CN105006426A - 生长在GaAs衬底上的InAs量子点及其制备方法 - Google Patents

生长在GaAs衬底上的InAs量子点及其制备方法 Download PDF

Info

Publication number
CN105006426A
CN105006426A CN201510373122.XA CN201510373122A CN105006426A CN 105006426 A CN105006426 A CN 105006426A CN 201510373122 A CN201510373122 A CN 201510373122A CN 105006426 A CN105006426 A CN 105006426A
Authority
CN
China
Prior art keywords
quantum dot
gaas
inas quantum
growth
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510373122.XA
Other languages
English (en)
Other versions
CN105006426B (zh
Inventor
张曙光
李国强
温雷
高芳亮
李景灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510373122.XA priority Critical patent/CN105006426B/zh
Publication of CN105006426A publication Critical patent/CN105006426A/zh
Application granted granted Critical
Publication of CN105006426B publication Critical patent/CN105006426B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种生长在GaAs衬底上的InAs量子点,由下至上依次包括GaAs衬底、InAs量子点层、GaAs盖层和In纳米结构层。本发明的另一目的在于提供上述生长在GaAs衬底上的InAs量子的制备方法:(1)对GaAs衬底进行清洗;(2)对GaAs衬底进行除气和脱氧预处理;(3)在GaAs衬底上生长InAs量子点层:(4)在InAs量子点层上覆盖GaAs盖层;(5)在GaAs盖层表面沉积In纳米结构层。本发明制备的生长在GaAs衬底上的InAs量子点,极大提高了InAs量子点的光致发光强度,且制备方法简单、成本较低,是一种制备强光致发光强度的高密度InAs量子点的有效方法。

Description

生长在GaAs衬底上的InAs量子点及其制备方法
技术领域
本发明涉及半导体光电子材料与器件技术领域,特别涉及一种生长在GaAs衬底上的InAs量子点及其制备方法。
背景技术
随着制备高质量自组织量子点技术的发展,半导体量子点在量子光学,量子通信,激光器以及太阳电池等方面的应用研究越来越引起人们的兴趣。量子点在三维方向实现了对载流子的限制,导致载流子能量在三个维度上量子化而出现分立能级,呈现出某些类似原子的壳层结构能级特性。量子点的种种新奇性质使其在许多领域具有广阔的应用前景,比如量子点单光子光源,量子点中间带多结太阳电池等。一个稳定、高亮度的单光子源作为一种新型光源,必定会为光谱学和量子信息领域带来很多的应用,如:随机数产生器、弱吸收测量、线性光学计算、量子密钥分配以及量子存储等。但是,目前生长的量子点由于量子点内缺陷,以及量子点尺寸的非均匀性(多模效应)等因素的影响,其发光强度普遍较低,限制了量子点的进一步应用。因此研究如何在采用自组织方法制备出具有高发光强度的高密度InAs量子点,提高其光学性能对于未来量子点在器件中的广泛应用十分重要的指导意义。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种生长在GaAs衬底上的InAs量子点,光致发光强度高。
本发明的另一目的在于提供上述生长在GaAs衬底上的InAs量子点的制备方法。
本发明的目的通过以下技术方案实现:
生长在GaAs衬底上的InAs量子点,由下至上依次包括GaAs(115)A衬底、InAs量子点层、GaAs盖层和In纳米结构层;其中(115)A表示(115)晶面上Ga原子的悬键数目要多于As原子。
所述InAs量子点层中InAs量子点的密度为1×1010-8×1010cm-2;量子点的平均高度为6-10纳米,平均直径为10-20纳米。
所述GaAs盖层的厚度为4-10纳米。
所述In纳米结构的平均直径为40-60纳米。
生长在GaAs衬底上的InAs量子点的制备方法,包括以下步骤:
(1)对GaAs(115)A衬底进行清洗;
(2)对GaAs(115)A衬底进行除气和脱氧预处理;
(3)在GaAs(115)A衬底上生长InAs量子点层:
(4)在InAs量子点层上覆盖GaAs盖层;
(5)在GaAs盖层表面沉积In纳米结构层。
步骤(1)所述对GaAs(115)A衬底进行清洗,具体为:
GaAs(115)A衬底依次在三氯乙烯、丙酮、乙醇超声清洗,去除表面有机物,最后在去离子水中超声清洗后用氮气吹干。
步骤(2)所述对GaAs(115)A衬底进行除气和脱氧预处理,具体为:
送入分子束外延系统进样室预除气半小时,完成除气后送入生长室,在砷束流保护下,高温退火去除衬底表面的氧化膜层,其中脱氧过程中砷源的温度为250-350℃,衬底温度为570-620℃,时间为5-10分钟。
步骤(3)所述在GaAs(115)A衬底上生长InAs量子点层,具体为:
利用分子束外延生长InAs量子点,生长过程中铟源温度为700-810℃,砷源温度为270-300℃,衬底温度为450-550℃,生长时间为8-20s。
步骤(4)所述在InAs量子点层上覆盖GaAs盖层,具体为:
采用分子束外延生长GaAs盖层,生长过程中的镓源温度为800-950℃,砷源温度为250-350℃,衬底温度为350-500℃,生长时间为200-350s。
步骤(5)所述在GaAs盖层表面沉积In纳米结构层,具体为:
采用电子束蒸发方式生长,生长过程中电子束的功率为65-90W,衬底温度为400-600℃,生长时间为200-350s。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明通过将在GaAs(115)A衬底上采用MBE法生长InAs量子点,并在覆盖GaAs盖层后生长In纳米结构,由于In局域表面等离激元与量子点激子发光的相互耦合作用,可以明显提高InAs量子点的光致发光强度。当在GaAs盖层表面生长In纳米结构后,InAs量子点的发光可以快速转移并激发金属In局域表面等离激元,In局域表面等离激元被激发后,在In纳米颗粒周围会形成强的局域电场,根据费米黄金规则,这种强的局域电场可以提高InAs量子点中电子-空穴对的辐射复合速率,因此本发明制备的高密度InAs量子点光致发光发光强度得到明显的提高。
(2)本发明的制备方法简单有效,成本较低,增强效果明显。
附图说明
图1为本发明的实施例1的生长在GaAs衬底上的InAs量子点的结构示意图。
图2为本发明的实施例1的生长在GaAs衬底上的InAs量子点的制备方法的流程图。
图3为本发明的实施例1的生长在GaAs衬底上的InAs量子点的原子力显微镜照片。
图4为本发明的实施例1的生长在GaAs衬底上的InAs量子点在覆盖In纳米结构前后的室温光致发光谱。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
如图1所示,本实施例的生长在GaAs衬底上的InAs量子点,由下至上依次包括GaAs衬底1、InAs量子点层2、GaAs盖层3和In纳米结构层4。
如图2所示,本实施例的生长在GaAs衬底上的InAs量子点的制备方法,包括以下步骤:
(1)对GaAs(115)A衬底进行清洗:
GaAs(115)A衬底依次在三氯乙烯、丙酮、乙醇超声清洗10分钟,去除表面有机物,最后在去离子水中超声清洗15分钟后用氮气吹干;
(2)GaAs(115)A衬底进行除气和脱氧预处理:送入分子束外延系统进样室预除气半小时,完成除气后送入生长室,在砷束流保护下,高温退火去除衬底表面的氧化膜层,其中脱氧过程中砷源的温度为270℃,衬底温度为600℃,时间为10分钟;
(3)GaAs(115)A衬底上生长InAs量子点层:利用分子束外延生长InAs量子点,生长过程中铟源温度为800℃,砷源温度为300℃,衬底温度为510℃,生长时间为12s;
如图3所示,本实施例的InAs量子点层中InAs量子点的密度为2×1010cm-2,量子点的平均高度为8纳米,平均直径为12纳米;
(4)在InAs量子点层上覆盖GaAs盖层:采用分子束外延生长GaAs盖层,生长过程中的镓源温度为880℃,砷源温度为290℃,衬底温度为450℃,生长时间为300s;GaAs盖层的厚度为8纳米;
(5)在GaAs盖层表面沉积In纳米结构层:采用电子束蒸发方式生长,生长过程中电子束的功率为80W,衬底温度为450℃,生长时间为200s;所述In纳米结构的平均直径为50纳米。
图4为覆盖In纳米结构前后的高密度InAs量子点的光致发光谱,光谱在77K条件下测试,其中InAs量子点In为本发明的覆盖In纳米结构后的高密度InAs量子点。从图中可以看出,对GaAs(115)A衬底上直接生长的InAs量子点,光致发光谱中以衬底发光为主,还可以观察到微弱的浸润层发光(830纳米),对应于InAs量子点的光致发光十分微弱,即使将其强度提高6倍后仍十分弱。而当在InAs量子点表面覆盖In纳米结构后,一方面可以观察到明显的浸润层发光,同时InAs量子点的激子发光强度明显提高,发光强度相对覆盖In纳米结构前提高150倍。
在InAs量子点表面覆盖GaAs盖层后生长In纳米结构,由于In局域表面等离激元与量子点激子发光的相互耦合作用,可以明显提高InAs量子点的光致发光强度。当在GaAs盖层表面生长In纳米结构后,InAs量子点的激子发光可以快速转移并激发金属In局域表面等离激元,而In局域表面等离激元被激发后,在In纳米颗粒周围会形成强的局域电场,根据费米黄金规则,这种强的局域电场可以提高InAs量子点中电子-空穴对的辐射复合速率,因此本发明制备的高密度InAs量子点光致发光发光强度得到明显的提高。
实施例2
本实施例的生长在GaAs衬底上的InAs量子点的制备方法,包括以下步骤:
(1)对GaAs(115)A衬底进行清洗:
GaAs(115)A衬底依次在三氯乙烯、丙酮、乙醇超声清洗10分钟,去除表面有机物,最后在去离子水中超声清洗15分钟后用氮气吹干;
(2)对GaAs(115)A衬底进行除气和脱氧预处理:送入分子束外延系统进样室预除气半小时,完成除气后送入生长室,在砷束流保护下,高温退火去除衬底表面的氧化膜层,其中脱氧过程中砷源的温度为270℃,衬底温度为620℃,时间为10分钟;
(3)在GaAs(115)A衬底上生长InAs量子点层:利用分子束外延生长InAs量子点,生长过程中铟源温度为810℃,砷源温度为300℃,衬底温度为550℃,生长时间为20s;
InAs量子点层中InAs量子点的密度为2×1010cm-2,量子点的平均高度为10纳米,平均直径为20纳米;
(4)在InAs量子点层上覆盖GaAs盖层:采用分子束外延生长GaAs盖层,生长过程中的镓源温度为950℃,砷源温度为350℃,衬底温度为350℃,生长时间为350s;所述GaAs盖层的厚度为10纳米;
(5)在GaAs盖层表面沉积In纳米结构层:采用电子束蒸发方式生长,生长过程中电子束的功率为65W,衬底温度为400℃,生长时间为350s;所述In纳米结构的平均直径为60纳米。
本实施制备得到的光致发光的高密度InAs量子点的测试结果与实施例1相似,在此不再赘述。
实施例3
本实施例的生长在GaAs衬底上的InAs量子点的制备方法,包括以下步骤:
(1)对GaAs(115)A衬底进行清洗:
GaAs(115)A衬底依次在三氯乙烯、丙酮、乙醇超声清洗10分钟,去除表面有机物,最后在去离子水中超声清洗15分钟后用氮气吹干;
(2)GaAs(115)A衬底进行除气和脱氧预处理:送入分子束外延系统进样室预除气半小时,完成除气后送入生长室,在砷束流保护下,高温退火去除衬底表面的氧化膜层,其中脱氧过程中砷源的温度为270℃,衬底温度为570℃,时间为5分钟;
(3)GaAs(115)A衬底上生长InAs量子点层:利用分子束外延生长InAs量子点,生长过程中铟源温度为700℃,砷源温度为270℃,衬底温度为450℃,生长时间为8s;
本实施例的InAs量子点层中InAs量子点的密度为2×1010cm-2,量子点的平均高度为6纳米,平均直径为10纳米;
(4)在InAs量子点层上覆盖GaAs盖层:采用分子束外延生长GaAs盖层,生长过程中的镓源温度为800℃,砷源温度为250℃,衬底温度为550℃,生长时间为200s;所述GaAs盖层的厚度为4纳米;
(5)在GaAs盖层表面沉积In纳米结构层:采用电子束蒸发方式生长,生长过程中电子束的功率为90W,衬底温度为600℃,生长时间为200s;所述In纳米结构的平均直径为40纳米。
本实施制备得到的光致发光的高密度InAs量子点的测试结果与实施例1相似,在此不再赘述。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.生长在GaAs衬底上的InAs量子点,其特征在于,由下至上依次包括GaAs(115)A衬底、InAs量子点层、GaAs盖层和In纳米结构层。
2.根据权利要求1所述的生长在GaAs衬底上的InAs量子点,其特征在于,所述InAs量子点层中InAs量子点的密度为1×1010-8×1010cm-2;量子点的平均高度为6-10纳米,平均直径为10-20纳米。
3.根据权利要求1所述的生长在GaAs衬底上的InAs量子点,其特征在于,所述GaAs盖层的厚度为4-10纳米。
4.根据权利要求1所述的生长在GaAs衬底上的InAs量子点,其特征在于,所述In纳米结构的平均直径为40-60纳米。
5.生长在GaAs衬底上的InAs量子点的制备方法,其特征在于,包括以下步骤:
(1)对GaAs(115)A衬底进行清洗;
(2)对GaAs(115)A衬底进行除气和脱氧预处理;
(3)在GaAs(115)A衬底上生长InAs量子点层:
(4)在InAs量子点层上覆盖GaAs盖层;
(5)在GaAs盖层表面沉积In纳米结构层。
6.根据权利要求5所述的生长在GaAs衬底上的InAs量子点的制备方法,其特征在于,步骤(1)所述对GaAs(115)A衬底进行清洗,具体为:
GaAs(115)A衬底依次在三氯乙烯、丙酮、乙醇超声清洗,去除表面有机物,最后在去离子水中超声清洗后用氮气吹干。
7.根据权利要求5所述的生长在GaAs衬底上的InAs量子点的制备方法,其特征在于,步骤(2)所述对GaAs(115)A衬底进行除气和脱氧预处理,具体为:
送入分子束外延系统进样室预除气半小时,完成除气后送入生长室,在砷束流保护下,高温退火去除衬底表面的氧化膜层,其中脱氧过程中砷源的温度为250-350℃,衬底温度为570-620℃,时间为5-10分钟。
8.根据权利要求5所述的生长在GaAs衬底上的InAs量子点的制备方法,其特征在于,步骤(3)所述在GaAs(115)A衬底上生长InAs量子点层,具体为:
利用分子束外延生长InAs量子点,生长过程中铟源温度为700-810℃,砷源温度为270-300℃,衬底温度为450-550℃,生长时间为8-20s。
9.根据权利要求5所述的生长在GaAs衬底上的InAs量子点的制备方法,其特征在于,步骤(4)所述在InAs量子点层上覆盖GaAs盖层,具体为:
采用分子束外延生长GaAs盖层,生长过程中的镓源温度为800-950℃,砷源温度为250-350℃,衬底温度为350-500℃,生长时间为200-350s。
10.根据权利要求5所述的生长在GaAs衬底上的InAs量子点的制备方法,其特征在于,步骤(5)所述在GaAs盖层表面沉积In纳米结构层,具体为:
采用电子束蒸发方式生长,生长过程中电子束的功率为65-90W,衬底温度为400-600℃,生长时间为200-350s。
CN201510373122.XA 2015-06-29 2015-06-29 生长在GaAs衬底上的InAs量子点及其制备方法 Active CN105006426B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510373122.XA CN105006426B (zh) 2015-06-29 2015-06-29 生长在GaAs衬底上的InAs量子点及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510373122.XA CN105006426B (zh) 2015-06-29 2015-06-29 生长在GaAs衬底上的InAs量子点及其制备方法

Publications (2)

Publication Number Publication Date
CN105006426A true CN105006426A (zh) 2015-10-28
CN105006426B CN105006426B (zh) 2018-06-22

Family

ID=54379052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510373122.XA Active CN105006426B (zh) 2015-06-29 2015-06-29 生长在GaAs衬底上的InAs量子点及其制备方法

Country Status (1)

Country Link
CN (1) CN105006426B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068823A (zh) * 2017-01-23 2017-08-18 华南理工大学 生长在GaAs衬底上的InGaAs量子点及其制备方法
CN108470784A (zh) * 2018-03-30 2018-08-31 华南理工大学 提高量子点太阳电池效率的斜切衬底上多层量子点及制备
CN108847385A (zh) * 2018-06-11 2018-11-20 中国电子科技集团公司第四十四研究所 一种GaAs基InAs量子点材料生长方法
CN109004508A (zh) * 2018-07-03 2018-12-14 北京邮电大学 一种基于量子点的单光子源
CN109368710A (zh) * 2018-12-26 2019-02-22 台州学院 一种制备Fe9Ni1P10S30微米片的方法
CN110797751A (zh) * 2019-11-08 2020-02-14 中国科学院半导体研究所 InAs/InSb复合型量子点及其生长方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168835A1 (en) * 2001-03-26 2002-11-14 Korea Institute Of Science Of Technology Method of formation for quantum dots array using tilted substrate
CN1956229A (zh) * 2005-10-27 2007-05-02 中国科学院半导体研究所 偏镓砷(100)衬底双模尺寸分布铟砷量子点及制作方法
CN101308888A (zh) * 2007-05-14 2008-11-19 中国科学院半导体研究所 提高自组织量子点光学性质温度稳定性的材料结构
CN102034909A (zh) * 2009-09-30 2011-04-27 中国科学院半导体研究所 一种低密度InAs量子点的分子束外延生长方法
CN102683506A (zh) * 2011-03-10 2012-09-19 中国科学院物理研究所 一种用于GaN基LED外延片的纳米结构层及其制备方法
CN102906621A (zh) * 2010-05-14 2013-01-30 日本电气株式会社 显示元件、显示设备和投影显示设备
CN204991654U (zh) * 2015-06-29 2016-01-20 华南理工大学 生长在GaAs衬底上的InAs量子点

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168835A1 (en) * 2001-03-26 2002-11-14 Korea Institute Of Science Of Technology Method of formation for quantum dots array using tilted substrate
CN1956229A (zh) * 2005-10-27 2007-05-02 中国科学院半导体研究所 偏镓砷(100)衬底双模尺寸分布铟砷量子点及制作方法
CN101308888A (zh) * 2007-05-14 2008-11-19 中国科学院半导体研究所 提高自组织量子点光学性质温度稳定性的材料结构
CN102034909A (zh) * 2009-09-30 2011-04-27 中国科学院半导体研究所 一种低密度InAs量子点的分子束外延生长方法
CN102906621A (zh) * 2010-05-14 2013-01-30 日本电气株式会社 显示元件、显示设备和投影显示设备
CN102683506A (zh) * 2011-03-10 2012-09-19 中国科学院物理研究所 一种用于GaN基LED外延片的纳米结构层及其制备方法
CN204991654U (zh) * 2015-06-29 2016-01-20 华南理工大学 生长在GaAs衬底上的InAs量子点

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068823A (zh) * 2017-01-23 2017-08-18 华南理工大学 生长在GaAs衬底上的InGaAs量子点及其制备方法
CN108470784A (zh) * 2018-03-30 2018-08-31 华南理工大学 提高量子点太阳电池效率的斜切衬底上多层量子点及制备
CN108847385A (zh) * 2018-06-11 2018-11-20 中国电子科技集团公司第四十四研究所 一种GaAs基InAs量子点材料生长方法
CN108847385B (zh) * 2018-06-11 2020-11-06 中国电子科技集团公司第四十四研究所 一种GaAs基InAs量子点材料生长方法
CN109004508A (zh) * 2018-07-03 2018-12-14 北京邮电大学 一种基于量子点的单光子源
CN109368710A (zh) * 2018-12-26 2019-02-22 台州学院 一种制备Fe9Ni1P10S30微米片的方法
CN110797751A (zh) * 2019-11-08 2020-02-14 中国科学院半导体研究所 InAs/InSb复合型量子点及其生长方法

Also Published As

Publication number Publication date
CN105006426B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN105006426A (zh) 生长在GaAs衬底上的InAs量子点及其制备方法
Dasgupta et al. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion
Das et al. Efficacy of ion implantation in zinc oxide for optoelectronic applications: A review
CN103523827A (zh) 具有快速电子传输性能的三维枝状二氧化钛阵列的制法
Liu et al. A Flexible Blue Light‐Emitting Diode Based on ZnO Nanowire/Polyaniline Heterojunctions
Del Gobbo et al. Simultaneous controlled seeded-growth and doping of ZnO nanorods with aluminum and cerium: feasibility assessment and effect on photocatalytic activity
CN107068823A (zh) 生长在GaAs衬底上的InGaAs量子点及其制备方法
Shi et al. Fabrication of Ag2S quantum dots sensitized CdSe photoelectrodes and its photoelectric performance
Zhu et al. Three-dimensional nanopillar arrays-based efficient and flexible perovskite solar cells with enhanced stability
Kashyap et al. The effect of dopant on light trapping characteristics in random silicon nanowires for solar cell applications
Mulyanti et al. Absorption Performance of Doped TiO2‐Based Perovskite Solar Cell using FDTD Simulation
CN204991654U (zh) 生长在GaAs衬底上的InAs量子点
Tung et al. The reduced recombination and the enhanced lifetime of excited electron in QDSSCs based on different ZnS and SiO2 passivation
Wei et al. Enhanced photovoltaic performance of inverted polymer solar cells through atomic layer deposited Al2O3 passivation of ZnO-nanoparticle buffer layer
CN103924306B (zh) 一种硅异质结太阳电池的制绒方法
Zhang et al. In-depth exploration of the charge dynamics in surface-passivated ZnO nanowires
CN206564262U (zh) 生长在GaAs衬底上的InGaAs量子点
CN104701729B (zh) 硅基激光器及其制备方法
Jo et al. Time-resolved photocurrent of an organic-inorganic hybrid solar cell based on Sb 2 S 3
Shao et al. Simulation and experimental study on anti-reflection characteristics of nano-patterned si structures for si quantum dot-based light-emitting devices
Makableh et al. Performance enhancement of InAs quantum dots solar cells by using nanostructured antireflection coating with hydrophobic properties
CN102130206A (zh) 硅掺杂的砷化铟/砷化镓量子点太阳电池的制作方法
Lv et al. Optical absorption enhancement in GaN nanowire arrays with hexagonal periodic arrangement for UV photocathode
Liang et al. Enhanced Hole Injection in Blue Quantum‐Dot Light‐emitting Diodes Utilizing Dual Hole Injection Layer of PEDOT: PSS/Ti3C2Tx
Kang et al. Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant