CN105016398A - 一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法 - Google Patents

一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法 Download PDF

Info

Publication number
CN105016398A
CN105016398A CN201510422450.4A CN201510422450A CN105016398A CN 105016398 A CN105016398 A CN 105016398A CN 201510422450 A CN201510422450 A CN 201510422450A CN 105016398 A CN105016398 A CN 105016398A
Authority
CN
China
Prior art keywords
cobalt
molysite
ferro
multistage
mol ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510422450.4A
Other languages
English (en)
Other versions
CN105016398B (zh
Inventor
宰建陶
李晓敏
钱雪峰
李波
刘雪娇
刘园园
黄守双
何青泉
王敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201510422450.4A priority Critical patent/CN105016398B/zh
Publication of CN105016398A publication Critical patent/CN105016398A/zh
Application granted granted Critical
Publication of CN105016398B publication Critical patent/CN105016398B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法,为典型的水滑石晶体结构,由厚度小于2纳米的纳米薄片组装而成,以柠檬酸三钠为络合剂,采用化学溶液法制备单双层纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球,将铁盐、钴盐、碱源及络合剂分散于溶剂中,制备反应液,然后将配制好的反应液进行溶剂热处理,即可得到形貌规则的单双层纳米片组装的层状双金属氢氧化物CoFe-LDHs多级微球。本发明方法简单、成本低,可以大规模的合成单双层纳米片组装的层状双金属氢氧化物CoFe-LDHs多级微球。制备所得的层状双金属氢氧化物CoFe-LDHs为单层或双层纳米片组装的多级微球,其纳米片厚度小于2纳米。

Description

一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法
技术领域
本发明属于纳米材料制备技术领域,尤其是涉及一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法。
背景技术
层状双金属氢氧化物(Layered double hydroxides简写“LDHs”)是一类由带正电的水镁石状的层和层间含电荷补偿作用的阴离子和溶剂化作用的分子组成的离子层状化合物。其化学组成为:[MII1-xMIIIx(OH)2][An-]x/n·zH2O,其中MII一般是Mg2+,Zn2+or Ni2+;MIII是Al3+,Ga3+,Fe3+or Mn3+;An-为非骨架上起电荷补偿作用的无机或有机阴离子,如:CO32-,Cl-,SO42-,RCO2-,x通常范围在0.2~0.4.LDHs受到广泛关注并应用在磁性、催化、分离、吸附、生物传感器、能量存储等领域。
近年来,CoFe-LDHs在能量存储和转换上表现出来的特殊的性能引起越来越多的注意。如Eugenio Coronado等人采用非水的甲醇溶剂法合成了醇盐插入的纳米片CoFe-LDHs,并将其应用到超级电容器和电催化水氧化,均得到很好的性能,这表明CoFe-LDHs在能量储存设备上有巨大的潜力。
超薄二维纳米材料(如graphene,过渡金属二硫化物等),由于其高比例的表面原子和高的表面活性位点,独特的结构和表面特性使其成为与表面相关的电化学反应的理想的形态学基础。而超薄的LDHs的合成一般有:Top-down和Bottom-up两种方法。虽然各种类型的LDHs通过Bottom-up方法制备出来,但是超薄的尤其是具有单层或双层结构的CoFe-LDHs纳米片很难得到,原因在于CoFe-LDHs的电荷密度显著高于其他片层固体。因此,采用一种通用的方法大规模合成单层或双层超薄CoFe-LDHs纳米片仍然是一个挑战。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种操作简单、生产成本低的单双层纳米薄片组装的层状双金属氢氧化物多级微球及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种纳米薄片组装钴铁氢氧化物多级微球,为典型的水滑石晶体结构,由厚度小于2纳米的纳米薄片组装而成。
所述的钴铁氢氧化物多级微球的尺寸为300-500纳米。
纳米薄片组装钴铁氢氧化物多级微球的制备方法,以尿素等为碱源,以柠檬酸三钠为络合剂,以水和正丁醇为反应溶剂,采用化学溶液混合溶剂热制备单双层纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球。首先将钴盐、铁盐、碱源及柠檬酸三钠溶于混合溶剂中,制备反应液;然后将将配制好的反应液于溶剂热条件下处理,即可得到形貌规则的单双层纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球,具体采用以下步骤:
1)将铁盐、钴盐、络合剂柠檬酸三钠、碱源混合溶于水和醇的混合溶剂中,配制成反应液,其中钴盐的浓度为0.01~0.05mol·l-1,铁盐与钴盐的摩尔比为0.1~3,碱源与铁盐的摩尔比为6~15,柠檬酸三钠与铁盐的摩尔比为0.02~2;
2)将反应液移入带有聚四氟乙烯内胆的高压反应釜,于80~200℃中热处理1~48小时后,自然冷却到20-30℃,将产物离心分离,用无水乙醇洗涤数次,真空抽干,即获得单双层纳米片组装的层状钴铁氢氧化物多级微球。
优选地,步骤1)中钴盐的浓度为0.02~0.04mol·l-1,铁盐与钴盐的摩尔比为0.1~1,碱源与铁盐的摩尔比为6~10,柠檬酸三钠与铁盐的摩尔比为0.1~1;步骤2)中反应温度为100~160℃,热处理3~24小时。
更加优选地,步骤1)中钴盐的浓度为0.03mol·l-1,铁盐与钴盐的摩尔比为0.3,碱源与铁盐的摩尔比为8,柠檬酸三钠与铁盐的摩尔比为0.38;步骤2)中反应温度为120℃,热处理12小时。
所述的铁盐为醋酸铁、氯化铁、硫酸铁、硝酸铁、碳酸铁或乙酰丙酮铁中的一种或几种。
所述的钴盐为醋酸钴、氯化钴、硫酸钴、硝酸钴、碳酸钴或乙酰丙酮钴中的一种或几种。
所述的醇为乙二醇、甲醇、乙醇、异丙醇、丙三正丁醇或异丁醇中的一种或几种。
所述的碱源为尿素、碳酸钠或乙酸钠中的一种或几种。
与现有技术相比,本发明具有以下优点:
(1)由于采用了柠檬酸三钠为络合剂,使得层状双金属氢氧化物CoFe-LDHs多级微球在形成的过程中达到选择性络合金属离子钴和铁的沉淀速率,对单双层LDHs的纳米片的形成起到了较好的促进作用,防止了纳米薄片的密堆积,使之具有很好的单双层的纳米薄片组装结构。
(2)由于本发明采用了化学溶液法反应,原料便宜,操作简单、成本低、效率高,易于进一步的工业生产。制备的层状双金属氢氧化物CoFe-LDHs为单双层的纳米薄片组装的多级微球结构。其纳米片厚度为小于2纳米,且可以在大范围内自组装形成多级微球结构。
附图说明
图1为为本发明实施例1所得的单双层纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球的物相组成X-射线衍射图谱。
图2为本发明实施例1所得的单双层纳米片组装的层状双金属氢氧化物CoFe-LDHs多级微球的扫描电镜照片。
图3为本发明实施例1所得单双层纳米片组装的层状双金属氢氧化物CoFe-LDHs多级微球的透射电镜照片,其中(a)为低倍透射电镜图片,(b)为高分辨透射电镜图片。
图4为本发明实施例2所得层状双金属氢氧化物CoFe-LDHs纳米片的X-射线衍射图谱。
图5为本发明实施例2所得层状双金属氢氧化物CoFe-LDHs纳米片的低倍扫描电镜图和高倍扫描电镜图。
图6为本发明实施例2所得层状双金属氢氧化物CoFe-LDHs纳米片的高倍扫描电镜图。
图7为本发明实施例2所得纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球的透射电镜照片,其中(a)为低倍透射电镜图片,(b)为高分辨透射电镜图片。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
①在一个100ml的烧瓶中,将0.8mmol的硝酸铁、2.4mmol的硝酸钴、6.4mmol的尿素加入到40ml的水中,强烈搅拌10min后加入90mg柠檬酸三钠和40ml正丁醇,加入的同时继续强烈磁力搅拌,制备成单双层纳米片组装的层状双金属氢氧化物CoFe-LDHs多级微球的反应液。
②将按照步骤①制备的反应液移入带有100ml聚四氟乙烯内胆的高压反应釜中,在120℃反应12小时后,反应釜自然冷却到20℃,用无水乙醇洗涤数次,真空抽干样品,即可获得纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球。
所得到的纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球的X-射线衍射图如图1。由图可见所制备的材料为斜方六面体型的CoFe-LDHs。图2是所得CoFe-LDHs的扫描电镜照片。由图2可见,该层状双金属氢氧化物CoFe-LDHs多级微球大范围内是由超薄纳米片自组装形成多级微球结构,说明该方法可以大规模的合成层状双金属氢氧化物CoFe-LDHs多级微球。从更大放大倍数的透射电镜照片图3a和b可以看出,所得层状双金属氢氧化物CoFe-LDHs多级微球的纳米片的厚度为小于2纳米,说明纳米片是只有单层或双层的。
实施例2
①在一个100ml的烧瓶中,将0.8mmol的硝酸铁、2.4mmol的硝酸钴、6.4mmol的尿素加入到40ml的水中,强烈搅拌10min后加入180mg柠檬酸三钠和40ml正丁醇,加入的同时继续强烈磁力搅拌,制备成层状双金属氢氧化物CoFe-LDHs纳米片的反应液。
②将按照步骤①制备的反应液移入带有100ml聚四氟乙烯内胆的高压反应釜中,在120℃反应12小时后,反应釜自然冷却到20℃,用无水乙醇洗涤数次,真空抽干样品,即可获得层状双金属氢氧化物CoFe-LDHs纳米片。
图4是所得到的层状双金属氢氧化物CoFe-LDHs纳米片的X-射线衍射图,图5是所得到的层状双金属氢氧化物CoFe-LDHs纳米片的低倍扫描电镜照片。图6是所得到的层状双金属氢氧化物CoFe-LDHs纳米片的高倍扫描电镜照片。由图可见,该层状双金属氢氧化物CoFe-LDHs纳米片是典型的类水镁石结构的双金属化合物。由扫描电镜图层状双金属氢氧化物CoFe-LDHs是层状结构的纳米薄片。图7是所得到的层状双金属氢氧化物CoFe-LDHs纳米片的低倍透射电镜照片和高分辨透射电镜图片。由图可见,该实施例的产物的形貌是纳米薄片组装的多级微球结构。
实施例3
①在一个100ml的烧瓶中,将0.8mmol的硝酸铁、2.4mmol的硝酸钴、6.4mmol的尿素加入到40ml的水中,强烈搅拌10min后加入360mg柠檬酸三钠和40ml正丁醇,加入的同时继续强烈磁力搅拌,制备成层状双金属氢氧化物CoFe-LDHs纳米片的反应液。
②将按照步骤①制备的反应液移入带有100ml聚四氟乙烯内胆的高压反应釜中,在120℃反应12小时后,反应釜自然冷却到20℃,用无水乙醇洗涤数次,真空抽干样品,即可获得纳米薄片组装的层状双金属氢氧化物CoFe-LDHs多级微球。
实施例4
①在一个100ml的烧瓶中,将0.8mmol的硝酸铁、2.4mmol的硝酸钴、6.4mmol的尿素加入到40ml的水中,强烈搅拌10min后加入40ml正丁醇,加入的同时继续强烈磁力搅拌,制备成层状双金属氢氧化物CoFe-LDHs多级微球的反应液。
②将按照步骤①制备的反应液移入带有100ml聚四氟乙烯内胆的高压反应釜中,在120℃反应12小时后,反应釜自然冷却到20℃,用无水乙醇洗涤数次,真空抽干样品,即可获得层状双金属氢氧化物CoFe-LDHs多级微球。
实施例5
一种纳米薄片组装钴铁氢氧化物多级微球,为典型的水滑石晶体结构,由厚度小于2纳米的纳米薄片组装而成,得到的钴铁氢氧化物多级微球的尺寸为300-500纳米。
纳米薄片组装钴铁氢氧化物多级微球的制备方法,采用以下步骤:
1)将氯化铁、氯化钴、络合剂柠檬酸三钠、碳酸钠混合溶于水和乙二醇的混合溶剂中,配制成反应液,其中钴盐的浓度为0.01mol·l-1,铁盐与钴盐的摩尔比为0.1,碳酸钠与铁盐的摩尔比为6,柠檬酸三钠与铁盐的摩尔比为0.02;
2)将反应液移入带有聚四氟乙烯内胆的高压反应釜,于80℃中热处理48小时后,自然冷却到20℃,将产物离心分离,用无水乙醇洗涤数次,真空抽干,即获得单双层纳米片组装的层状钴铁氢氧化物多级微球。
实施例6
一种纳米薄片组装钴铁氢氧化物多级微球,为典型的水滑石晶体结构,由厚度小于2纳米的纳米薄片组装而成,得到的钴铁氢氧化物多级微球的尺寸为300-500纳米。
纳米薄片组装钴铁氢氧化物多级微球的制备方法,采用以下步骤:
1)将硫酸铁、硫酸钴、络合剂柠檬酸三钠、乙酸钠混合溶于水和甲醇的混合溶剂中,配制成反应液,其中钴盐的浓度为0.03mol·l-1,铁盐与钴盐的摩尔比为0.3,乙酸钠与铁盐的摩尔比为8,柠檬酸三钠与铁盐的摩尔比为0.38;
2)将反应液移入带有聚四氟乙烯内胆的高压反应釜,于120℃中热处理12小时后,自然冷却到30℃,将产物离心分离,用无水乙醇洗涤数次,真空抽干,即获得单双层纳米片组装的层状钴铁氢氧化物多级微球。
实施例7
一种纳米薄片组装钴铁氢氧化物多级微球,为典型的水滑石晶体结构,由厚度小于2纳米的纳米薄片组装而成,得到的钴铁氢氧化物多级微球的尺寸为300-500纳米。
纳米薄片组装钴铁氢氧化物多级微球的制备方法,采用以下步骤:
1)将铁盐、钴盐、络合剂柠檬酸三钠、尿素混合溶于水和异丁醇的混合溶剂中,配制成反应液,其中钴盐的浓度为0.05mol·l-1,铁盐与钴盐的摩尔比为3,尿素与铁盐的摩尔比为15,柠檬酸三钠与铁盐的摩尔比为2;
2)将反应液移入带有聚四氟乙烯内胆的高压反应釜,于200℃中热处理1小时后,自然冷却到20℃,将产物离心分离,用无水乙醇洗涤数次,真空抽干,即获得单双层纳米片组装的层状钴铁氢氧化物多级微球。

Claims (9)

1.一种纳米薄片组装钴铁氢氧化物多级微球,其特征在于,该多级微球为典型的水滑石晶体结构,由厚度小于2纳米的纳米薄片组装而成。
2.根据权利要求1所述的一种纳米薄片组装钴铁氢氧化物多级微球,其特征在于,所述的钴铁氢氧化物多级微球的尺寸为300-500纳米。
3.如权利要求1所述的纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,该方法采用以下步骤:
1)将铁盐、钴盐、络合剂柠檬酸三钠、碱源混合溶于水和醇的混合溶剂中,配制成反应液,其中钴盐的浓度为0.01~0.05mol·l-1,铁盐与钴盐的摩尔比为0.1~3,碱源与铁盐的摩尔比为6~15,柠檬酸三钠与铁盐的摩尔比为0.02~2;
2)将反应液移入带有聚四氟乙烯内胆的高压反应釜,于80~200℃中热处理1~48小时后,自然冷却到20-30℃,将产物离心分离,用无水乙醇洗涤数次,真空抽干,即获得单双层纳米片组装的层状钴铁氢氧化物多级微球。
4.根据权利要求3所述的一种纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,
步骤1)中钴盐的浓度为0.02~0.04mol·l-1,铁盐与钴盐的摩尔比为0.1~1,碱源与铁盐的摩尔比为6~10,柠檬酸三钠与铁盐的摩尔比为0.1~1;
步骤2)中反应温度为100~160℃,热处理3~24小时。
5.根据权利要求3或4所述的一种纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,
步骤1)中钴盐的浓度为0.03mol·l-1,铁盐与钴盐的摩尔比为0.3,碱源与铁盐的摩尔比为8,柠檬酸三钠与铁盐的摩尔比为0.38;
步骤2)中反应温度为120℃,热处理12小时。
6.根据权利要求3所述的一种纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,所述的铁盐为醋酸铁、氯化铁、硫酸铁、硝酸铁、碳酸铁或乙酰丙酮铁中的一种或几种。
7.根据权利要求3所述的一种纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,所述的钴盐为醋酸钴、氯化钴、硫酸钴、硝酸钴、碳酸钴或乙酰丙酮钴中的一种或几种。
8.根据权利要求3所述的一种纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,所述的醇为乙二醇、甲醇、乙醇、异丙醇、丙三正丁醇或异丁醇中的一种或几种。
9.根据权利要求3所述的一种纳米薄片组装钴铁氢氧化物多级微球的制备方法,其特征在于,所述的碱源为尿素、碳酸钠或乙酸钠中的一种或几种。
CN201510422450.4A 2015-07-17 2015-07-17 一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法 Expired - Fee Related CN105016398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510422450.4A CN105016398B (zh) 2015-07-17 2015-07-17 一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510422450.4A CN105016398B (zh) 2015-07-17 2015-07-17 一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法

Publications (2)

Publication Number Publication Date
CN105016398A true CN105016398A (zh) 2015-11-04
CN105016398B CN105016398B (zh) 2017-03-22

Family

ID=54406778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510422450.4A Expired - Fee Related CN105016398B (zh) 2015-07-17 2015-07-17 一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法

Country Status (1)

Country Link
CN (1) CN105016398B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892407A (zh) * 2017-01-23 2017-06-27 湖南大学 一种二维超薄双金属氢氧化物纳米片及其制备方法
CN108910962A (zh) * 2018-07-24 2018-11-30 中国科学院合肥物质科学研究院 一种三元CoFeCr水滑石纳米棒及其制备方法与应用
CN108927169A (zh) * 2018-08-17 2018-12-04 太原理工大学 一种水滑石基CoMnFe复合金属氧化物脱硝催化剂的制备方法及应用
CN109119250A (zh) * 2018-07-20 2019-01-01 江苏大学 CoFe-LDH/聚吡咯/氧化石墨三元复合材料的制备方法
CN110075853A (zh) * 2019-04-12 2019-08-02 济南大学 一种电催化全分解水CoZn-LDHs-ZIF@C复合结构材料及制备方法、应用
CN111013607A (zh) * 2019-12-26 2020-04-17 福州大学 一种具有原位转化硫空位的硫化铁镍及其制备方法和应用
CN113481535A (zh) * 2021-06-18 2021-10-08 常州工学院 铁-镍钒双金属氢氧化物及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786071A (zh) * 2012-07-25 2012-11-21 北京化工大学 一种复合金属氧化物气敏材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786071A (zh) * 2012-07-25 2012-11-21 北京化工大学 一种复合金属氧化物气敏材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
TING XIAO ET AL.: ""self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products"", 《NANOTECHNOLOGY》 *
YAYUE SUN ET AL.: ""Hierarchically porous NiAl-LDH nanoparticles as highly efficientadsorbent for p-nitrophenol from water"", 《APPLIED SURFACE SCIENCE》 *
YINFENG HAN ET AL.: ""Preparation of Ni2+-Fe3+ Layered Double Hydroxide Material with High Crystallinity and Well-Defined Hexagonal Shapes"", 《CHEM.MATER.》 *
ZHIYONG JIA ET AL.: ""The synthesis of flower-like layered double hydroxides nanocrystals and their calcined products"", 《MATERIALS FOR RENEWABLE ENERGY & ENVIRONMENT(ICMREE),2011 INTERNATIONAL CONFERENCE》 *
许英伟等: ""Ni-Fe 层状双金属氢氧化物的制备及性能研究"", 《硅酸盐通报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892407A (zh) * 2017-01-23 2017-06-27 湖南大学 一种二维超薄双金属氢氧化物纳米片及其制备方法
CN106892407B (zh) * 2017-01-23 2018-10-26 湖南大学 一种二维超薄双金属氢氧化物纳米片及其制备方法
CN109119250A (zh) * 2018-07-20 2019-01-01 江苏大学 CoFe-LDH/聚吡咯/氧化石墨三元复合材料的制备方法
CN108910962A (zh) * 2018-07-24 2018-11-30 中国科学院合肥物质科学研究院 一种三元CoFeCr水滑石纳米棒及其制备方法与应用
CN108927169A (zh) * 2018-08-17 2018-12-04 太原理工大学 一种水滑石基CoMnFe复合金属氧化物脱硝催化剂的制备方法及应用
CN108927169B (zh) * 2018-08-17 2021-02-09 太原理工大学 一种水滑石基CoMnFe复合金属氧化物脱硝催化剂的制备方法及应用
CN110075853A (zh) * 2019-04-12 2019-08-02 济南大学 一种电催化全分解水CoZn-LDHs-ZIF@C复合结构材料及制备方法、应用
CN110075853B (zh) * 2019-04-12 2021-11-23 济南大学 一种电催化全分解水CoZn-LDHs-ZIF@C复合结构材料及制备方法、应用
CN111013607A (zh) * 2019-12-26 2020-04-17 福州大学 一种具有原位转化硫空位的硫化铁镍及其制备方法和应用
CN113481535A (zh) * 2021-06-18 2021-10-08 常州工学院 铁-镍钒双金属氢氧化物及其制备方法和应用

Also Published As

Publication number Publication date
CN105016398B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN105016398A (zh) 一种纳米薄片组装钴铁氢氧化物多级微球及其制备方法
CN105016399A (zh) 由纳米薄片组装的镍铁氢氧化物多级微球及其制备方法
Sun et al. Surface engineered 2D materials for photocatalysis
Jiang et al. Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance
CN105036204A (zh) 由纳米薄片组装的镍铝氢氧化物多级微球及其制备方法
Wang et al. Two‐dimensional non‐layered materials: synthesis, properties and applications
Wang et al. Element‐doped Mxenes: mechanism, synthesis, and applications
Che et al. Construction of SrTiO3/Bi2O3 heterojunction towards to improved separation efficiency of charge carriers and photocatalytic activity under visible light
Gao et al. Solution‐based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR)
Chen et al. Solvothermal synthesis of ternary Cu2MoS4 nanosheets: structural characterization at the atomic level
Funatsu et al. Synthesis of monolayer platinum nanosheets
Mi et al. Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures
CN108067257B (zh) 一种高活性位暴露的纳米二硫化钼加氢催化剂的制备方法
CN105036202A (zh) 一种纳米薄片组装钴铝氢氧化物多级微球及其制备方法
Zhu et al. Tailored mesoporous copper/ceria catalysts for the selective hydrogenolysis of biomass-derived glycerol and sugar alcohols
US6852670B1 (en) Method for manufacturing anion-layered double hydroxide intercalation compounds and compounds produced thereby
CN103121665B (zh) 三维花状水杨酸根插层层状氢氧化物纳米材料的制备方法
CN103641169B (zh) 一种Bi2S3-MoS2纳米异质结构的合成方法
Aksoy et al. Visible light-driven hydrogen evolution by using mesoporous carbon nitride-metal ferrite (MFe2O4/mpg-CN; M: Mn, Fe, Co and Ni) nanocomposites as catalysts
CN106892407B (zh) 一种二维超薄双金属氢氧化物纳米片及其制备方法
Liu et al. Three‐Dimensional Multilayer Assemblies of MoS2/Reduced Graphene Oxide for High‐Performance Lithium Ion Batteries
CN103949274B (zh) 一种Co0.85Se催化剂材料及制备方法
Li et al. Synthesis of octahedral and cubic Cu 2 O microcrystals in sub-and super-critical methanol and their photocatalytic performance
CN103754837A (zh) 利用多孔氧化铋为模板制备含铋纳米空心球的方法
Mehdizadeh et al. Solvothermal synthesis and characterization of α-Fe2O3 nanodiscs and Mn3O4 nanoparticles with 1, 10-phenanthroline

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20210717

CF01 Termination of patent right due to non-payment of annual fee