CN105007015A - Model prediction controlling method for controllable rectifying frequency-conversion speed-regulation system with five bridge arms - Google Patents

Model prediction controlling method for controllable rectifying frequency-conversion speed-regulation system with five bridge arms Download PDF

Info

Publication number
CN105007015A
CN105007015A CN201510413839.2A CN201510413839A CN105007015A CN 105007015 A CN105007015 A CN 105007015A CN 201510413839 A CN201510413839 A CN 201510413839A CN 105007015 A CN105007015 A CN 105007015A
Authority
CN
China
Prior art keywords
msub
mrow
mover
rightarrow
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510413839.2A
Other languages
Chinese (zh)
Other versions
CN105007015B (en
Inventor
赵金
周德洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201510413839.2A priority Critical patent/CN105007015B/en
Publication of CN105007015A publication Critical patent/CN105007015A/en
Application granted granted Critical
Publication of CN105007015B publication Critical patent/CN105007015B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

The invention discloses a model prediction controlling method for a controllable rectifying frequency-conversion speed-regulation system with five bridge arms. The model prediction controlling method comprises the steps of A, estimating a stator flux linkage and a rotor flux linkage of an inductor motor according to a measured phase current and a measured rotating speed; B, predicting the absolute value, the torque, the active power and the reactive power of the stator flux linkage which corresponds with eight voltage vectors at next sampling time; C, using a proportional integral controller (PI) for a speed outer ring and a bus voltage outer ring, wherein the output active power of a regulator and a motor flux linkage are preset; D. constituting a target function of the system through a forecasted value and a given value, and respectively calculating a rectifying-side optimal target function and an inverting-side optimal target function and a corresponding optimal switch state assembly when the switching state of a shared bridge arm is 0 and 1; and E, comparing the optical target function when the switching state of the shared bridge arm is 0 with the optical target function when the switching state of the shared bridge arm is 1, and applying a rectifying-side and inverting-side switch assembly which corresponds with the relatively small target function to the power converter. The model prediction controlling method is suitable for various five-bridge-arm controllable-rectifying frequency-conversion speed-regulation systems.

Description

Model prediction control method of controllable rectification variable-frequency speed regulation system with five bridge arms
Technical Field
The invention belongs to the technical field of medium and high power variable frequency speed regulation, and particularly relates to a model prediction control method of a controllable rectification variable frequency speed regulation system of a five-bridge arm.
Background
The controllable frequency-conversion speed-regulating system of rectification has been widely applied in the high-power occasions such as wind power generation because of its high-efficient energy-saving characteristic, its power converter mainly is three-phase six bridge arm structure shown in fig. 1, include rectification link (namely AC/DC converter) and contravariant link (namely DC/AC converter), the rectification link connects network and direct-current side, realize turning the three-phase electric network electric energy into the stable direct current and supplying the contravariant side to use; the inversion link is connected with the direct current side and the alternating current motor, so that direct current is converted into alternating current with controllable frequency amplitude to carry out motor speed regulation. The high-performance control of the system can be realized by controlling the on and off of the power tube. It can be seen that the topology structure has 12 power switching tubes, and due to the influence of factors such as continuous operation of long-time high load and internal and external conditions changing with time, the power switching devices are relatively 'fragile', once a certain power tube of the converter has an open-circuit fault, the whole system loses the capability of normal operation, and if the power tube is light, huge economic loss is caused, and if the power tube is heavy, catastrophic consequences occur.
With the increasing requirements on the safety and reliability of the medium-high power variable frequency speed control system, the real-time fault diagnosis and fault-tolerant control method is highly emphasized. However, most of the existing variable frequency speed control systems are not provided with redundant switching devices, so that a five-bridge-arm fault-tolerant topology structure without redundant switches is widely concerned, and the five-bridge-arm fault-tolerant topology is a fault-tolerant scheme for correspondingly connecting a fault bridge arm to a normal bridge arm of another subsystem to form bridge arm sharing in a rectification and inversion link. In numerous patents and documents aiming at a control strategy of a five-bridge arm rectification controllable variable frequency speed control system, the general method is mainly that linearization processing is carried out by a pulse width modulation method, and design is carried out by a linear control theory. However, in the five-leg topology, due to the coupling of the input and the output, the linear control method is difficult to realize good performance control.
Disclosure of Invention
Aiming at the defects or the improvement requirements of the prior art, the invention provides a model prediction control method of a controllable rectification variable-frequency speed control system of five bridge arms, which can realize the independent control of a rectification subsystem and an inversion subsystem under the condition of bridge arm sharing. The invention is suitable for various rectification controllable variable frequency speed control systems driven by five bridge arms. In order not to lose generality, the invention only considers the condition that the third phase of the rectification or inversion subsystem is damaged.
The invention provides a model prediction control method of a controllable rectification variable-frequency speed regulation system of a five-bridge arm, which comprises the following steps of:
step 1, respectively measuring three-phase power grid voltageThree-phase network currentThree-phase motor currentBus voltage udAnd motor speed ω;
step 2, calculating a given value P of active power on a rectification side, and calculating a given value of torque on an inversion side
Step 3 passing said bus voltage udCalculating the current time value of the voltage vector under each switch state;
step 4, passing the motor rotation speed omega and the three-phase motor currentEstimating rotor flux linkageThen calculating the stator flux linkageThe calculation formula is as follows:
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <mi>d</mi> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>j&omega;&tau;</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&sigma;L</mi> <mi>s</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> </mrow> </math>
wherein, taur=Lr/RrIs the motor rotor time constant; rrIs the rotor resistance of the motor; l ism、Lr、LsThe motor stator and rotor mutual inductance, the rotor inductance and the stator inductance are respectively; σ ═ 1-Lm 2/LsLrIs the leakage inductance coefficient of the motor;
step 5, on the inversion side, predicting stator flux linkages corresponding to all voltage vectors at the next sampling momentAnd electromagnetic torque Te(k +1) predicting active power P (k +1) and reactive power Q (k +1) at the next sampling moment on a rectification side;
step 6, designing a rectification side objective function:
Jg=|P*-P(k+1)i|+|Q*-Q(k+1)i|,i∈{1,2,3,4;5,6,7,8}
designing an inversion side objective function:
<math> <mrow> <msub> <mi>J</mi> <mi>l</mi> </msub> <mo>=</mo> <mo>|</mo> <msup> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <mo>+</mo> <mi>&lambda;</mi> <mo>|</mo> <mo>|</mo> <msubsup> <mi>&psi;</mi> <mi>s</mi> <mo>*</mo> </msubsup> <mo>|</mo> <mo>-</mo> <mo>|</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mi>i</mi> </msub> <mo>|</mo> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <mo>{</mo> <mn>1,2,3,4</mn> <mo>;</mo> <mn>5,6,7,8</mn> <mo>}</mo> </mrow> </math>
and taking the voltage vector which minimizes the objective function as the optimal voltage vector, and applying the switch combination corresponding to the voltage vector to each bridge arm.
Generally, compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:
(1) under the condition of not increasing redundant bridge arms and under the condition of a certain power switching tube fault, the high-performance operation of the variable frequency speed control system can be realized;
(2) under the condition of bridge arm sharing, closed-loop control of active power, reactive power and bus voltage is realized on a rectification side; closed-loop control of flux linkage, torque and speed can be realized on the inversion side, and independent control of a rectifier subsystem and an inversion subsystem is realized;
(3) by adopting the optimal objective function determination method used by the invention, the prediction and iteration times of model prediction control can be greatly reduced, and the calculation complexity is reduced, so that the method can be realized in actual engineering.
Drawings
FIG. 1 is a schematic diagram of a power converter of a three-phase-three-phase rectification controllable variable frequency speed control system in the prior art;
FIG. 2 is a schematic diagram of a five-leg three-phase-three-phase rectification controllable variable frequency speed control system power converter with fault reconstruction according to the invention;
FIG. 3 is a schematic diagram of a control module and a control object according to the present invention;
fig. 4 is a flow chart of the optimal switch combination acquisition of the present invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. In addition, the technical features involved in the embodiments of the present invention described below may be combined with each other as long as they do not conflict with each other.
The embodiment of the invention aims to provide a variable-frequency speed control system with 12 IGBT (insulated gate bipolar transistor) rectification controllable power converters and provides a fault-tolerant control method after a certain power tube fails.
Fig. 2 is a schematic diagram of a five-leg three-phase-three-phase rectification controllable variable frequency speed control system fault-tolerant power converter after hardware reconstruction after a power tube fails. For the sake of no loss of generality, only the inverter link bridge arm l is assumed here3When the power tube fails, the switch s is closed3Bridge arm g of the rectifier3Corresponding phase l of fault bridge arm connected to inversion link3And after reconstruction, the five-bridge-arm fault-tolerant topological structure is shared by bridge arms in a rectification link and an inversion link, and a model predictive control algorithm is adopted as a controller to realize fault-tolerant control.
Fig. 3 is a structural block diagram and a schematic control object diagram of the controller of the present invention, in order to implement a high-performance closed-loop control strategy, in a rectification link, a conventional proportional-integral controller (PI controller) is used to obtain a given value of active power, and a voltage inner loop control is performed by using model prediction control; in the inversion link, a traditional PI controller is adopted for speed outer loop control to obtain a given value of torque, and a model prediction controller is adopted for current inner loop control. The method comprises three stages of flux linkage estimation, active power, reactive power, torque and flux linkage prediction and objective function optimization.
In the first stage, the current induction motor stator and rotor flux linkage is estimated. The method adopts a voltage flux linkage model or a current flux linkage model to estimate the current rotor and stator flux linkages.
In the second stage, the voltage sensor is used to measure the real-time voltage of the DC bus capacitor and calculate the accurate value of the current voltage vector, as shown in Table 1, udRepresenting the bus voltage. In the embodiment of the invention, the switch state 0 indicates that the upper tube of the bridge arm is closed and the lower tube is conducted; the switch state 1 indicates that the upper tube of the bridge arm is on and the lower tube is off. For example, switch state 000 indicates that all three legs are with the upper tube closed and the lower tube open. The rectifying link predicts active power and reactive power corresponding to the eight voltage vectors according to a mathematical model; and the inversion link predicts the torque and the stator flux linkage corresponding to the eight voltage vectors according to a mathematical model. When the switching state of the shared bridge arm is determined, only four voltage vectors can be applied to the rectifying side and the inverting side, as shown in table 2 below.
TABLE 1
Sharing bridge arm states 0 1
Voltage vector applicable on rectifying side v1~v4 v5~v8
Voltage vector applicable to inverting side v1~v4 v5~v8
TABLE 2
And in the third stage, an objective function is constructed according to the given value and the pre-measurement of the system, and the optimal switch combination is selected according to the objective function.
With reference to fig. 3, the present invention specifically includes the following steps:
step 1, respectively measuring three-phase power grid voltage by using current sensor, voltage sensor and speed sensor in induction motor driving systemThree-phase network currentThree-phase motor currentBus voltage udAnd motor speed ω.
Step 2 in the inversion ringThe speed control loop adopts PI controller, which outputs the given value as torqueIn the rectification link, the voltage control loop adopts a PI controller, and the PI controller outputs a given value P serving as active power*
Step 3 by measuring the bus voltage udThe values of the eight voltage vectors shown in table 1 at the present moment are calculated.
Step 4, measuring the motor rotating speed omega and the three-phase motor currentEstimating rotor flux linkageThen calculating the stator flux linkageThe calculation formula is as follows:
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <mi>d</mi> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>j&omega;&tau;</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&sigma;L</mi> <mi>s</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> </mrow> </math>
wherein, taur=Lr/RrIs the motor rotor time constant; rrIs the rotor resistance of the motor; l ism、Lr、LsThe motor stator and rotor mutual inductance, the rotor inductance and the stator inductance are respectively; σ ═ 1-Lm 2/LsLrIs the leakage inductance coefficient of the motor.
And 5, in an inversion link, predicting stator flux linkages corresponding to all voltage vectors at the next sampling moment through a motor model and an inverter modelAnd electromagnetic torque Te(k +1) in the embodiment of the present invention,
the prediction model of stator flux linkage is as follows:
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>v</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
the prediction model of the electromagnetic torque is as follows:
<math> <mrow> <msub> <mi>T</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mi>p</mi> <mo>&CenterDot;</mo> <mi>Im</mi> <mo>{</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
wherein k and k +1 represent sampling moments; t issIs the sampling time;is an inverter voltage vector; rsIs the motor stator resistance; p is the number of pole pairs of the motor; the notation Im {. is } to take the imaginary part of the expression.
The prediction of the electromagnetic torque requires first the current to the electric machineAnd (3) predicting:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&tau;</mi> <mi>&sigma;</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>&sigma;</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mo>{</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>&sigma;</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mo>(</mo> <mfrac> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>&tau;</mi> <mi>r</mi> </msub> </mfrac> <mo>-</mo> <msub> <mi>j&omega;k</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>}</mo> </mrow> </math>
wherein, for the sake of convenience of representation,is an equivalent resistance; k is a radical ofr=Lm/LrIs the rotor mutual inductance; tau isσ=σLs/RσIs an equivalent time constant.
In a rectification link, predicting active power P (k +1) and reactive power Q (k +1) at the next sampling moment according to a mathematical model of a rectifier;
<math> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>Re</mi> <mo>{</mo> <msub> <mover> <mi>e</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mo>&OverBar;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
<math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>I</mi> <mi>m</mi> <mo>{</mo> <msub> <mover> <mi>e</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mo>&OverBar;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
wherein,represents the conjugate of the predicted net side current;representing the predicted value of the grid voltage, considering that the sampling period is sufficiently short, consider eg(k+1)≈eg(k) The grid current may be obtained by a rectifier model:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mi>g</mi> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>g</mi> </msub> </mfrac> <msub> <mover> <mi>e</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>g</mi> </msub> </mfrac> <msub> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein L isgIs a net side filter inductor; rgIs the equivalent network side internal resistance;is the rectifier voltage vector.
Step 6, designing a rectification link objective function:
Jg=|P*-P(k+1)i|+|Q*-Q(k+1)i|,i∈{1,2,3,4;5,6,7,8}
designing an inversion link objective function:
<math> <mrow> <msub> <mi>J</mi> <mi>l</mi> </msub> <mo>=</mo> <mo>|</mo> <msup> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <mo>+</mo> <mi>&lambda;</mi> <mo>|</mo> <mo>|</mo> <msubsup> <mi>&psi;</mi> <mi>s</mi> <mo>*</mo> </msubsup> <mo>|</mo> <mo>-</mo> <mo>|</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mi>i</mi> </msub> <mo>|</mo> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <mo>{</mo> <mn>1,2,3,4</mn> <mo>;</mo> <mn>5,6,7,8</mn> <mo>}</mo> </mrow> </math>
constructing a global objective function based on the objective function, taking the voltage vector minimizing the objective function as the optimal voltage vector, and applying the switch combination [ S ] corresponding to the voltage vectorl1,Sl2,Sg1,Sg2,Sshare]Each switch state in the combination is applied to each leg.
Fig. 4 shows a detailed flowchart of step 6 of the present invention, which includes the following sub-steps:
(6-1) for the rectification link and the inversion link, under the condition that the state of a shared bridge arm is 0, the applicable voltage vectors are all v1~v4By traversing v according to the mathematical model of the rectifier1~v4Obtaining an optimal objective function J on the rectification sideg0(Jg0The minimum value of the objective function of the rectifying link for traversing the first four voltage vectors);
(6-2) according to the mathematical model of the inverter by traversing v1~v4Obtaining the optimal target function J of the inversion sidel0(Jl0Minimum value of the inversion link objective function for traversing the first four voltage vectors);
(6-3) obtaining a total objective function J of the system under the condition that the shared bridge arm state is 0 by designing weight addition0=Jg0+Jl0
(6-4) similarly, when the shared arm state is 1, the voltage vectors that can be applied are all v5~v8Obtaining the optimal objective function J on the rectifying side by traversing the voltage vectorg1(Jg1Minimum value of objective function of rectifying link for traversing four voltage vectors), and optimal target J on inversion sidel1(Jl1Minimum of the inversion-link objective function for the last four voltage vectors traversed) and the total objective function J)1=Jg1+Jl1
(6-5) by comparison of J0And J1Taking the smaller value as the optimal target function;
and (6-6) applying a switch combination corresponding to the optimal objective function to the power converter of the five bridge arms to realize a final control objective.
It will be understood by those skilled in the art that the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the invention, and that any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the scope of the present invention.

Claims (7)

1. A model prediction control method of a controllable rectification variable-frequency speed regulation system of a five-bridge arm is characterized by comprising the following steps:
step 1, respectively measuring three-phase power grid voltageThree-phase network currentThree-phase motor currentBus voltage udAnd motor speed ω;
step 2, calculating a given value P of active power on a rectification side, and calculating a given value of torque on an inversion side
Step 3 passing said bus voltage udCalculating the current time value of the voltage vector under each switch state;
step 4, passing the motor rotation speed omega and the three-phase motor currentEstimating rotor flux linkageThen calculating the stator flux linkageThe calculation formula is as follows:
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <mi>d</mi> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>j&omega;&tau;</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&sigma;L</mi> <mi>s</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> </mrow> </math>
wherein, taur=Lr/RrIs the motor rotor time constant; rrIs the rotor resistance of the motor; l ism、Lr、LsThe motor stator and rotor mutual inductance, the rotor inductance and the stator inductance are respectively; σ ═ 1-Lm 2/LsLrIs the leakage inductance coefficient of the motor;
step 5, on the inversion side, predicting stator flux linkages corresponding to all voltage vectors at the next sampling momentAnd electromagnetic torque Te(k +1) predicting active power P (k +1) and reactive power Q (k +1) at the next sampling moment on a rectification side;
step 6, designing a rectification side objective function:
Jg=|P*-P(k+1)i|+|Q*-Q(k+1)i|,i∈{1,2,3,4;5,6,7,8}
designing an inversion side objective function:
<math> <mrow> <msub> <mi>J</mi> <mi>l</mi> </msub> <mo>=</mo> <mi>|</mi> <msubsup> <mi>T</mi> <mi>e</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mi>|+</mi> <mi>&lambda;</mi> <mi>||</mi> <msubsup> <mi>&psi;</mi> <mi>s</mi> <mo>*</mo> </msubsup> <mo>|</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>;</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo>}</mo> </mrow> </math>
and taking the voltage vector which minimizes the objective function as the optimal voltage vector, and applying the switch combination corresponding to the voltage vector to each bridge arm.
2. The method of claim 1, wherein in step 3, switch state 0 indicates that the upper tube of the bridge arm is closed and the lower tube is conductive, switch state 1 indicates that the upper tube of the bridge arm is conductive and the lower tube is closed, and in switch state 000, the voltage vector is 0; in the switching state 100, the voltage vector is 2udA/3; in the switching state 110, the voltage vector isIn the switched state 010 the voltage vector isIn the switched state 011, the voltage vector is-2 udA/3; in the switched state 001, the voltage vector isIn the switching state 101, the voltage vector isIn switch state 111, the voltage vector is 0.
3. The method according to claim 1 or 2, wherein in step 5, all voltage vectors at the next sampling moment correspond to stator flux linkagesAnd electromagnetic torque TeThe calculation formula of (k +1) is as follows:
<math> <mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>v</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>T</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mi>p</mi> <mo>&CenterDot;</mo> <mi>Im</mi> <mo>{</mo> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
wherein k and k +1 represent sampling moments; t issIs the sampling time;is an inverter voltage vector; rsIs the motor stator resistance; p is the number of pole pairs of the motor; the notation Im {. is } to take the imaginary part of the expression.
4. Method according to claim 3, characterized in that said electromagnetic torque TeThe prediction of (k +1) requires first the current to the motorAnd (3) predicting:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&tau;</mi> <mi>&sigma;</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>&sigma;</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mo>{</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>&sigma;</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mo>(</mo> <mfrac> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>&tau;</mi> <mi>r</mi> </msub> </mfrac> <mo>-</mo> <msub> <mi>j&omega;k</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>&psi;</mi> <mo>&RightArrow;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>&RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>}</mo> </mrow> </math>
wherein,is an equivalent resistance; k is a radical ofr=Lm/LrIs the rotor mutual inductance; tau isσ=σLs/RσIs an equivalent time constant.
5. The method according to claim 1 or 2, wherein in step 5, the calculation formula of the active power P (k +1) and the reactive power Q (k +1) at the next sampling moment is as follows:
<math> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>Re</mi> <mo>{</mo> <msub> <mover> <mi>e</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mo>&OverBar;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
<math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>I</mi> <mi>m</mi> <mo>{</mo> <msub> <mover> <mi>e</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mo>&OverBar;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
wherein,represents the conjugate of the predicted net side current;representing the predicted value of the grid voltage.
6. The method of claim 5, wherein the grid currentThe calculation formula of (a) is as follows:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mi>g</mi> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mover> <mi>i</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>g</mi> </msub> </mfrac> <msub> <mover> <mi>e</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mi>g</mi> </msub> </mfrac> <msub> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein L isgIs a net side filter inductor; rgIs the equivalent network side internal resistance;is the rectifier voltage vector.
7. A method according to claim 1 or 2, characterized in that said step 6 comprises the following sub-steps:
(6-1) if the shared bridge arm state is the condition that the upper tube is closed, executing the step (6-2), and if the shared bridge arm state is the condition that the lower tube is closed, executing the step (6-4);
(6-2) obtaining an objective function J which minimizes the value of the objective function on the rectification side by traversing each voltage vectorg0(ii) a Traversing each voltage vector to obtain a target function J with the minimum value of the target function on the inversion sidel0
(6-3) obtaining a total objective function J of the system under the condition that the shared bridge arm state is upper tube closing through design weight addition0=Jg0+Jl0
(6-4) obtaining an objective function J which minimizes the value of the objective function on the rectification side by traversing each voltage vectorg1(ii) a Traversing each voltage vector to obtain a target function J with the minimum value of the target function on the inversion sidel1(ii) a And find the total objective function J1=Jg1+Jl1
(6-5) comparison J0And J1Taking the smaller value as the optimal target function;
and (6-6) applying a switch combination corresponding to the optimal objective function to the power converter of the five bridge arms to realize a final control objective.
CN201510413839.2A 2015-07-14 2015-07-14 A kind of model predictive control method of the controlled rectification frequency conversion speed-adjusting system of five bridge arms Active CN105007015B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510413839.2A CN105007015B (en) 2015-07-14 2015-07-14 A kind of model predictive control method of the controlled rectification frequency conversion speed-adjusting system of five bridge arms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510413839.2A CN105007015B (en) 2015-07-14 2015-07-14 A kind of model predictive control method of the controlled rectification frequency conversion speed-adjusting system of five bridge arms

Publications (2)

Publication Number Publication Date
CN105007015A true CN105007015A (en) 2015-10-28
CN105007015B CN105007015B (en) 2017-10-13

Family

ID=54379566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510413839.2A Active CN105007015B (en) 2015-07-14 2015-07-14 A kind of model predictive control method of the controlled rectification frequency conversion speed-adjusting system of five bridge arms

Country Status (1)

Country Link
CN (1) CN105007015B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743404A (en) * 2016-03-23 2016-07-06 华中科技大学 Model prediction control method for four-quadrant induction motor driving system
CN105763120A (en) * 2016-03-29 2016-07-13 东南大学 Permanent magnet synchronous motor quasi dead-beat model prediction flux linkage control method
CN105871293A (en) * 2016-03-23 2016-08-17 华中科技大学 Low-cost model prediction control method of dual-PWM power converter
CN107579653A (en) * 2017-09-28 2018-01-12 上海交通大学 A kind of wind electric converter bridge arm is multiplexed reconfigurable control method and system
CN108092303A (en) * 2017-12-05 2018-05-29 东南大学 A kind of fault tolerant control method and system of wind generator system back-to-back converter
CN110943664A (en) * 2019-11-06 2020-03-31 东南大学 Five-bridge-arm double-mover primary permanent magnet linear motor model prediction current control method based on double-layer positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159391A (en) * 2002-11-05 2004-06-03 Nissan Motor Co Ltd Control device for three-phase ac motor
CN101982918A (en) * 2010-09-25 2011-03-02 合肥工业大学 Direct driving wind power generation system based on double SVPWM current mode convertor and control method thereof
CN103366053A (en) * 2013-06-27 2013-10-23 国家电网公司 Voltage directional vector control strategy improvement and mathematical modeling method
CN103715961A (en) * 2013-12-19 2014-04-09 华中科技大学 Model prediction-based doubly salient permanent magnet synchronous motor direct torque control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159391A (en) * 2002-11-05 2004-06-03 Nissan Motor Co Ltd Control device for three-phase ac motor
CN101982918A (en) * 2010-09-25 2011-03-02 合肥工业大学 Direct driving wind power generation system based on double SVPWM current mode convertor and control method thereof
CN103366053A (en) * 2013-06-27 2013-10-23 国家电网公司 Voltage directional vector control strategy improvement and mathematical modeling method
CN103715961A (en) * 2013-12-19 2014-04-09 华中科技大学 Model prediction-based doubly salient permanent magnet synchronous motor direct torque control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAHMOUD SHAHBAZI等: "FPGA-Based Reconfigurable Control for Fault-Tolerant Back-to-Back Converter Without Redundancy", 《IEE》 *
郭林杰等: "基于双PWM协调控制的永磁风力发电系统研究", 《微型机与应用》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743404A (en) * 2016-03-23 2016-07-06 华中科技大学 Model prediction control method for four-quadrant induction motor driving system
CN105871293A (en) * 2016-03-23 2016-08-17 华中科技大学 Low-cost model prediction control method of dual-PWM power converter
CN105871293B (en) * 2016-03-23 2020-01-21 华中科技大学 Low-cost double-PWM power converter model prediction control method
CN105743404B (en) * 2016-03-23 2020-05-26 华中科技大学 Model prediction control method of four-quadrant induction motor driving system
CN105763120A (en) * 2016-03-29 2016-07-13 东南大学 Permanent magnet synchronous motor quasi dead-beat model prediction flux linkage control method
CN105763120B (en) * 2016-03-29 2018-02-06 东南大学 A kind of quasi- dead beat model prediction flux linkage control method of permagnetic synchronous motor
CN107579653A (en) * 2017-09-28 2018-01-12 上海交通大学 A kind of wind electric converter bridge arm is multiplexed reconfigurable control method and system
CN108092303A (en) * 2017-12-05 2018-05-29 东南大学 A kind of fault tolerant control method and system of wind generator system back-to-back converter
CN108092303B (en) * 2017-12-05 2019-10-11 东南大学 A kind of fault tolerant control method and system of wind generator system back-to-back converter
CN110943664A (en) * 2019-11-06 2020-03-31 东南大学 Five-bridge-arm double-mover primary permanent magnet linear motor model prediction current control method based on double-layer positioning
CN110943664B (en) * 2019-11-06 2021-07-20 东南大学 Five-bridge-arm double-mover primary permanent magnet linear motor model prediction current control method based on double-layer positioning

Also Published As

Publication number Publication date
CN105007015B (en) 2017-10-13

Similar Documents

Publication Publication Date Title
CN105007015B (en) A kind of model predictive control method of the controlled rectification frequency conversion speed-adjusting system of five bridge arms
CN105743404B (en) Model prediction control method of four-quadrant induction motor driving system
Hannan et al. Switching techniques and intelligent controllers for induction motor drive: Issues and recommendations
Fantino et al. Nonlinear observer-based control for PMSG wind turbine
WO2016004756A1 (en) Line power control method and system of unified power flow controller
CN105490604B (en) A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four
CN102158106B (en) Parallel structure of voltage source type PWM (Pulse Width Modulation) rectifier and control method of the rectifier
CN106877408A (en) Improve the method that T-shaped three level permanent magnet direct-drive wind power system predicts Direct Power
CN103326611A (en) Controlling method for predicting direct power of three-phase voltage source type PWM converter
CN108011553A (en) A kind of double-PWM frequency converter model prediction direct Power Control method based on Virtual shipyard
CN106849705A (en) A kind of current predictive control method based on single-phase Vienna rectifiers
CN105871293B (en) Low-cost double-PWM power converter model prediction control method
CN105762789B (en) A kind of 3-phase power converter model predictive control method of Converter Without Voltage Sensor
CN105490565B (en) A kind of model predictive control method of four switching rectifier direct Power Control of three-phase
Nallusamy et al. Design and implementation of a linear quadratic regulator controlled active power conditioner for effective source utilisation and voltage regulation in low‐power wind energy conversion systems
Beshta et al. Performances of asynchronous motor within variable frequency drive with additional power source plugged via combined converter
CN104167968B (en) A kind of Vector Control System of Induction Motor method
Popescu et al. Synthesis of rotor field-orientation control for induction traction motor
CN109600061B (en) Novel fixed-frequency model prediction current control method based on dynamic weight
CN107769594B (en) A kind of optimization method of Pulse rectifier current inner loop controller
Dida et al. Modeling and control of DFIG through back-to-back five levels converters based on neuro-fuzzy controller
Yeganeh et al. Dynamic Performance Optimization of Single-Phase Inverter based on Model Predictive Control
Yu et al. Energy-shaping and passivity-based control of three-phase PWM rectifiers
Rachi et al. Design and development of a multi-port converter for marine microgrid applications
Talavat et al. Direct predictive control of asynchronous machine torque using matrix converter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant