (zh) 2020-08-21

Family

ID=52784960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510177076.6A Active CN105021863B (zh) 2014-04-15 2015-04-15 用于监测光纤电流感测系统的系统和方法

Country Status (6)

Country Link
US (1) US9377489B2 (zh)
EP (1) EP2933644B1 (zh)
CN (1) CN105021863B (zh)
BR (1) BR102015007109B1 (zh)
CA (1) CA2887002C (zh)
ZA (1) ZA201502182B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643886A (zh) * 2016-08-31 2019-04-16 泰连公司 配置为确定交流电力线中的直流分量何时超过指定阈值的控制电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726033B2 (ja) * 2016-06-01 2020-07-22 九電テクノシステムズ株式会社 電流検出装置
WO2019197223A1 (en) * 2018-04-12 2019-10-17 Abb Schweiz Ag A spliced optical fiber with splice protection, current sensor with such spliced optical fiber and method for protecting a spliced optical fiber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2060892U (zh) * 1988-12-22 1990-08-22 清华大学 调制光源闭环检测光纤电流传感器
EP0458429A2 (en) * 1990-04-25 1991-11-27 Mitsubishi Denki Kabushiki Kaisha Optical measurement device
US5149962A (en) * 1991-06-03 1992-09-22 Simmonds Precision Products, Inc. Proximity detector using faraday effect and bidirectional transmission
CN1157656A (zh) * 1994-09-09 1997-08-20 西门子公司 具有温度补偿的用于测量交流电流的方法及装置
US20100253320A1 (en) * 2007-10-23 2010-10-07 Tokyo Electric Power Company, Incorporated Optical fiber electric current sensor and electric current measurement method
CN102243258A (zh) * 2011-04-13 2011-11-16 华北电力大学 调制型光学电流互感器及其测量交直流电流的方法
CN102830258A (zh) * 2012-08-24 2012-12-19 易能(中国)电力科技有限公司 光学电流传感系统及电流测量方法
CN103698571A (zh) * 2014-01-03 2014-04-02 东南大学 具有自供能低功耗的电流互感器设备及母线电流检测方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612500A (en) * 1984-09-04 1986-09-16 Westinghouse Electric Corp. Temperature stabilized Faraday rotator current sensor by thermal mechanical means
US6434285B1 (en) * 1998-12-31 2002-08-13 Nxtphase Technologies Srl Fiber optic difference current sensor
US6670799B1 (en) 2000-05-03 2003-12-30 Nxt Phase Corporation Optical current measuring for high voltage systems
DE10021669A1 (de) 2000-05-05 2001-11-08 Abb Research Ltd Faseroptischer Stromsensor
FR2811085B1 (fr) 2000-06-30 2002-08-23 Schneider Electric Ind Sa Dispositif de mesure d'un courant electrique par effet faraday
US7233746B2 (en) 2002-01-30 2007-06-19 Blake James N Wide dynamic range sensor signal processing method & circuitry for analog and digital information signals
US20040021100A1 (en) * 2002-04-12 2004-02-05 Mikhail Gouzman Fiber-optic sensor for measuring level of fluid
ATE443873T1 (de) * 2004-11-18 2009-10-15 Powersense As Kompensation von einfachen faseroptischen faraday-effekt-sensoren
EP1857824A4 (en) 2005-03-08 2012-02-29 Tokyo Electric Power Co INTENSITY MODULE TYPE PHOTO SENSOR AND PHOTO CURRENT / VOLTAGE SENSOR
WO2006095620A1 (ja) 2005-03-08 2006-09-14 The Tokyo Electric Power Company, Incorporated 光センサおよび光電流・電圧センサ
EP2095135B1 (en) 2006-12-22 2015-11-04 ABB Research Ltd. Optical voltage sensor
CA2699017A1 (en) 2007-09-10 2009-03-19 The Tokyo Electric Power Company, Incorporated Optical fiber electric current measurement apparatus and electric current measurement method
EP2223129A1 (en) 2007-12-21 2010-09-01 ABB Research Ltd. Gas-insulated switchgear device with optical current sensor
US20100309473A1 (en) * 2007-12-21 2010-12-09 Honeywell International Inc. Fiber optic current sensor and method for sensing current using the same
US8922194B2 (en) * 2009-09-11 2014-12-30 Alstom Technology Ltd Master-slave fiber optic current sensors for differential protection schemes
US8395372B2 (en) 2009-10-28 2013-03-12 Optisense Network, Llc Method for measuring current in an electric power distribution system
JP5904694B2 (ja) * 2009-12-10 2016-04-20 株式会社東芝 サニャック干渉型光電流センサ
US9222830B2 (en) * 2010-06-17 2015-12-29 Research Foundation Of The State University Of New York Optical control sensor system with driver that switches frequencies of a set of different orthogonal signals and modulates the intensity of light
US8781266B2 (en) 2011-12-23 2014-07-15 General Electric Company Distributed, multiplexed fiber optic current transducer using optical power division
US9465052B2 (en) * 2013-06-10 2016-10-11 General Electric Company Systems and methods for monitoring fiber optic current sensing systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2060892U (zh) * 1988-12-22 1990-08-22 清华大学 调制光源闭环检测光纤电流传感器
EP0458429A2 (en) * 1990-04-25 1991-11-27 Mitsubishi Denki Kabushiki Kaisha Optical measurement device
US5149962A (en) * 1991-06-03 1992-09-22 Simmonds Precision Products, Inc. Proximity detector using faraday effect and bidirectional transmission
CN1157656A (zh) * 1994-09-09 1997-08-20 西门子公司 具有温度补偿的用于测量交流电流的方法及装置
US20100253320A1 (en) * 2007-10-23 2010-10-07 Tokyo Electric Power Company, Incorporated Optical fiber electric current sensor and electric current measurement method
CN102243258A (zh) * 2011-04-13 2011-11-16 华北电力大学 调制型光学电流互感器及其测量交直流电流的方法
CN102830258A (zh) * 2012-08-24 2012-12-19 易能(中国)电力科技有限公司 光学电流传感系统及电流测量方法
CN103698571A (zh) * 2014-01-03 2014-04-02 东南大学 具有自供能低功耗的电流互感器设备及母线电流检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643886A (zh) * 2016-08-31 2019-04-16 泰连公司 配置为确定交流电力线中的直流分量何时超过指定阈值的控制电路
CN109643886B (zh) * 2016-08-31 2020-07-28 泰连公司 配置为确定交流电力线中的直流分量何时超过指定阈值的控制电路

Also Published As

Publication number Publication date
CN105021863B (zh) 2020-08-21
US20150293154A1 (en) 2015-10-15
US9377489B2 (en) 2016-06-28
EP2933644B1 (en) 2019-10-09
BR102015007109A2 (pt) 2017-11-28
ZA201502182B (en) 2016-01-27
CA2887002C (en) 2022-12-06
BR102015007109B1 (pt) 2021-12-14
CA2887002A1 (en) 2015-10-15
EP2933644A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
CN105467188B (zh) 一种采用分段式光路故障诊断的全光纤电流传感器
US6434285B1 (en) Fiber optic difference current sensor
CN105021863A (zh) 用于监测光纤电流感测系统的系统和方法
CN112904070B (zh) 全光纤电流互感器及其检测模块、光路状态诊断方法
CN103698571A (zh) 具有自供能低功耗的电流互感器设备及母线电流检测方法
Ghosh et al. Development of a fiber-optic current sensor with range-changing facility using shunt configuration
Pang et al. Fault mechanism of fiber optical current transformer based on signal processing method
CN106053914A (zh) 具有偏移消除和电流线性化的光学电流换能器
KR20230020228A (ko) 스마트 계장 장치를 이용한 과전류 누전 아크 모니터링 시스템을 구비한 분전반, 수배전반, 전동기제어반
EP2510365B1 (en) Magneto optical current transducer with improved outage performance
CN103869134A (zh) 一种电流互感器及基于神经网络的母线电流检测方法
Li et al. Design and evaluation of a current differential protection scheme incorporating a fiber optical current sensor
CN213714536U (zh) 一种M-Z干涉仪和φ-OTDR结合的光纤振动检测装置
CN208969155U (zh) 一种实时自适应浪涌电流光电检测装置
Liu et al. Fault diagnosis algorithm of fiber current transformer based on Wavelet-Allan variance
US20070275588A1 (en) Isolated signal probe
CN109270320A (zh) 一种可用于输电线路的光纤光栅测量装置
KR100428891B1 (ko) 레이저를 이용한 비접촉식 전류 측정장치
CN104820122A (zh) 一种光纤电压传感系统及获取与电压相关相位差的方法
El-Bashar et al. Research of an Optoelectronic Current Transformer Based on a Designed Magneto-Optic Sensor
De Maria et al. Performance of exponential coupler in the SPS with LHC type beam for transverse broadband instability analysis
WO2017115623A1 (ja) 電流センサ及びそれを用いた計測装置、計測方法
CN118011071A (zh) 基于nv色心系综传感器的电流检测装置、方法和介质
CN116576920A (zh) 一种电缆振动与应变监测装置及方法
Cruden et al. Advanced optical sensor performance in transmission and distribution applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240102

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York State, USA

Patentee before: General Electric Co.