WO2017115623A1 - 電流センサ及びそれを用いた計測装置、計測方法 - Google Patents

電流センサ及びそれを用いた計測装置、計測方法 Download PDF

Info

Publication number
WO2017115623A1
WO2017115623A1 PCT/JP2016/086290 JP2016086290W WO2017115623A1 WO 2017115623 A1 WO2017115623 A1 WO 2017115623A1 JP 2016086290 W JP2016086290 W JP 2016086290W WO 2017115623 A1 WO2017115623 A1 WO 2017115623A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
current
magnetic
magneto
optical element
Prior art date
Application number
PCT/JP2016/086290
Other languages
English (en)
French (fr)
Inventor
遠藤 久
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017115623A1 publication Critical patent/WO2017115623A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices

Definitions

  • the present invention relates to a current sensor used for evaluation of a current related to an electric device or an electronic device, a measuring device using the same, and a measuring method.
  • a disk winding having a high mechanical strength has been widely used as a winding of an inner iron type static induction electric machine.
  • Disc windings are constructed by stacking disc coils with a small number of turns and a relatively small facing area. Therefore, the series capacitance between the coils is small, and the characteristics against shock voltage such as lightning surge are poor.
  • a CC shielded wire that inductively couples and adds a series capacitance between the coils by a shielded wire that does not allow a load current to flow in a remote coil has been invented. It is used.
  • Patent Document 1 In the configuration of the disk winding using the CC shielded wire described in Japanese Patent Laid-Open No. 2001-196237 (hereinafter referred to as Patent Document 1), the series capacitance between the coils is increased, and the impact voltage such as lightning surge is increased. The potential distribution characteristic with respect to is improved. However, in such a structure, when an impact voltage enters from the end of the line, a large voltage is generated between the even-numbered disk coils from the end of the line, and the insulation becomes severe.
  • Patent Document 1 In the conventional technique described in Patent Document 1, it is necessary to prepare a large number of sensors having different winding numbers, and there is a problem that it is difficult to adjust the sensitivity of the sensors.
  • the present invention has been made in view of the above, and an object thereof is to provide an optical current sensor capable of adjusting the sensor sensitivity and a measuring device using the same.
  • the present invention provides a magnetic flux density along a magnetic path of the magnetic core in a current sensor that detects a current based on a magnetic field distribution by causing a magnetic core to act on a current line to be measured. And a magnetic flux density changing means for changing the current, and an optical current detecting means for detecting a current based on a polarization angle of light acting on the magneto-optical element by inserting a magneto-optical element into the magnetic core.
  • the current measurement range can be easily changed in an optical current sensor with high insulation.
  • Example 1 will be described with reference to FIGS.
  • FIG. 1 is a functional block diagram schematically illustrating the overall configuration of the measurement apparatus according to the first embodiment.
  • a measurement apparatus 100 includes a measurement unit 1 that performs transmission / reception of light used for measurement and a measurement value calculation process, an input unit 2 that inputs various setting values and command signals to the measurement unit 1, and a measurement unit. 1 includes a display unit 3 that displays a measurement value that is a result of the calculation process 1 and a current sensor 40 that transmits transmission light 1a from the measurement unit 1 and transmits the transmission light 1b to the measurement unit 1 as reception light 1b. .
  • the measurement unit 1 generates light (transmission light 1 a) used for measurement and transmits it to the current sensor 40 via the connector 19, and light (reception light 1 b) from the current sensor 40 via the connector 29. And a calculation unit 30 that performs calculation processing based on the received light 1b received by the light reception unit 20.
  • the light source unit 10 generates a light used for measurement based on a command signal from the input unit 2, adjusts the wavelength of the light generated by the light emitting unit 11, and converts the light into a linearly polarized wave.
  • a transmission light adjusting unit 12 that transmits the current sensor 40 via the current sensor 40.
  • the light emitting unit 11 includes a white light source that emits visible light.
  • the transmission light adjustment unit 12 includes a wavelength selection unit such as a spectroscope and an interference filter that extracts a constant wavelength from the light generated by the light emitting unit 11, a conversion unit to linearly polarized waves, and the like. At least one wavelength of light can be generated. Note that a light emitting diode or a laser diode can be used for the light emitting unit 11 depending on the specifications of the light to be generated.
  • the light receiving unit 20 receives the received light 1b from the current sensor 40 via the connector 29, and selects and adjusts the received light 1b according to the wavelength and the polarization angle, and the received light adjusting unit 23 A light receiving element 22 that receives the light and converts it into an electrical signal, and a data converter 21 that converts the electrical signal obtained by the light receiving element 22 into received data.
  • the received light adjusting unit 23 has a wavelength selecting unit such as a spectroscope or an interference filter that extracts a certain wavelength from the received light 1b.
  • a wavelength selecting unit such as a spectroscope or an interference filter that extracts a certain wavelength from the received light 1b.
  • a photodiode or an avalanche diode is used as the light receiving element 22.
  • the data conversion unit 21 converts the electrical signal from the light receiving element 22 into reception data and transmits it to the calculation unit 30.
  • FIG. 10 shows an example of a functional block diagram schematically showing the configuration of the light emitting unit and the light receiving unit described above.
  • the transmission light adjustment unit 12 includes a light source unit 10A that employs a polarizer 12A
  • the reception light adjustment unit 23 includes a light reception unit 20A that employs an analyzer 23A.
  • FIG. 11 shows an example of a functional block diagram schematically showing structures of other light emitting units and light receiving units.
  • the light source unit 10B adopts the transmission light adjustment unit 12B as the transmission light adjustment unit 12
  • the light receiving unit 20B adopts the reception light adjustment unit 23B as the reception light adjustment unit 23.
  • the transmission light adjusting unit 12B is composed of a phase adjusting unit 12a and a quarter wavelength plate 12b, and performs wavelength adjustment and conversion to linearly polarized waves.
  • the received light adjusting unit 23B includes a coupler 23a, a coupler 23c, a polarizer 23b, and a quarter wavelength plate 23d, and selects and adjusts the received light 1b according to the wavelength and the polarization angle.
  • the calculation unit 30 includes a conversion unit 31 that converts received data from the light receiving unit 20 into a current value and a magnetic field strength, and a memory 32 that stores a conversion value used in the conversion unit 31.
  • received data and current, a relationship between received data and a magnetic field, and the like are empirically obtained in advance from results of experiments and simulations and stored as converted values.
  • the conversion unit 31 converts the received data into a current value, a magnetic field strength, and the like based on the converted value stored in the memory 32 and sends it to the display unit 3 as a measured value.
  • the current detection part adjusts the density of the magnetic flux generated from the current to be measured by the air gap by the optical current detection means for irradiating the magneto-optical element with light and the magnetic core, and applies the magnetic field to the magneto-optical element. Consists of magnetic flux density changing means.
  • FIGS. 2 and 3 are cross-sectional views in a plane passing through the optical axis of the current sensor, and are diagrams showing magnetic flux lines distributed in the magnetic core constituting the current sensor.
  • FIG. 2 when the annular magnetic core has a structure in which the center positions of the outer diameter and the inner diameter are the same, the magnetic field distribution generated by the current line to be measured inserted in the inner diameter region does not tilt. Take a uniform magnetic field distribution.
  • FIG. 3 when the annular magnetic core has a structure in which the center positions of the outer diameter and the inner diameter are different, the magnetic field distribution generated by the current line of the measurement object inserted in the inner diameter region is the cross-sectional area of the magnetic core. Accordingly, the magnetic flux density is inclined. Therefore, the current measurement range can be changed by adopting a structure in which the magneto-optical element can be inserted and installing the magneto-optical element at the position of the magnetic core corresponding to the desired sensor sensitivity. This is the sensor provided in this embodiment.
  • the current sensor 40 has a magneto-optical element connected to an optical fiber.
  • the optical fibers 41 and 46 are made of quartz glass, lead-containing quartz glass, or the like.
  • the magnetic core 44 can be made of a transparent metal called garnet, and is made of yttrium, iron, garnet to which Bi is added, gadolinium, iron, garnet, which will be described later, or the like.
  • FIG. 4 is a diagram schematically showing the relationship between the magnetic field acting on the magnetic material and the deflection angle of the light transmitted through the magnetic material
  • FIG. 5 shows the deflection of the light transmitted by the magnetic field caused by the current acting on the current sensor. It is a figure which shows a mode that an angle changes typically.
  • the polarization angle rotates and changes depending on the magnetization state of the magnetic body 202 due to the magneto-optic effect.
  • This is called the Faraday effect. That is, when the magnetization state changes due to the magnetic field (magnetic flux) acting on the magnetic body 202, the rotation amount of the deflection angle of the transmitted light 201 with respect to the incident light 200 generated by the light source 200a and incident on the magnetic body 202 is detected.
  • the magnetization state of the magnetic body 202 can be detected, and the strength of the magnetic field acting on the magnetic body 202 can be detected.
  • the current sensor 40 is arranged near the current line 110 through which the current to be measured flows, and the linearly polarized wave generated by the light source unit 10 is used as the transmission light 1a.
  • the magnetism of the detection unit 42 is detected.
  • the magnetization state of the body core 44 that is, the strength of the magnetic field acting on the magnetic core 44 can be detected.
  • FIG. 6 is a diagram showing the relationship between the amount of rotation of the polarization angle of the light transmitted through the magnetic core and the magnetic field strength acting on the magnetic body 202, with the vertical axis representing the polarization angle (degrees) and the horizontal axis representing the magnetic field strength ( A / m) respectively.
  • the polarization angle changes in proportion to the magnetic field intensity. Also, since there is a proportional relationship between the magnetic field strength and the amount of current, the current can be measured from the information on the polarization angle by acquiring the relationship between the magnetic field strength and the polarization angle in advance as shown in FIG. it can.
  • FIG. 7 is a diagram showing the relationship between the thickness of the magnetic body 202 in the optical axis direction and the polarization angle, where the vertical axis indicates the polarization angle (degrees) and the horizontal axis indicates the thickness (mm) of the magnetic core. Yes. As shown in FIG. 7, the magnetic body 202 exhibiting the Faraday effect increases in proportion to the thickness in the optical axis direction (that is, the optical path length of the optical path agency in the magnetic core).
  • the relationship between the rotation amount of the polarization angle of the transmitted light and the magnetic field strength acting on the detection unit is acquired in advance and stored in the memory 32, whereby there is a proportional relationship between the magnetic field and the current.
  • the current can be measured from the information on the polarization angle in the conversion unit 31.
  • the display unit 3 displays the current waveform calculated by the conversion unit.
  • the detection unit 42 of the current sensor 40 is disposed in the vicinity of the current line 110 through which the current to be measured flows. Subsequently, when a measurement instruction is given from the input unit 2, linearly polarized light is generated as the transmission light 1 a from the light source unit 10, enters the optical fiber 41 of the current sensor via the connector 19, and the optical fiber 41. Through the detector 42. At this time, the polarization angle of the light is rotated by the magnetization state of the magnetic core 44 due to the magnetic field generated by the current flowing through the current line 110.
  • the light receiving unit 20 data such as the amount of change in polarization angle obtained from the transmission light 1 a and the reception light 1 b is acquired and sent to the calculation unit 30.
  • the value of the current flowing through the current line 110 is calculated based on the amount of change in the polarization angle obtained from the transmission light 1a and the reception light 1b and the converted value stored in the memory 32 in advance, and the calculation result is displayed. Part 3 is displayed.
  • the sensitivity to the magnetic field is determined by the distance that light passes through the magnetized material, the Verde constant, and the like.
  • the sensor is changed to a sensor with a different sensitivity. Therefore, it is necessary to prepare a sensor corresponding to the sensitivity. For this reason, there are problems that the sensor installation area becomes large due to the installation of a plurality of sensors, or measurement cannot be performed with appropriate sensitivity, and measurement cannot be performed with high accuracy.
  • the sensitivity can be changed depending on the shape of the magnetic core 44 and the location where the magneto-optical detection element is inserted by providing the magnetic core 44 with a gap corresponding to the sensitivity.
  • An example in which this embodiment is applied to a three-phase motor will be described with reference to FIGS.
  • This embodiment shows a case where the number of current sensors is three and the current of each phase supplied to the three-phase motor 300 is measured simultaneously.
  • similar members are denoted by the same reference numerals, and description thereof is omitted.
  • the three-phase motor 300 is supplied with electric power from a three-phase power supply (not shown) through a U-phase power supply line 302, a V-phase power supply line 303, and a W-phase power supply line 304 drawn from the power supply terminal box 301.
  • Current sensors 40, 50, and 60 are installed in the U-phase power supply line 302, the V-phase power supply line 303, and the W-phase power supply line 304, respectively, and are connected to the measurement apparatus 100.
  • the current sensors 50 and 60 have the same configuration as the current sensor 40.
  • FIG. 13 is a diagram showing an example of a current waveform obtained by measuring the current waveform of the three-phase motor shown in FIG. 12 with three current sensors 40, 50, and 60. As shown in FIG. In the case of the three-phase motor 300, the phase difference between the phases is 120 degrees, and the operation state can be monitored.
  • FIG. 14 is a diagram illustrating an output example when an abnormality occurs in the current of the V-phase power supply line of the three-phase motor.
  • an abnormality When such an abnormality occurs, it can be configured to detect an abnormality in amplitude balance from the measurement result and send an abnormality alarm, etc., to notify or stop equipment abnormality Can be used for
  • the current measurement range can be easily changed in the optical current sensor having high insulation.
  • Example 2 will be described with reference to FIGS. 15 and 16.
  • 15 and 16 are cross-sectional views in a plane passing through the optical axis of the current sensor, and are diagrams showing magnetic flux lines distributed in the magnetic core constituting the current sensor.
  • the difference from the first embodiment is that the shape is not a circle but a square.
  • the magnetic field distribution generated by the current line to be measured inserted in the inner diameter region is inclined. It takes no uniform magnetic field distribution.
  • the magnetic core 44b having a quadrangular shape has a structure in which the center positions of the outer diameter and the inner diameter are different, the magnetic field distribution generated by the current line to be measured inserted in the inner diameter region is the breaking of the magnetic core. Depending on the area, a gradient of magnetic flux density occurs. Therefore, the current measurement range can be changed by adopting a structure in which the magneto-optical element can be inserted and installing the magneto-optical element at the position of the magnetic core 44b according to the desired sensor sensitivity.
  • the current measurement range can be easily changed, and the arrangement can be made efficient because of the quadrangular shape.
  • FIG. 17 is a cross-sectional view in a plane passing through the optical axis of the current sensor, and is a diagram displaying magnetic flux lines distributed in the magnetic core constituting the current sensor.
  • the magnetic core 44c is made of a material having a gap or a different magnetic permeability.
  • the annular magnetic core 44c has a structure in which the center positions of the outer diameter and the inner diameter are different, and a gap or a material having a different magnetic permeability is provided in a part of the magnetic core 44c.
  • the magnetic field distribution generated by the current line to be measured inserted in the inner diameter region has a magnetic flux density gradient according to the cross-sectional area of the magnetic core.
  • the magnetic flux gradient can be further changed by the air gap or the material 45 having a different magnetic permeability.
  • a structure that allows insertion of a magneto-optical element into the magnetic core 44c is adopted, and the current measurement range can be changed by installing the magneto-optical element at the position of the magnetic core corresponding to the desired sensor sensitivity. Make it possible.
  • the current measurement range can be changed arbitrarily and easily in the optical current sensor having high insulation.
  • FIG. 14 is a sectional view in a plane passing through the optical axis of the current sensor.
  • the magnetic core is different from that of the first embodiment in the thickness direction (perpendicular to the screen).
  • the annular magnetic core 44d is composed of magnetic cores 44d having different diameters in the thickness direction (perpendicular to the screen), and gaps for inserting fiber sensors are provided at different positions in the thickness direction. , Variation of sensitivity range can be increased.
  • the current measurement range can be changed by installing a magneto-optical element at the position of the magnetic core corresponding to the desired sensor sensitivity.
  • the current measurement range can be changed arbitrarily and easily in the optical current sensor having high insulation.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

センサ感度の調節が可能な光学式の電流センサ及びそれを用いた計測装置を提供することを目的とする。本発明は、測定対象の電流線に磁性体コア44を作用させ、磁場分布に基づいて電流を検知する電流センサ40において、前記磁性体コア44による磁路に沿って磁束密度を変更する磁束密度変更手段と、前記磁性体コアに磁気光学素子41を挿入し、前記磁気光学素子に作用した光の偏光角に基づき電流を検出する光学式電流検出手段と、を具備したことを特徴とする。

Description

電流センサ及びそれを用いた計測装置、計測方法
 本発明は、電気機器や電子機器に係る電流の評価に用いる電流センサ及びそれを用いた計測装置、計測方法に関する。
 従来から,内鉄型静止誘導電器の巻線として,機械的強度が大きい円板巻線が広く用いられている。円板巻線は,ターン数が少なく対向面積が比較的小さい円板コイルを積み重ねて構成されていることから,コイル間の直列静電容量が小さく雷サージ等の衝撃電圧に対する特性が悪いという欠点がある。これに対して,離れたコイルに負荷電流を流さないシールド線によって,静電的に結合してコイル間に直列静電容量を付加するCCシールド線が発明され,変圧器の高圧巻線等に用いられている。
 特開2001-196237号公報(以下、特許文献1と呼ぶ)に記載されたCCシールド線を使用した円板巻線の構成では,コイル間の直列静電容量が増し,雷サージ等の衝撃電圧に対する電位分布特性が改善される。しかしながら,このような構造では,線路端から衝撃電圧が侵入した場合に,線路端から偶数番目の円板コイル間に大きな電圧が発生して絶縁的に厳しくなる。
特開2000-111586号公報
 上記特許文献1に記載の従来技術では、巻数の異なるセンサを多数用意する必要があり、センサの感度を調整することが困難である問題点がある。
 そこで、本発明は上記に鑑みてなされたものであり、センサ感度の調節が可能な光学式の電流センサ及びそれを用いた計測装置を提供することを目的とする。
 上記目的を達成するために、本発明は、測定対象の電流線に磁性体コアを作用させ、磁場分布に基づいて電流を検知する電流センサにおいて、前記磁性体コアによる磁路に沿って磁束密度を変更する磁束密度変更手段と、前記磁性体コアに磁気光学素子を挿入し、前記磁気光学素子に作用した光の偏光角に基づき電流を検出する光学式電流検出手段と、を具備したことを特徴とする。
 本発明によれば、絶縁性の高い光学式の電流センサにおいて、電流計測範囲を容易に変更することができる。
計測装置の全体構成を模式的に示す機能ブロック図である。 電流センサの光軸を通る平面における断面図(a)と磁束密度分布の図(b)である。 電流センサの光軸を通る平面における断面図(a)と磁束密度分布の図(b)である。 電流センサの磁気光学素子に磁場が作用して透過する光の偏向角が変化する様子を模式的に示す図である。 電流が作る磁場が磁気光学素子に作用する様子を模式的に示す図である。 磁性体(磁気光学素子)の磁場強度と偏光角の関係を示す図である。 磁性体(磁気光学素子)の光軸方向の厚みと偏光角の関係を示す図である。 電流センサにおける光の偏光角の回転量と、検知部に作用する磁場強度の関係を示す図である。 電流の時間変化に対して,本実施例に示す電流センサにおける光の偏光角の時間変化を示す図である。 発光部と受光部の構成を模式的に示す機能ブロック図の一例である。 他の発光部と受光部の構造を模式的に示す機能ブロック図の一例である。 三相電動機と計測装置の配置を概略的に示す図である。 三相電動機の電流波形を3箇所の電流センサで測定した電流波形の一例を示す図である。 三相電動機のV相電源ラインの電流に異常が生じたときの出力例を示す図である。 他の電流センサの光軸を通る平面における断面図。 他の実施例である電流センサの光軸を通る平面における断面図。 他の実施例である電流センサの光軸を通る平面における断面図。 他の実施例である電流センサの光軸を通る平面における断面図。
 以下、図面を用いて、本発明を実施する上で好適となる実施例を説明する。尚、下記はあくまでも実施の例に過ぎず、発明の内容が下記具体的態様に限定されるものではない。本発明は、下記態様を含めて種々の態様に変形することが無論可能である。
 実施例1を図1~図10を参照しつつ説明する。
 図1は、実施例1に係る計測装置の全体構成を模式的に示す機能ブロック図である。
 図1において、計測装置100は、測定に用いる光の送受信及び測定値の計算処理を行う測定部1と、測定部1への各種設定値や指令信号の入力を行う入力部2と、測定部1での計算処理の結果である測定値を表示する表示部3と、測定部1からの送信光1aを透過して受信光1bとして測定部1に送る電流センサ40とから概略構成されている。
 測定部1は、測定に用いる光(送信光1a)を生成し、コネクタ19を介して電流センサ40に送信する光源部10と、電流センサ40からの光(受信光1b)をコネクタ29を介して受信する受光部20と、受光部20で受信した受信光1bに基づいて計算処理を行う計算部30とを備えている。
 光源部10は、入力部2からの指令信号に基づいて測定に用いる光を生成する発光部11と、発光部11で生成された光の波長の調整や直線偏波への変換を行い、コネクタ19を介して電流センサ40に送信する送信光調整部12とを備えている。発光部11は、可視光を発する白色光源を備えている。また、送信光調整部12は、発光部11で生成された光から一定の波長を抽出する分光器や干渉フィルタなどの波長選択部や、直線偏波への変換部などを有しており、少なくとも1種類の波長の光を生成することができる。なお、発光部11には、生成する光の仕様によって、発光ダイオードやレーザダイオードを用いることができる。
 受光部20は、電流センサ40からの受信光1bをコネクタ29を介して受信し、受信光1bを波長や偏光角に応じて選択や調整する受信光調整部23と、受信光調整部23からの光を受光して電気信号に変換する受光素子22と、受光素子22で得られた電気信号を受信データに変換するデータ変換部21とを備えている。
 受信光調整部23は、受信光1bから一定の波長を抽出する分光器や干渉フィルタなどの波長選択部を有している。受光素子22には、例えば、フォトダイオードやアバランシェダイオードなどが用いられる。データ変換部21は、受光素子22からの電気信号を受信データに変換して計算部30に送信する。
 なお、図10には上述した発光部と受光部の構成を模式的に示す機能ブロック図の一例を示した。送信光調整部12として偏光子12Aを採用した光源部10Aと、受信光調整部23として検光子23Aを採用した受光部20Aより構成されている。更に、図11には他の発光部と受光部の構造を模式的に示す機能ブロック図の一例を示した。送信光調整部12として送信光調整部12Bを採用した光源部10Bと、受信光調整部23として受信光調整部23Bを採用した受光部20Bより構成されている。送信光調整部12Bは位相調整部12aと1/4波長板12bより構成され波長の調整や直線偏波への変換を行う。受信光調整部23Bはカプラ23a、カプラ23cと偏光子23bと1/4波長板23dから構成され受信光1bを波長や偏光角に応じて選択や調整する。
 計算部30は、受光部20からの受信データを電流値や磁場の強さに換算する換算部31と、換算部31で用いる換算値を格納するメモリ32とを備えている。換算部31には、受信データと電流、受信データと磁場の関係などが実験やシミュレーション等の結果から予め経験的に求められ換算値として格納されている。換算部31は、メモリ32に格納された換算値に基づいて受信データを電流値や磁場の強さなどに換算し、測定値として表示部3に送る。
 電流を検知する部分は、磁気光学素子に光を照射する光学式電流検出手段と、磁性体コアによって、計測対象電流より発生する磁束の密度を空隙で調整し、磁気光学素子に磁場を作用させる磁束密度変更手段で構成される。
 図2及び図3は、電流センサの光軸を通る平面における断面図であり、電流センサを構成する磁性体コアの中に分布する磁束線を表示した図である。図2のように環状の磁性体コアで、外径と内径の中心位置が同じ位置となる構造をとると、内径領域に挿入された測定対象の電流線によって生じる磁場分布には傾斜が生じず均一の磁場分布をとる。図3のように環状の磁性体コアで、外径と内径の中心位置が異なる構造をとると、内径領域に挿入された測定対象の電流線によって生じる磁場分布は、磁性体コアの断面積に応じて、磁束密度の傾斜が生じる。そこで、前記磁気光学素子を挿入可能とする構造をとり、所望のセンサ感度に応じた前記磁性体コアの位置に磁気光学素子を設置することで、電流計測範囲の変更を可能とする。これが本実施例にて提供するセンサである。
 図1及び図2において、電流センサ40は、光ファイバに磁気光学素子を接続したものである。光ファイバ41,46は、石英ガラス、鉛入りの石英ガラスなどで形成されている。磁性体コア44は、透明性を有するガーネットと呼ばれる金属を用いることができ、Biを添加したイットリウム・鉄・ガーネットや、後述するガドリウム・鉄・ガーネットなどで形成されている。
 ここで、電流センサ40における磁場検知の原理について図4~図9を参照しつつ説明する。
 図4は磁性体に作用する磁場と磁性体を透過する光の偏向角の関係を模式的に示す図であり、図5は電流センサに電流に起因する磁場が作用して透過する光の偏向角が変化する様子を模式的に示す図である。
 図4に示すように、磁性体202を直線偏光された光が通過するとき、磁気光学効果により、磁性体202の磁化状態に依存して偏光角が回転し変化する。これをファラデー効果という。すなわち、磁性体202に磁場(磁束)が作用することによって磁化状態が変化する場合、光源200aで生成されて磁性体202に入射する入射光200に対する透過光201の偏向角の回転量を検出することにより、磁性体202の磁化状態を検知することができ、磁性体202に作用する磁場の強さを検知することが可能である。
 図5に示すように、本実施例においては、電流センサ40を測定対象の電流が流れる電流ライン110の近傍に配置した状態で、光源部10で生成した直線偏波を送信光1aとして電流センサ40に入射し、電流ライン110を流れる電流に起因する磁場(アンペールの法則に従って生じる磁場)の作用によって検知部42で生じる偏光角の回転を受信光1bから検出することにより、検知部42の磁性体コア44の磁化状態、すなわち、磁性体コア44に作用する磁場の強さを検知することができる。
 図6は、磁性体コアを透過する光の偏光角の回転量と磁性体202に作用する磁場強度の関係を示す図であり、縦軸に偏光角(度)を、横軸に磁場強度(A/m)をそれぞれ示している。
 図6に示すように、ファラデー効果を呈する磁性体(磁性薄膜など)202においては、磁場強度に比例して偏光角が変わる。また、磁場強度と電流量の間にも比例関係があるため、図6のように磁場強度と偏光角との関係を予め取得しておくことによって、偏光角の情報から電流を計測することができる。
 図7は、磁性体202の光軸方向の厚みと偏光角の関係を示す図であり、縦軸に偏光角(度)を、横軸に磁性体コアの厚さ(mm)をそれぞれ示している。図7に示すように、ファラデー効果を呈する磁性体202においては、その光軸方向の厚み(すなわち磁性体コア中の光路庁光路長)に比例して大きくなる。
 図8に示すように、透過光の偏光角の回転量と検知部に作用する磁場強度の関係を予め取得し、メモリ32に格納しておくことにより、磁場と電流の間に比例関係があることを利用して、換算部31において偏光角の情報から電流を計測することができる。表示部3では、図9に示すように、換算部で算出した電流の波形が表示される。
 以上のように構成した本実施例の動作を説明する。
 本実施例の計測装置100では、まず、電流センサ40の検知部42を、測定対象の電流が流れる電流ライン110の近傍に配置する。続いて、入力部2から計測の指示がなされると、光源部10から直線偏波の光が送信光1aとして生成され、コネクタ19を介して電流センサの光ファイバ41に入射され、光ファイバ41を介して検知部42に入射される。このとき、電流ライン110を流れる電流によって生じる磁場による磁性体コア44の磁化状態により、光の偏光角が回転される。
 受光部20では、送信光1aと受信光1bから得られる偏光角の変化量などのデータが取得されて計算部30に送られる。計算部30においては、送信光1aと受信光1bから得られる偏光角の変化量と、予めメモリ32に格納した換算値とに基づいて電流ライン110を流れる電流値が算出され、算出結果が表示部3に表示される。
 以上のように構成した本実施例における効果を説明する。
 測定対象の電流ラインにより生じる磁場を光ファイバに作用させ、光ファイバを通る光の偏向角の回転量を計測することによって磁場の強さ及び電流量を測定する場合、磁場に対する偏向角の回転量、すなわち、磁場に対する感度は、光の磁化材料に対する通過距離やベルデ定数などによって定まる。しかしながら、従来技術のように、ベルデ定数の高い磁性体コアを光ファイバに拡散させて、磁場の強さに対する偏光角、すなわち磁場に対する感度を変更しようとする場合には、感度の異なるセンサに変更するため、感度に応じたセンサを用意する必要があった。このため、複数センサの設置でセンサ設置領域が大きくなったり、適切な感度で計測できず、計測が精度よく実施できないという問題点がある。
 これに対して、本実施例においては、磁性体コア44の形状と、磁性体コア44に感度に応じた空隙を設けることで、磁気光検出素子を挿入する場所によって、感度を変更できる。
  本実施例を三相電動機に適用した例を図12~図14を参照しつつ説明する。
 本実施の形態は、電流センサの数を3つとし、三相電動機300に供給される各相の電流を同時に測定する場合を示すものである。図中、同様の部材には同じ符号を付し、説明を省略する。
 図12において、三相電動機300には、電源端子ボックス301から引き出されているU相電源ライン302、V相電源ライン303、W相電源ライン304により図示しない三相電源からの電力が供給されているU相電源ライン302、V相電源ライン303、W相電源ライン304にはそれぞれ電流センサ40、50、60が設置されており、計測装置100に接続されている。なお、電流センサ50、60は、電流センサ40と同様の構成を有している。
 図13は、図12で示した三相電動機の電流波形を3箇所の電流センサ40,50,60で、測定した電流波形の一例を示す図である。三相電動機300の場合、相間の位相差は120度あり、動作状態を監視することができる。
 図14は、三相電動機のV相電源ラインの電流に異常が生じたときの出力例を示す図である。このような異常が生じた場合には、振幅のバランスの異常を測定結果から感知するよう設定して異常アラーム等を発信するよう構成することができ、設備の異常を知らせたり、停止させたりするのに利用できる。
 以上、本実施例によれば、絶縁性の高い光学式の電流センサにおいて、電流計測範囲を容易に変更することができる。
 図15及び図16を用いて実施例2について説明する。
 図15及び図16は、電流センサの光軸を通る平面における断面図であり、電流センサを構成する磁性体コアの中に分布する磁束線を表示した図である。実施例1との違いは形状が丸ではなく、四角とした点である。
 図15のように四角形状の磁性体コア44aで、外径と内径の中心位置が同じ位置となる構造をとると、内径領域に挿入された測定対象の電流線によって生じる磁場分布には傾斜が生じず均一の磁場分布をとる。図16のように四角形状の磁性体コア44bで、外径と内径の中心位置が異なる構造をとると、内径領域に挿入された測定対象の電流線によって生じる磁場分布は、磁性体コアの断面積に応じて、磁束密度の傾斜が生じる。そこで、前記磁気光学素子を挿入可能とする構造をとり、所望のセンサ感度に応じた前記磁性体コア44bの位置に磁気光学素子を設置することで、電流計測範囲の変更を可能とする。
 以上、本実施例によれば、絶縁性の高い光学式の電流センサにおいて、電流計測範囲を容易に変更することができ、また四角形状のため配置の効率的化が図れる。
 図17を用いて実施例3について説明する。
 図17は、電流センサの光軸を通る平面における断面図であり、電流センサを構成する磁性体コアの中に分布する磁束線を表示した図である。実施例1との違いは空隙もしくは異なる透磁率の材料で磁性体コア44cを構成した点である。
 図17のように環状の磁性体コア44cで、外径と内径の中心位置が異なる構造をとり、さらに磁性体コア44cの一部に空隙もしくは異なる透磁率の材料を設けている。内径領域に挿入された測定対象の電流線によって生じる磁場分布は、磁性体コアの断面積に応じて、磁束密度の傾斜が生じるが、空隙もしくは異なる透磁率の材料45により磁束勾配をさらに変更できる。その上で、磁性体コア44cに磁気光学素子を挿入可能とする構造をとり、所望のセンサ感度に応じた前記磁性体コアの位置に磁気光学素子を設置することで、電流計測範囲の変更を可能とする。
 以上、本実施例によれば、絶縁性の高い光学式の電流センサにおいて、電流計測範囲をより任意に容易に変更することができる。
 図18を用いて実施例4について説明する。
 図14は、電流センサの光軸を通る平面における断面図である。実施例1との磁性体コアの厚み方向(画面に垂直方向)に異なる径の磁性体コアで構成する点である。
 図18のように環状の磁性体コア44dで、厚み方向(画面に垂直方向)に異なる径の磁性体コア44dで構成し、厚み方向で、異なる位置にファイバセンサを挿入する空隙を設けることで、感度範囲のバリエーションを増やすことができる。所望のセンサ感度に応じた前記磁性体コアの位置に磁気光学素子を設置することで、電流計測範囲の変更を可能とする。
 以上、本実施例によれば、絶縁性の高い光学式の電流センサにおいて、電流計測範囲をより任意に容易に変更することができる。
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1:測定部
1a:送信光
1b:受信光
2:入力部
3:表示部
10:光源部
10A:光源部
10B:光源部
11:発光部
12:送信光調整部
12A:偏光子
12B:送信光調整部
12a:位相調整部
12b:1/4波長板
19:コネクタ
20:受光部
20A:受光部
20B:受光部
21:データ変換部
22:受光素子
23:受信光調整部
23A:検光子
23B:受信光調整部
23a:カプラ
23b:偏光子
23c:カプラ
23d:1/4波長板
29:コネクタ
30:計算部
31:換算部
32:メモリ
40:電流センサ
41:光ファイバ
42:検知部
44:磁性体コア
44a:磁性体コア
44b:磁性体コア
44c:磁性体コア
44d:磁性体コア
50:電流センサ
100:計測装置
110:電流ライン
200:入射光
200a:光源
201:透過光
202:磁性体
300:三相電動機
301:電源端子ボックス
302:相電源ライン
303:相電源ライン
304:相電源ライン

Claims (8)

  1.  測定対象の電流線に磁性体コアを作用させ、磁場分布に基づいて電流を検知する電流センサにおいて、
     前記磁性体コアによる磁路に沿って磁束密度を変更する磁束密度変更手段と、
     前記磁性体コアに磁気光学素子を挿入し、前記磁気光学素子に作用した光の偏光角に基づき電流を検出する光学式電流検出手段と、
     を具備したことを特徴とする電流センサ。
  2.  請求項1記載の電流センサにおいて、
     磁束密度変更手段は、環状の磁性体コアで、外径と内径の中心位置が異なる構造と、磁場分布に応じた前記磁性体コアの位置に、前記磁気光学素子を挿入可能とする構造であることを特徴とする電流センサ。
  3.  請求項1記載の電流センサにおいて、
     磁束密度変更手段は、磁性体コアの内部に空隙を有した構造と、磁場分布に応じた前記磁性体コアの位置に、前記磁気光学素子挿入可能とする構造であることを特徴とする電流センサ。
  4.  請求項1記載の電流センサにおいて、
     磁束密度変更手段は、環状の磁性体コアで、厚み方向に異なる径となる構造と、磁場分布に応じた前記磁性体コアの位置に、前記磁気光学素子を挿入可能とする構造であることを特徴とする電流センサ。
  5.  請求項1乃至4のいずれか一項に記載の電流センサにおいて、
     前記光学式電流検出手段は、前記磁気光学素子に光ファイバを接続し、前記磁性体コアに挿入し、前記磁気光学素子に作用した照射光の偏光角に基づき電流を検出することを特徴とする電流センサ。
  6.  請求項1乃至4のいずれか一項に記載の電流センサにおいて、
     前記光学式電流検出手段は、前記磁気光学素子を前記磁性体コアに挿入し、前記磁性体コアの外面から前記磁気光学素子に対して、外部から照射した照射光が到達する光路を有し、前記磁気光学素子に作用した照射光の偏光角に基づき電流を検出することを特徴とする電流センサ。
  7.  測定対象の電流線に磁性体コアを作用させ、磁場分布に基づいて電流を検知する計測方法であって、
     前記磁性体コアを非対称とした構造と、磁場分布に応じた前記磁性体コアの位置に、前記磁気光学素子挿入可能とする構造と、で前記磁性体コアによる磁路に沿って磁束密度を変更させ、
     磁気光学素子を接続した光ファイバを前記磁性体コアに挿入し、
     前記磁気光学素子に作用した照射光の偏光角に基づき電流を検出することを特徴とする計測方法。
  8.  モータ又はインバータの電流線に磁性体コアを作用させ、磁場分布に基づいて電流を検知する計測装置であって、
     前記磁性体コアを非対称とした構造と、磁場分布に応じた前記磁性体コアの位置に、磁気光学素子を挿入可能とする構造と、で前記磁性体コアによる磁路に沿って磁束密度を変更させる手段と、
     磁気光学素子を接続した光ファイバを前記磁性体コアに挿入可能とする構造と、
     前記磁気光学素子に作用した照射光の偏光角に基づき電流を検出し、モータ又はインバータの運転状態を評価する計算部からなることを特徴とする計測装置。
PCT/JP2016/086290 2015-12-28 2016-12-07 電流センサ及びそれを用いた計測装置、計測方法 WO2017115623A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255657A JP2019060605A (ja) 2015-12-28 2015-12-28 電流センサ及びそれを用いた計測装置、計測方法
JP2015-255657 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115623A1 true WO2017115623A1 (ja) 2017-07-06

Family

ID=59225385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086290 WO2017115623A1 (ja) 2015-12-28 2016-12-07 電流センサ及びそれを用いた計測装置、計測方法

Country Status (2)

Country Link
JP (1) JP2019060605A (ja)
WO (1) WO2017115623A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130089A (ja) * 1992-10-19 1994-05-13 Toyo Commun Equip Co Ltd 光学素子を用いた電気信号の測定装置
JPH07198757A (ja) * 1993-12-28 1995-08-01 Matsushita Electric Ind Co Ltd 光磁界センサ
JPH07218552A (ja) * 1994-02-04 1995-08-18 Nippon Soken Inc 電流測定装置
JPH11281722A (ja) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd 光ファイバセンサ
JP2001124802A (ja) * 1999-10-26 2001-05-11 Tdk Corp 電流センサ装置
JP2014010012A (ja) * 2012-06-28 2014-01-20 Denso Corp 電流センサ
JP2014106101A (ja) * 2012-11-27 2014-06-09 Toyota Industries Corp 電流センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130089A (ja) * 1992-10-19 1994-05-13 Toyo Commun Equip Co Ltd 光学素子を用いた電気信号の測定装置
JPH07198757A (ja) * 1993-12-28 1995-08-01 Matsushita Electric Ind Co Ltd 光磁界センサ
JPH07218552A (ja) * 1994-02-04 1995-08-18 Nippon Soken Inc 電流測定装置
JPH11281722A (ja) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd 光ファイバセンサ
JP2001124802A (ja) * 1999-10-26 2001-05-11 Tdk Corp 電流センサ装置
JP2014010012A (ja) * 2012-06-28 2014-01-20 Denso Corp 電流センサ
JP2014106101A (ja) * 2012-11-27 2014-06-09 Toyota Industries Corp 電流センサ

Also Published As

Publication number Publication date
JP2019060605A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
US10677755B2 (en) Apparatus and method for detecting inner defects of steel plate
JP2018136316A (ja) 検出装置及び検出方法、並びに、それを用いた電圧電流検出装置
Lopez et al. Fiber-optic current sensor based on FBG and terfenol-D with magnetic flux concentration for enhanced sensitivity and linearity
CN108519566B (zh) 一种基于光频移调制的serf原子磁强计装置及方法
KR20130025441A (ko) 건축물의 전력 사용량을 모니터링하기 위한 시스템 및 그 방법
JPS63301507A (ja) 磁界における時間変化する界磁妨害を補償する装置
WO2022244399A1 (ja) 磁場測定装置および磁場測定方法
US7501816B2 (en) Flaw detection method and flaw detection apparatus
US10191091B2 (en) Circuit board with implanted optical current sensor
CN111721992B (zh) 一种测量三相高压导线电流强度的光纤传感系统
WO2014116848A1 (en) Flexible magnetic field sensor
WO2017115623A1 (ja) 電流センサ及びそれを用いた計測装置、計測方法
CN102156268A (zh) 磁性材料旋转磁化特性测量装置
EP2902777B1 (en) Electron gun abnormality detector and electron gun abnormality detection method
KR100662744B1 (ko) 광 대전류/고전압 센서
US5365175A (en) Method of locating ground faults
JP2008256366A (ja) 光ファイバ電流センサおよび電流測定方法
JP6453994B2 (ja) 光ファイバセンサ及びそれを用いた計測装置
JP2958796B2 (ja) 零相電流測定用センサ
JP3166987B2 (ja) 電流センサ
JP2009210399A (ja) 渦電流センサ
El-Khozondar et al. Magnetic field inhomogeneity induced on the magneto-optical current sensors
Willsch et al. Fiber optical magnetic field sensor for power generator monitoring
KR100659564B1 (ko) 광 전류센서
JP3166986B2 (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP