JP2004159391A - Control device for three-phase ac motor - Google Patents

Control device for three-phase ac motor Download PDF

Info

Publication number
JP2004159391A
JP2004159391A JP2002320685A JP2002320685A JP2004159391A JP 2004159391 A JP2004159391 A JP 2004159391A JP 2002320685 A JP2002320685 A JP 2002320685A JP 2002320685 A JP2002320685 A JP 2002320685A JP 2004159391 A JP2004159391 A JP 2004159391A
Authority
JP
Japan
Prior art keywords
phase
current
axis
value
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320685A
Other languages
Japanese (ja)
Other versions
JP4168730B2 (en
Inventor
Satoru Fujimoto
覚 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002320685A priority Critical patent/JP4168730B2/en
Publication of JP2004159391A publication Critical patent/JP2004159391A/en
Application granted granted Critical
Publication of JP4168730B2 publication Critical patent/JP4168730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for three-phase AC motor capable of vector control with one current sensor. <P>SOLUTION: This control device for a three-phase AC motor, conducting the vector control by detecting three-phase current, comprises one current sensor 7 for detecting only a current Iu of one of three-phase currents Iu, Iu and Iw; and an other-phase current value estimating part 10 for currents Iv, Iw of remaining two phases using a detected current value Iu of one phase, an electrical angle detection value θ of the motor, and an angle which a composite vector Ia of a d-axis current command value and a q-axis current command value forms relative to a q-axis, that is, a command current phase angle α. This control device ensures the vector control of the three-phase AC motor for controlling to arbitrary d- and q-axis current values while realizing cost by reducing the number of current sensors. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は3相交流電動機のベクトル制御技術に関する。
【0002】
【従来の技術】
【特許文献1】特開2001−25277号公報
上記特許文献1には、1つの電流センサを用いて制御を行い、高価な電流センサの使用数を削減した3相交流電動機(以下、モータと記す)の制御方法が記載されている。
【0003】
【発明が解決しようとする課題】
上記の従来技術においては、インバータ(およびモータ)に流れる直流電流を電流センサで検知して、その直流電流値を制御するという構成になっていたため、モータ出力に比例的に関係するq軸電流(トルク軸電流)、およびd軸電流(弱め界磁電流)を個別に制御して効率的なモータの運転を行う、いわゆるベクトル制御ができない、という問題があった。
【0004】
本発明は上記のごとき問題を解決するものであり、一つの電流センサを用いてベクトル制御を可能にした3相交流モータの制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明においては、3相電流のうち、1相の電流のみを検出する1個の電流センサを備え、前記検出した1相の電流値と、電動機の電気角検出値と、d軸電流指令値とq軸電流指令値との合成ベクトルがq軸と成す角度すなわち指令電流位相角αとを用いて、残りの2相の電流値を推定するように構成している。
【0006】
【発明の効果】
本発明においては、電流センサ数を削減してコストの低減を計りながら、任意のd、q軸電流値に制御する3相交流モータのベクトル制御が可能になる、という効果が得られる。
【0007】
【発明の実施の形態】
以下、本発明の一実施例について図面に基づいて詳述する。図1は、本発明の一実施例を示すブロック図である。
図1において、1〜9の部分は通常の3相同期モータの電流フィードバック制御系と同じであり、電流指令演算部1の一部と他相電流値推定部10との部分が通常と異なっている。なお、他相電流値推定部10は通常の電流フィードバック制御系を構成するコンピュータを用いて共通に構成することが出来る。
【0008】
まず、通常の3相同期モータの電流フィードバック制御系(ベクトル制御)について概略を説明する。
電流指令演算部1では、外部から指令されたトルク指令T*に見合ったd軸電流指令値Id*およびq軸電流指令値Iq*を出力する。それらの電流指令値は電流PI制御部2に入力される。なお、指令電流位相角αについては後述する。 電流PI制御部2は、d軸電流指令値Id*とd軸電流値(現在値)Idとの偏差に基づき比例積分演算を行ってd軸電圧指令値Vd*を出力し、同様にq軸電流指令値Iq*とq軸電流値(現在値)Iqとの偏差に基づいてq軸電圧指令値Vq*を出力する。
上記のd軸電圧指令値Vd*とq軸電圧指令値Vq*は、必要に応じて非干渉演算処理を施され、2相3相変換器3により3相電圧指令値Vu*、Vv*、Vw*に変換された後、PWM変換部4に与えられ、PWM信号に変換される。
インバータ5は上記PWM信号に応じて図示しない直流電源(バッテリ等)の電力を3相交流電力変換し、3相モータ6を駆動する。
通常の電流フィードバック制御系においては、3相の各相電流Iu、Iv、Iwを3個の電流センサでそれぞれ検出するが、本実施例においては、1個の電流センサ7によって1相の電流(例えばU相電流Iu)のみを検出する。
他相電流値推定部10では、上記の検出したU相電流Iuから他の2相の電流値(例えばV相電流IvとW相電流Iw)を推定し、3相の電流Iu、Iv、Iwを出力する。なお、他相電流値推定部10の詳細については後述する。
3相2相変換器9は、上記の3相の電流Iu、Iv、Iwをd軸電流値Idおよびq軸電流値Iqに変換し、前記電流PI制御部2にフィードバックする。
回転角検出器8は、3相モータ6の現在回転角(電気角θ)を検出する。この電気角θは、前記2相3相変換器と3相2相変換器10における座標変換演算および電流指令演算部1と他相電流値推定部10における演算に用いられる。
【0009】
以下、本発明の特徴とする電流指令演算部1における指令電流位相角αの演算と他相電流値推定部10について説明する。
3相交流モータに流れる相電流には図2に示す関係があり、各々が120°ずつ位相がずれた正弦波であって、下記(数1)式〜(数3)式で表される。
Iu=√(1/3)×Ia×(−sin[θ’]) …(数1)
Iv=√(1/3)×Ia×(−sin[θ’+120°])…(数2)
Iw=√(1/3)×Ia×(−sin[θ’+240°])…(数3)
よってIuとθ’を検出すれば、(数1)式よりIaを算出することができ、このIaとθ’を用いて(数2)式、(数3)式からIv、Iwを推定することができる。
【0010】
以下、上記の電流値推定で用いる角度θ’について詳述する。
角度θ’は、モータの回転子とステータのU相軸とが成す角度θ(図3参照)に、d軸電流指令値とq軸電流指令値との合成ベクトルIaがq軸と成す角度、すなわち指令電流位相角α(以上、図4参照)を加算した値であり、下記(数4)式で示される。
θ’=θ+α …(数4)
つまり、U相電流の位相角θ’とモータ回転子の位相角θ(=U相誘起電圧位相角)には、図5に示すように、角度α°だけオフセットした関係があり、U相電流の位相角0°からα°遅れてモータ回転子角は0°となる。
【0011】
ここで、図5に示したU相電流位相角θ’=0°の瞬間におけるd軸、q軸とU軸、V軸、W軸との位相関係を図6に示す。図6に示すように、モータ回転子のN極方向がd軸で、これに直行した軸がq軸である。
さらに、この時の電流ベクトルを図7に示す。図7に示したように、U相電流位相角θ’=0°であるからIu=0であり、また3相電流値の総和は0の関係(Iu+Iv+Iw=0)と図5の関係からIv=−Iwであり、かつ、Iv>0である。
よって、この時の3相電流ベクトルの総和(Ia×√(1/3))は図7に示すベクトルとなり、その角度はU軸、V軸間でU軸から90°の位置になる。
【0012】
さらに、図7に図6で示したd軸、q軸を重ねたものを図8に示す。
【0013】
図8のベクトルIaをd軸とq軸にベクトル分解したものがベクトルIdおよびベクトルIqとなる。ここでベクトルIaとベクトルIqの成す電流位相角をXとすると、その値はd軸とベクトルIaの成す角Aからd軸とq軸の成す角90°を引いた値であり、下記(数5)式で示される。
X=A−90° …(数5)
d軸とベクトルIaの成す角Aは、d軸とU軸の成す角αと、U軸とベクトルIaの成す角90°との和に等しく、下記(数6)式で示される。
A=α+90° …(数6)
(数6)式を(数5)式に代入すると、下記(数7)式となる。
X=α+90−90=α …(数7)
したがってX=αあることが判る。
【0014】
よって、d軸電流指令値Idとq軸電流指令値Iqとの合成ベクトルIaがq軸と成す角度すなわち指令電流位相角αを、モータの回転子とステータのU相軸とが成す角度θに加えた値θ’を用いることにより、3相のうちの1相の電流値(例えばU相電流Iu)を検出すれば、前記(数1)式〜(数3)式から他の2相の電流値を推定することが出来る。そして上記のようにして求めた3相の電流値を用いて、その時のモータに流れる電流値Id、Iqの電流位相が指令値の電流位相αと一致するよう制御することが出来るので、ベクトル制御が可能となる。
【0015】
図9は、上記の他相電流値推定部10における演算処理を示すフローチャートである。
図9において、ステップ1では、電流センサ7の検出値Iu、回転角検出器8の検出値θ、および指令電流位相角αを取り込み、ステップ2へ移行する。
なお、指令電流位相角αは、d軸電流指令値Idとq軸電流指令値Iqとの合成ベクトルIaがq軸と成す角度であるから、電流指令演算部1において、d軸電流指令値Idとq軸電流指令値Iqの算出時に同時に求める。
【0016】
ステップ2では、ステップ1で取り込んだ値を用いて、前記(数1)式から下記(数8)式を用いてIaを算出し、ステップ3へ移行する。
Ia=Iu/〔√(1/3)×(−sin[θ’])〕 …(数8)
ステップ3では、ステップ2で算出したIaおよびステップ1での取り込み値を用いて、前記(数2)式からIvを算出し、ステップ4へ移行する。
【0017】
ステップ4では、ステップ2で算出したIaおよびステップ1での取り込み値を用いて、前記(数3)式からIwを算出する。以上で他相電流値推定の演算を終了する。
以下、通常の電流ベクトル制御と同様に3相2相変換でdq軸電流を取得して電流制御を行うことが可能である。
【0018】
上記のように、本実施例においては、1個の電流センサを用いて検出した1相の電流値から他の2相の電流値を演算で推定することにより、3相交流モータのベクトル制御を行うことが出来る。そのため、電流センサ数を削減してコストの低減を計りながら、任意のd、q軸電流値に制御する3相交流モータのベクトル制御が可能になる、という効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すブロック図。
【図2】3相電流Iu、Iv、Iwの関係を示す図。
【図3】モータの回転子とステータのU相軸とが成す角度θを示す図。
【図4】d軸電流指令値とq軸電流指令値との合成ベクトルIaがq軸と成す角度、すなわち指令電流位相角αを示す図。
【図5】U相電流の位相角θ’とモータ回転子の位相角θ(誘起電圧位相角)との関係を示す図。
【図6】U相電流位相角θ’=0°の瞬間におけるd軸、q軸とU軸、V軸、W軸との位相関係を示す図。
【図7】U相電流位相角θ’=0°の瞬間における電流ベクトルを示す図。
【図8】図7の電流ベクトルに図6で示したd軸、q軸を重ねた図。
【図9】他相電流値推定部10における演算処理を示すフローチャート。
【符号の説明】
1…電流指令演算部 2…電流PI制御部
3…2相3相変換器 4…PWM変換部
5…インバータ 6…3相モータ
7…電流センサ 8…回転角検出器
9…3相2相変換器 10…他相電流値推定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vector control technique for a three-phase AC motor.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-25277 discloses a three-phase AC motor (hereinafter referred to as a motor) in which control is performed using a single current sensor to reduce the number of expensive current sensors used. ) Is described.
[0003]
[Problems to be solved by the invention]
In the above prior art, a direct current flowing through an inverter (and a motor) is detected by a current sensor, and the direct current value is controlled. Therefore, the q-axis current ( There is a problem that the so-called vector control in which the motor is operated efficiently by individually controlling the torque axis current) and the d-axis current (field weakening current) cannot be performed.
[0004]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a control device for a three-phase AC motor that can perform vector control using one current sensor.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided one current sensor that detects only one-phase current among three-phase currents, and detects the detected one-phase current value and an electric angle of a motor. The current value of the remaining two phases is estimated using the angle formed by the combined vector of the d-axis current command value and the q-axis current command value with the q-axis, that is, the command current phase angle α. I have.
[0006]
【The invention's effect】
According to the present invention, it is possible to obtain the effect that the vector control of the three-phase AC motor for controlling the current values to arbitrary d and q axes can be performed while reducing the cost by reducing the number of current sensors.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of the present invention.
In FIG. 1, parts 1 to 9 are the same as the current feedback control system of a normal three-phase synchronous motor, and a part of the current command calculation unit 1 and a part of the other-phase current value estimation unit 10 are different from the usual. I have. The other-phase current value estimating unit 10 can be configured in common by using a computer that forms a normal current feedback control system.
[0008]
First, an outline of a current feedback control system (vector control) of a normal three-phase synchronous motor will be described.
The current command calculator 1 outputs a d-axis current command value Id * and a q-axis current command value Iq * corresponding to a torque command T * commanded from the outside. These current command values are input to the current PI control unit 2. The command current phase angle α will be described later. The current PI control unit 2 outputs a d-axis voltage command value Vd * by performing a proportional integral operation based on a deviation between the d-axis current command value Id * and the d-axis current value (current value) Id, and similarly outputs the q-axis The q-axis voltage command value Vq * is output based on the deviation between the current command value Iq * and the q-axis current value (current value) Iq.
The d-axis voltage command value Vd * and the q-axis voltage command value Vq * are subjected to non-interference calculation processing as necessary, and the two-phase / three-phase converter 3 outputs three-phase voltage command values Vu *, Vv *, After being converted to Vw *, it is provided to the PWM converter 4 and converted to a PWM signal.
The inverter 5 converts the power of a DC power supply (not shown) (not shown) into three-phase AC power according to the PWM signal, and drives the three-phase motor 6.
In a normal current feedback control system, three-phase currents Iu, Iv, and Iw are detected by three current sensors, respectively. In the present embodiment, one-phase current (one current) is detected by one current sensor 7. For example, only the U-phase current Iu) is detected.
The other-phase current value estimating unit 10 estimates current values of the other two phases (for example, the V-phase current Iv and the W-phase current Iw) from the detected U-phase current Iu, and obtains the three-phase currents Iu, Iv, Iw. Is output. The details of the other-phase current value estimating unit 10 will be described later.
The three-phase / two-phase converter 9 converts the three-phase currents Iu, Iv, Iw into a d-axis current value Id and a q-axis current value Iq, and feeds them back to the current PI control unit 2.
The rotation angle detector 8 detects a current rotation angle (electric angle θ) of the three-phase motor 6. The electrical angle θ is used for the coordinate conversion calculation in the two-phase three-phase converter and the three-phase two-phase converter 10 and the calculation in the current command calculator 1 and the other-phase current value estimator 10.
[0009]
Hereinafter, the calculation of the command current phase angle α in the current command calculation unit 1 and the other-phase current value estimation unit 10 which are features of the present invention will be described.
The phase currents flowing through the three-phase AC motor have the relationship shown in FIG. 2, each of which is a sine wave whose phase is shifted by 120 °, and is represented by the following equations (1) to (3).
Iu = √ (1 /) × Ia × (−sin [θ ′]) (Equation 1)
Iv = √ (1 /) × Ia × (−sin [θ ′ + 120 °]) (Equation 2)
Iw = √ (1 /) × Ia × (−sin [θ ′ + 240 °]) (Equation 3)
Therefore, if Iu and θ ′ are detected, Ia can be calculated from Expression (1), and Iv and Iw are estimated from Expressions (2) and (Expression 3) using Ia and θ ′. be able to.
[0010]
Hereinafter, the angle θ ′ used in the current value estimation will be described in detail.
The angle θ ′ is the angle θ (see FIG. 3) formed between the rotor of the motor and the U-phase axis of the stator, the angle formed by the combined vector Ia of the d-axis current command value and the q-axis current command value with the q axis, That is, it is a value obtained by adding the command current phase angle α (refer to FIG. 4), and is represented by the following (Equation 4).
θ ′ = θ + α (Equation 4)
That is, the phase angle θ ′ of the U-phase current and the phase angle θ of the motor rotor (= U-phase induced voltage phase angle) have a relationship offset by an angle α ° as shown in FIG. The motor rotor angle becomes 0 ° delayed from the phase angle 0 ° by α °.
[0011]
Here, FIG. 6 shows the phase relationship between the d-axis, the q-axis, the U-axis, the V-axis, and the W-axis at the moment when the U-phase current phase angle θ ′ = 0 ° shown in FIG. As shown in FIG. 6, the direction of the N pole of the motor rotor is the d-axis, and the axis orthogonal thereto is the q-axis.
FIG. 7 shows the current vector at this time. As shown in FIG. 7, since the U-phase current phase angle θ ′ = 0 °, Iu = 0, and the sum of the three-phase current values is Iv from the relationship of 0 (Iu + Iv + Iw = 0) and FIG. = −Iw and Iv> 0.
Therefore, the sum of the three-phase current vectors (Ia × √ (√)) at this time is the vector shown in FIG. 7, and the angle is 90 ° from the U axis between the U axis and the V axis.
[0012]
Further, FIG. 8 shows a superposition of the d-axis and the q-axis shown in FIG. 6 on FIG.
[0013]
The vector Ia and the vector Iq are obtained by decomposing the vector Ia in FIG. 8 into the d axis and the q axis. Here, assuming that the current phase angle formed by the vector Ia and the vector Iq is X, the value is a value obtained by subtracting the angle 90 ° formed by the d axis and the q axis from the angle A formed by the d axis and the vector Ia. It is shown by the expression 5).
X = A−90 ° (Equation 5)
The angle A formed by the d-axis and the vector Ia is equal to the sum of the angle α formed by the d-axis and the U-axis and the angle 90 formed by the U-axis and the vector Ia, and is expressed by the following equation (6).
A = α + 90 ° (Equation 6)
When the equation (6) is substituted into the equation (5), the following equation (7) is obtained.
X = α + 90−90 = α (Equation 7)
Therefore, it can be seen that X = α.
[0014]
Therefore, the angle formed by the composite vector Ia of the d-axis current command value Id * and the q-axis current command value Iq * with the q-axis, that is, the command current phase angle α, is the angle formed by the rotor of the motor and the U-phase axis of the stator. If the current value of one of the three phases (for example, the U-phase current Iu) is detected by using the value θ ′ added to θ, the other two equations can be obtained from the equations (1) to (3). The current value of the phase can be estimated. Using the three-phase current values obtained as described above, the current phases of the current values Id and Iq flowing through the motor at that time can be controlled so as to match the current phase α of the command value. Becomes possible.
[0015]
FIG. 9 is a flowchart showing a calculation process in the other-phase current value estimating unit 10.
In FIG. 9, in step 1, the detection value Iu of the current sensor 7, the detection value θ of the rotation angle detector 8, and the command current phase angle α are fetched, and the process proceeds to step 2.
The command current phase angle α is an angle formed by the combined vector Ia of the d-axis current command value Id * and the q-axis current command value Iq * with the q-axis. It is obtained at the same time when the value Id * and the q-axis current command value Iq * are calculated.
[0016]
In step 2, Ia is calculated from equation (1) using equation (8) below using the value fetched in step 1, and the process proceeds to step 3.
Ia = Iu / [√ (1 /) × (−sin [θ ′])] (Equation 8)
In step 3, using the Ia calculated in step 2 and the fetched value in step 1, Iv is calculated from equation (2), and the process proceeds to step 4.
[0017]
In step 4, Iw is calculated from the equation (3) using the Ia calculated in step 2 and the captured value in step 1. This completes the calculation of the other-phase current value estimation.
Hereinafter, it is possible to obtain the dq-axis current by the three-phase to two-phase conversion and perform the current control in the same manner as the normal current vector control.
[0018]
As described above, in the present embodiment, the vector control of the three-phase AC motor is performed by estimating the other two-phase current values from the one-phase current value detected using one current sensor. You can do it. Therefore, it is possible to obtain the effect of enabling vector control of a three-phase AC motor for controlling the current values to arbitrary d and q axes while reducing the cost by reducing the number of current sensors.
[Brief description of the drawings]
FIG. 1 is a block diagram showing one embodiment of the present invention.
FIG. 2 is a diagram showing a relationship among three-phase currents Iu, Iv, and Iw.
FIG. 3 is a diagram showing an angle θ formed between a rotor of a motor and a U-phase axis of a stator.
FIG. 4 is a diagram showing an angle formed by a composite vector Ia of a d-axis current command value and a q-axis current command value with the q-axis, that is, a command current phase angle α.
FIG. 5 is a diagram showing a relationship between a phase angle θ ′ of a U-phase current and a phase angle θ of a motor rotor (induced voltage phase angle).
FIG. 6 is a diagram showing a phase relationship among a d-axis, a q-axis, a U-axis, a V-axis, and a W-axis at a moment when a U-phase current phase angle θ ′ = 0 °.
FIG. 7 is a diagram showing a current vector at a moment when a U-phase current phase angle θ ′ = 0 °.
8 is a diagram in which the d-axis and the q-axis shown in FIG. 6 are superimposed on the current vector in FIG.
FIG. 9 is a flowchart showing a calculation process in the other-phase current value estimating unit 10;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Current command calculation part 2 ... Current PI control part 3 ... Two-phase three-phase converter 4 ... PWM conversion part 5 ... Inverter 6 ... Three-phase motor 7 ... Current sensor 8 ... Rotation angle detector 9 ... Three-phase two-phase conversion Unit 10: Other phase current value estimation unit

Claims (2)

3相交流電動機の回転子の電気角および3相電流を検出して、前記電気角検出値から回転数を算出し、トルク指令値と前記回転数からd軸、q軸それぞれの2相電流指令値を算出し、前記電気角検出値を用いて前記3相電流検出値を3相/2相変換してd軸、q軸それぞれの2相電流検出値を得て、前記2相電流指令値に前記2相電流検出値を一致させるための制御演算を行って2相電圧指令値を算出し、前記2相電圧指令値を前記電気角を用いて2相/3相変換してU相、V相、W相の3相電圧指令値を得て、前記3相の電圧指令値に基づいてインバータを制御し、3相交流電動機に供給する電力を制御する3相交流電動機の制御装置において、
前記3相電流のうち、1相の電流のみを検出する1個の電流センサと、
前記検出した1相の電流値と、前記電動機の電気角検出値と、d軸電流指令値とq軸電流指令値との合成ベクトルがq軸と成す角度すなわち指令電流位相角αとを用いて、残りの2相の電流値を推定する他相電流値推定手段と、
を備えたことを特徴とする3相交流電動機の制御装置。
An electrical angle and a three-phase current of the rotor of the three-phase AC motor are detected, a rotation speed is calculated from the detected electrical angle, and a two-phase current command for each of the d-axis and the q-axis is obtained from the torque command value and the rotation speed. The two-phase current command value is obtained by calculating a three-phase / two-phase value of the three-phase current detection value using the electrical angle detection value to obtain a two-phase current detection value for each of the d-axis and the q-axis. A control operation for matching the two-phase current detection values is performed to calculate a two-phase voltage command value. The two-phase voltage command value is converted into two-phase / three-phase using the electrical angle, and the U-phase, A three-phase AC motor control device that obtains V-phase and W-phase three-phase voltage command values, controls an inverter based on the three-phase voltage command values, and controls power supplied to the three-phase AC motor.
One current sensor for detecting only one phase current among the three phase currents;
Using the detected one-phase current value, the electric angle detection value of the electric motor, and the angle formed by the combined vector of the d-axis current command value and the q-axis current command value with the q-axis, that is, the command current phase angle α. A different-phase current value estimating means for estimating the remaining two-phase current values;
A control device for a three-phase AC motor, comprising:
前記他相電流値推定手段は、d軸電流指令値Idとq軸電流指令値Iqとの合成ベクトルIaがq軸と成す角度すなわち指令電流位相角αを、モータの回転子とステータのU相軸とが成す角度θに加えた値θ’を算出し、その値θ’と検出した1相の電流値Iuから下式を用いてIaを算出し、前記θ’、IaおよびIuから下式を用いて他の2相の電流値Iv、Iwを算出することを特徴とする請求項1に記載の3相交流電動機の制御装置。
Ia=Iu/〔√(1/3)×(−sin[θ’])〕
Iv=√(1/3)×Ia×(−sin[θ’+120°])
Iw=√(1/3)×Ia×(−sin[θ’+240°])
The other-phase current value estimating means calculates the angle formed by the composite vector Ia of the d-axis current command value Id * and the q-axis current command value Iq * with the q-axis, that is, the command current phase angle α, by using the motor rotor and the stator. A value θ ′ added to the angle θ formed by the U-phase axis is calculated, Ia is calculated from the value θ ′ and the detected one-phase current value Iu using the following equation, and from the θ ′, Ia and Iu, 2. The control device for a three-phase AC motor according to claim 1, wherein the other two-phase current values Iv and Iw are calculated using the following equation.
Ia = Iu / [√ (1 /) × (−sin [θ ′])]
Iv = √ (1 /) × Ia × (−sin [θ ′ + 120 °])
Iw = √ (1/3) × Ia × (−sin [θ ′ + 240 °])
JP2002320685A 2002-11-05 2002-11-05 Control device for three-phase AC motor Expired - Fee Related JP4168730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320685A JP4168730B2 (en) 2002-11-05 2002-11-05 Control device for three-phase AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320685A JP4168730B2 (en) 2002-11-05 2002-11-05 Control device for three-phase AC motor

Publications (2)

Publication Number Publication Date
JP2004159391A true JP2004159391A (en) 2004-06-03
JP4168730B2 JP4168730B2 (en) 2008-10-22

Family

ID=32801461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320685A Expired - Fee Related JP4168730B2 (en) 2002-11-05 2002-11-05 Control device for three-phase AC motor

Country Status (1)

Country Link
JP (1) JP4168730B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028793A (en) * 2005-07-15 2007-02-01 Hitachi Ltd Ac motor driver and control method of the same
JP2007215306A (en) * 2006-02-08 2007-08-23 Jtekt Corp Controlling device for motor
JP2008050075A (en) * 2006-08-22 2008-03-06 Toshiba Elevator Co Ltd Elevator control device
JP2008086139A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Motor controller
JP2011067023A (en) * 2009-09-17 2011-03-31 Hitachi Appliances Inc Current detection method, inverter device and converter device utilizing current detection method, motor drive equipped with such device, and refrigeration and air-conditioning equipment
DE102013202741A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202742A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202770A1 (en) 2012-02-22 2013-08-22 Denso Corporation CONTROL DEVICE FOR AN ELECTRICITY MOTOR
DE102013202735A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202733A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
JP2014082854A (en) * 2012-10-16 2014-05-08 Denso Corp Ac motor controller
CN103812409A (en) * 2012-11-01 2014-05-21 株式会社电装 Control apparatus for ac motor
JP2014155335A (en) * 2013-02-08 2014-08-25 Denso Corp Control device for ac motor
JP2014155334A (en) * 2013-02-08 2014-08-25 Denso Corp Control device of AC motor
JP2014155338A (en) * 2013-02-08 2014-08-25 Denso Corp Control device of AC motor
JP2014155337A (en) * 2013-02-08 2014-08-25 Denso Corp Control device for ac motor
JP2015042017A (en) * 2013-08-20 2015-03-02 株式会社デンソー Control device for ac motor
JP2015042018A (en) * 2013-08-20 2015-03-02 株式会社デンソー Control device for ac motor
JP2015091166A (en) * 2013-11-05 2015-05-11 株式会社デンソー Control device for ac motor
US9035580B2 (en) 2012-04-22 2015-05-19 Denso Corporation AC motor control apparatus
US9041324B2 (en) 2012-04-22 2015-05-26 Denso Corporation AC motor control apparatus
US9093936B2 (en) 2012-12-28 2015-07-28 Denso Corporation Control apparatus for AC motor
US9106163B2 (en) 2013-02-08 2015-08-11 Denso Corporation Control device of AC motor
US9106170B2 (en) 2013-02-08 2015-08-11 Denso Corporation Control device of AC motor
JP2015154709A (en) * 2014-02-12 2015-08-24 有限会社シー・アンド・エス国際研究所 Drive controller for ac motor
US9120388B2 (en) 2013-02-08 2015-09-01 Denso Corporation Rotating electrical machine drive system
CN105007015A (en) * 2015-07-14 2015-10-28 华中科技大学 Model prediction controlling method for controllable rectifying frequency-conversion speed-regulation system with five bridge arms
US9209723B2 (en) 2013-08-20 2015-12-08 Denso Corporation Control device of AC motor
US9276517B2 (en) 2013-02-08 2016-03-01 Denso Corporation Control device of AC motor
US9318982B2 (en) 2013-11-05 2016-04-19 Denso Corporation Control apparatus for AC motor
US9374031B2 (en) 2012-04-22 2016-06-21 Denso Corporation AC motor control apparatus
US9413281B2 (en) 2014-02-12 2016-08-09 Denso Corporation Apparatus for controlling AC motor
WO2016143120A1 (en) * 2015-03-12 2016-09-15 三菱電機株式会社 Ac rotating electric machine control device and electric power steering control device
WO2016163301A1 (en) * 2015-04-07 2016-10-13 日立オートモティブシステムズ株式会社 Motor drive apparatus and method for detecting phase currents of three-phase brushless motor
US9473059B2 (en) 2013-11-05 2016-10-18 Denso Corporation Control apparatus for AC motor
CN109687804A (en) * 2018-12-14 2019-04-26 东南大学 A kind of linear motor single current sensor Direct Thrust Control Strategy
CN112468045A (en) * 2020-11-30 2021-03-09 东南大学 Permanent magnet synchronous motor single current sensor control method based on current phase shift

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028793A (en) * 2005-07-15 2007-02-01 Hitachi Ltd Ac motor driver and control method of the same
JP2007215306A (en) * 2006-02-08 2007-08-23 Jtekt Corp Controlling device for motor
JP2008050075A (en) * 2006-08-22 2008-03-06 Toshiba Elevator Co Ltd Elevator control device
JP2008086139A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Motor controller
US7598698B2 (en) 2006-09-28 2009-10-06 Sanyo Electric Co., Ltd. Motor control device
JP2011067023A (en) * 2009-09-17 2011-03-31 Hitachi Appliances Inc Current detection method, inverter device and converter device utilizing current detection method, motor drive equipped with such device, and refrigeration and air-conditioning equipment
CN102023251A (en) * 2009-09-17 2011-04-20 日立空调·家用电器株式会社 Current detecting method, inverter device and convertor device using the same
CN102023251B (en) * 2009-09-17 2015-01-28 日立空调·家用电器株式会社 Current detecting method, inverter device and convertor device using the same
JP2013172593A (en) * 2012-02-22 2013-09-02 Denso Corp Controller for ac motor
US8917040B2 (en) 2012-02-22 2014-12-23 Denso Corporation AC motor control apparatus
DE102013202770A1 (en) 2012-02-22 2013-08-22 Denso Corporation CONTROL DEVICE FOR AN ELECTRICITY MOTOR
DE102013202735A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202733A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
JP2013172592A (en) * 2012-02-22 2013-09-02 Denso Corp Controller for ac motor
US9065378B2 (en) * 2012-02-22 2015-06-23 Denso Corporation AC motor control apparatus
JP2013172591A (en) * 2012-02-22 2013-09-02 Denso Corp Ac motor control device
DE102013202741A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202742A1 (en) 2012-02-22 2013-08-22 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202741B4 (en) 2012-02-22 2019-02-14 Denso Corporation AC MOTOR CONTROL DEVICE
DE102013202742B4 (en) 2012-02-22 2019-02-14 Denso Corporation AC MOTOR CONTROL DEVICE
US20130214709A1 (en) * 2012-02-22 2013-08-22 Denso Corporation Ac motor control apparatus
US9160267B2 (en) 2012-02-22 2015-10-13 Denso Corporation AC motor control apparatus
US9154070B2 (en) 2012-02-22 2015-10-06 Denso Corporation Controller for AC motor
US9077278B2 (en) 2012-02-22 2015-07-07 Denso Corporation AC motor control apparatus
US9374031B2 (en) 2012-04-22 2016-06-21 Denso Corporation AC motor control apparatus
US9035580B2 (en) 2012-04-22 2015-05-19 Denso Corporation AC motor control apparatus
US9041324B2 (en) 2012-04-22 2015-05-26 Denso Corporation AC motor control apparatus
JP2014082854A (en) * 2012-10-16 2014-05-08 Denso Corp Ac motor controller
US9065365B2 (en) 2012-10-16 2015-06-23 Denso Corporation Control device of AC motor
CN103812409A (en) * 2012-11-01 2014-05-21 株式会社电装 Control apparatus for ac motor
CN103812415B (en) * 2012-11-01 2017-05-03 株式会社电装 Control apparatus for AC motor
CN103812409B (en) * 2012-11-01 2017-05-03 株式会社电装 Control apparatus for ac motor
CN103812413A (en) * 2012-11-01 2014-05-21 株式会社电装 Control device for AC motor
US9172322B2 (en) 2012-11-01 2015-10-27 Denso Corporation Control apparatus for AC motor
CN103812415A (en) * 2012-11-01 2014-05-21 株式会社电装 Control apparatus for AC motor
US9093936B2 (en) 2012-12-28 2015-07-28 Denso Corporation Control apparatus for AC motor
US9120388B2 (en) 2013-02-08 2015-09-01 Denso Corporation Rotating electrical machine drive system
US9276517B2 (en) 2013-02-08 2016-03-01 Denso Corporation Control device of AC motor
US9106170B2 (en) 2013-02-08 2015-08-11 Denso Corporation Control device of AC motor
JP2014155337A (en) * 2013-02-08 2014-08-25 Denso Corp Control device for ac motor
US9590551B2 (en) 2013-02-08 2017-03-07 Denso Corporation Control apparatus for AC motor
JP2014155338A (en) * 2013-02-08 2014-08-25 Denso Corp Control device of AC motor
JP2014155334A (en) * 2013-02-08 2014-08-25 Denso Corp Control device of AC motor
US9077273B2 (en) 2013-02-08 2015-07-07 Denso Corporation Control device of AC motor
JP2014155335A (en) * 2013-02-08 2014-08-25 Denso Corp Control device for ac motor
US9007009B2 (en) 2013-02-08 2015-04-14 Denso Corporation Control apparatus for AC motor
US9106163B2 (en) 2013-02-08 2015-08-11 Denso Corporation Control device of AC motor
JP2015042018A (en) * 2013-08-20 2015-03-02 株式会社デンソー Control device for ac motor
US9209723B2 (en) 2013-08-20 2015-12-08 Denso Corporation Control device of AC motor
JP2015042017A (en) * 2013-08-20 2015-03-02 株式会社デンソー Control device for ac motor
US9431935B2 (en) 2013-08-20 2016-08-30 Denso Corporation Control device of AC motor
US9419554B2 (en) 2013-08-20 2016-08-16 Denso Corporation Control device of AC motor
US9331627B2 (en) 2013-11-05 2016-05-03 Denso Corporation Control apparatus for AC motor
US9473059B2 (en) 2013-11-05 2016-10-18 Denso Corporation Control apparatus for AC motor
JP2015091166A (en) * 2013-11-05 2015-05-11 株式会社デンソー Control device for ac motor
US9318982B2 (en) 2013-11-05 2016-04-19 Denso Corporation Control apparatus for AC motor
JP2015154709A (en) * 2014-02-12 2015-08-24 有限会社シー・アンド・エス国際研究所 Drive controller for ac motor
US9413281B2 (en) 2014-02-12 2016-08-09 Denso Corporation Apparatus for controlling AC motor
US10566920B2 (en) 2015-03-12 2020-02-18 Mitsubishi Electric Corporation Control device for AC rotary machine and control device for electric power steering
WO2016143120A1 (en) * 2015-03-12 2016-09-15 三菱電機株式会社 Ac rotating electric machine control device and electric power steering control device
JPWO2016143120A1 (en) * 2015-03-12 2017-06-08 三菱電機株式会社 AC rotating machine control device and electric power steering control device
JP2016201872A (en) * 2015-04-07 2016-12-01 日立オートモティブシステムズ株式会社 Motor drive device and phase current detection method for three-phase brushless motor
US20180115264A1 (en) * 2015-04-07 2018-04-26 Hitachi Automotive Systems, Ltd. Motor drive device and phase current detecting method for three-phase brushless motor
US10224843B2 (en) 2015-04-07 2019-03-05 Hitachi Automotive Systems, Ltd. Motor drive device and phase current detecting method for three-phase brushless motor
WO2016163301A1 (en) * 2015-04-07 2016-10-13 日立オートモティブシステムズ株式会社 Motor drive apparatus and method for detecting phase currents of three-phase brushless motor
CN105007015A (en) * 2015-07-14 2015-10-28 华中科技大学 Model prediction controlling method for controllable rectifying frequency-conversion speed-regulation system with five bridge arms
CN109687804A (en) * 2018-12-14 2019-04-26 东南大学 A kind of linear motor single current sensor Direct Thrust Control Strategy
CN112468045A (en) * 2020-11-30 2021-03-09 东南大学 Permanent magnet synchronous motor single current sensor control method based on current phase shift

Also Published As

Publication number Publication date
JP4168730B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4168730B2 (en) Control device for three-phase AC motor
JP4881635B2 (en) Vector controller for permanent magnet motor
EP1557940B1 (en) Motor controller
JP5155344B2 (en) Electric motor magnetic pole position estimation device
JP3661642B2 (en) Motor control device and control method thereof
JP4067949B2 (en) Motor control device
JP4416764B2 (en) Vector controller and inverter module for permanent magnet motor
WO2008047438A1 (en) Vector controller of permanent magnet synchronous motor
JP2004112898A (en) Control method and device for motor in position sensorless
JPH09298899A (en) Magnetic saturation correction system for ac servo motor
US7960926B2 (en) Controller for AC rotary machine
JP4912516B2 (en) Power converter
JP2002010677A (en) Motor-control unit
JP2004297966A (en) Ac motor controlling device
JP7092257B2 (en) Rotating electric machine control system
JP2008154308A (en) Controller of motor-driven power steering system
JP5082216B2 (en) Rotation detection device for turbocharger with electric motor and rotation detection method for turbocharger with electric motor
JP2004061217A (en) Current detecting device, method thereof, and electric motor
JP6682313B2 (en) Motor control device
JP2004080975A (en) Controller for motor
JP2007116768A (en) Rotation detector for turbocharger with motor
US20050263330A1 (en) Field-oriented control for brushless DC motor
JP5456873B1 (en) Synchronous machine controller
JP2002191198A (en) Method for correcting dc voltage detected value of motor drive and motor drive control device
JP2011072190A (en) Ac motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees