CN104995547B - 用于确定眼镜片的可行性的方法 - Google Patents

用于确定眼镜片的可行性的方法 Download PDF

Info

Publication number
CN104995547B
CN104995547B CN201380059424.9A CN201380059424A CN104995547B CN 104995547 B CN104995547 B CN 104995547B CN 201380059424 A CN201380059424 A CN 201380059424A CN 104995547 B CN104995547 B CN 104995547B
Authority
CN
China
Prior art keywords
lens
parameter
nominal
value
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380059424.9A
Other languages
English (en)
Other versions
CN104995547A (zh
Inventor
P·奥利皖
J-P·彻奥维奥
D·斯特格莱曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of CN104995547A publication Critical patent/CN104995547A/zh
Application granted granted Critical
Publication of CN104995547B publication Critical patent/CN104995547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters

Abstract

用于确定通过眼镜片制造工艺制造的眼镜片的可行性的方法包括:一个眼镜片数据提供步骤;一组表面参数提供步骤;一个光学参数提供步骤,在该步骤过程中,提供一组n个光学参数(P1,P2,…Pn),n是一个大于等于1的整数,每一个光学参数Pi被提供有一个公差值εi;一个可行性检查确定步骤,在该步骤过程中,通过确定对于i从1至n公式(I)是否成立来确定通过眼镜片制造工艺制造的眼镜片的可行性,其中,公式(II)是Pi关于标称表面上的第j个表面参数αj的导数的值,并且Δαj是第j个表面参数的值,并且Ai是对于每一个Pi而言阶数大于等于2的项的一个组合。

Description

用于确定眼镜片的可行性的方法
本发明涉及一种用于确定通过眼镜片制造工艺制造的眼镜片的可行性的方法,该眼镜片适应于佩戴者并且包括至少两个光学表面,这些光学表面中的至少一个光学表面有待基于标称眼镜片的相应表面通过该眼镜片制造工艺来制造。
对本发明的背景的讨论包括于此以解释本发明的上下文。这不旨在被认为是承认被引用的任何材料被公开、为人所周知或者是权利要求书中的任一项要求的优先权日下的公共常识的一部分。
光学镜片典型地是由塑料或玻璃材料制成并且通常具有两个相反的表面,这些表面彼此合作以提供所需的矫正处方。当这些表面中的一者的定位或形状相对于另一者不准确时,可能产生光学误差。
根据所需的处方要求来制造光学镜片典型地包括机加工一个半成品镜片或镜片毛坯的表面。典型地,半成品镜片具有一个成品表面(例如前表面)和一个未完工表面(例如后表面)。通过机加工镜片的后表面(也称为“背面”)以移除材料,可以产生用于所希望的矫正处方的、后表面相对于前表面的所需形状和定位。
光学镜片以及具体地眼镜片要求非常高质量的制造工艺,以便获得高质量的光学镜片。
不是所有的眼镜片制造工艺都具有相同的质量,即,不是所有的制造工艺都能够制造具有相同精确度的表面。
在某些情况下,具有一种用于预先检查通过眼镜片制造工艺制造的眼镜片的可行性的方法可能是非常有用的。
例如,当眼部护理专业人员向镜片供应商订购眼镜片时,镜片供应商需要确保考虑到可用的制造工艺他能够制造具有足够光学质量的订购镜片。
当镜片设计者从事于新的镜片设计时,具有一种用于检查这些可供使用的制造工艺具有足够高的质量来使用这种新设计制造镜片的方法可能是非常有用的。
因此,需要一种用于确定通过眼镜片制造工艺制造的眼镜片的可行性的方法。
因此,本发明的目标在于提供这样一种方法。
为此,本发明提出了一种由计算机装置来实现的用于确定通过眼镜片制造工艺制造的眼镜片的可行性的方法,该眼镜片适应于一个佩戴者并且包括至少两个光学表面,这些光学表面中的至少一个光学表面有待基于一个标称眼镜片的一个也称为“标称表面”的相应表面通过该眼镜片制造工艺来制造,该方法包括:
-一个眼镜片数据提供步骤,在该步骤过程中,提供表示该标称眼镜片的这些表面的数据,
-一组表面参数提供步骤,在该步骤过程中,提供一组m个表面参数(α1,α2,…,αm),m是一个大于等于1的整数,这些表面参数表示一个眼镜片的至少一个制造表面与该标称表面的位置和/或形状的差异,
-一个光学参数提供步骤,在该步骤过程中,提供一组n个光学参数(P1,P2,…,Pn),n是一个大于等于1的整数,每一个光学参数Pi被提供有参照一个标称值Pi,0定义的一个公差值εi,该公差值是该标称眼镜片的该光学参数Pi的值,
-一个可行性检查确定步骤,在该步骤过程中,通过确定对于i从1至n以下公式是否成立来确定通过该眼镜片制造工艺制造的该眼镜片的可行性:
其中,是Pi关于该标称表面上的第j个表面参数αj的导数的值,并且Δαj是第j个表面参数的值,并且Ai是对于每一个Pi而言阶数大于等于2的项的一个组合。
有利的是,根据本发明的方法允许无需为测试制造任何镜片而检查通过眼镜片制造工艺的眼镜片的可行性。
另外,检查是基于多个光学参数的,这些光学参数对于眼镜片来说是最相关的参数,因为它们与镜片的最终用户——镜片佩戴者——相关。的确,虽然表面参数可能是令人感兴趣的参数,眼镜片提供多种光学性质、能够基于多个光学参数进行可行性检查的最终目的是最相关的。
根据本发明的方法还可以用来确定用于制造给定眼镜片的最合适的制造方法。具体而言,可以选择最物有所值的制造方法。
根据本发明的方法还可以用来根据有待制造的眼镜片的类型来分割多个眼镜片制造工艺。因此,高质量的工艺仅在所制造的眼镜片的光学质量需要这种高质量时使用,并且平均质量工艺可以用来制造要求较低的眼镜片。
根据可以单独地或以任何可能的组合来考虑的进一步的实施例:
◆在该可行性检查确定步骤过程中,通过对于i从1至n设置:
来确定这些可行性检查的至少一部分,例如所有可行性检查,其中,是Pi关于该标称表面上的第j个表面参数αj和第k个表面参数αk的二阶导数的值,Δαj是第j个表面参数的值,并且Δαk是第k个表面参数的值;和/或
◆在该可行性检查确定步骤过程中,通过设置Ai=0来确定这些可行性检查的至少一部分,例如所有可行性检查;和/或
◆该眼镜片是一个渐进式多焦点眼镜片;和/或
◆该制造表面是一个非对称表面;和/或
◆在至少由该眼镜片的这些表面之一(例如,该眼镜片的后表面)相对于该佩戴者的眼睛的转动中心的一个位置的一个位置以及该眼镜片的一个全景角和一个包角所定义的多个给定佩戴条件下,确定至少一个光学参数;和/或
◆这些佩戴条件是从对该佩戴者以及一个由该佩戴者所选择的眼镜架的测量中定义的;和/或
◆在一般佩戴条件下确定该至少一个光学参数,其中,主观看方向与该眼镜片的拟合交叉点(CM)相交,佩戴者的眼睛的转动中心与该眼镜片的后面之间的距离是27mm,全景角是8°并且包角是0°;和/或
◆在该眼镜片相对于佩戴者的眼睛位于一个由8°的全景角、12mm的镜片-瞳孔距离、13.5mm的瞳孔-眼睛转动中心距离以及0°的包角所定义的位置上的情况下,确定该至少一个光学参数;和/或
◆至少一个光学参数是一个局部光学参数,例如,该至少一个光学参数是从由以下各项所组成的列表当中选择的:球面屈光力、散光幅度和轴线、竖直棱镜偏差、水平棱镜偏差、总棱镜偏差;和/或
◆至少一个光学参数是在至少一个参考点上定义的,例如,该至少一个参考点是在由以下各项所组成的列表中选择的:近视点、远视点、棱镜参考点、拟合交叉点;和/或
◆至少一个光学参数是一个例如在与一个视锥相对应的一个区上所定义的全局光学参数,该视锥是一个锥体,该视锥轴线穿过该眼睛的转动中心与该眼镜片的一个参考点,例如,近视点、远视点、棱镜参考点、拟合交叉点,该视锥的孔大于等于5°(例如大于等于10°)并且小于等于20°(例如小于等于15°);和/或
◆在由标准ISO 8980-1、或ISO 8980-2或ISO 21987之一所定义的光学参数列表中选择至少一个光学参数;和/或
◆这些公差值按照在标准ISO 8980-1、或ISO 8980-2、或ISO 21987之一中那样进行设置;和/或
◆第j个表面参数的值Δαj是这种表面参数的一个平均值,例如,在类似的眼镜片上获得的表面参数的平均值;和/或
◆该组m个表面参数(α1,α2,…,αm)至少包括多个位置参数和多个变形参数;和/或
◆通过一种由计算机装置实现的用于确定对一个所制造的可推导表面相对于一个标称表面的相对位置进行定义的多个表面参数的方法来获得多个表面参数的值,该方法包括:
-一个标称表面提供步骤,在该步骤过程中,提供安装在一个标称参考系中的一个眼镜片的一个标称表面,并且该标称表面与有待用对该标称表面相对于该参考表面的位置进行定义的这些位置参数的一个标称值制造的理论上可推导表面相对应,
-一个测量表面提供步骤,在该步骤过程中,提供所制造的该可推导表面的一个用该标称参考系表示的测量表面,
-一个变形表面提供步骤,在该步骤过程中,提供由至少一个变形可调参数定义的至少一个变形表面,
-一个合成表面确定步骤,在该步骤过程中,通过添加该测量表面以及该变形表面来确定一个合成表面,
-一个表面参数确定步骤,在该步骤过程中,通过最小化该标称表面和该合成表面之间的差异来确定这些位置参数和至少一个变形参数;和/或
◆该参数确定步骤进一步包括一个区确定步骤,在该区确定步骤中,在标称表面内确定相关区以及通过最小化该标称表面与该相关区内的合成表面之间的差异来确定这些位置和变形参数;和/或
◆通过使用阻尼最小二乘法实现该参数确定步骤;和/或
◆这些位置参数包括至少六个参数,例如,该眼镜片的该至少一个制造表面相对于该标称眼镜片的该至少一个相应表面的三个平移参数(Tx,Ty,Tz)和三个旋转参数(Rx,Ry,Rz);和/或
◆该变形表面与由一个球面参数、一个柱面参数和一个轴线参数定义的一个球环面表面相对应;和/或
◆该变形表面与由一个轴线参数和一个角参数定义的一个直立圆锥相对应。
根据一个进一步的方面,本发明涉及一种计算机程序产品,该产品包括一个或多个可由处理器访问的存储指令序列,当处理器执行指令时,该计算机程序致使处理器实施根据本发明的方法的各个步骤。
本发明还涉及一种计算机可读介质,该介质承载了根据本发明的计算机程序产品的一个或多个指令序列。
进一步地,本发明涉及一种使计算机执行本发明的方法的程序。
本发明还涉及一种具有在其上记录的程序的计算机可读存储介质;其中,该程序使计算机执行本发明的方法。
本发明进一步涉及一种包括一个处理器的装置,该处理器被适配成用于存储一个或多个指令序列并且实施根据本发明的方法的多个步骤中的至少一个步骤。
如从以下讨论中明显的是,除非另有具体规定,否则应了解到,贯穿本说明书,使用诸如“计算”、“运算”、“生成”等术语的讨论是指计算机或计算系统或类似电子计算装置的动作和/或过程,该动作和/或过程对该计算系统的寄存器和/或存储器内表示为物理(诸如电子)量的数据进行操纵和/或将其转换成该计算系统的存储器、寄存器和其他此类信息存储、传输或显示装置内的类似地表示为物理量的其他数据。
本发明的实施例可以包括用于执行在此所述操作的设备。此设备可以是为所期望的目的而专门构建的,或此设备可以包括一个通用计算机或被储存在计算机中的计算机程序选择性地激活或重新配置的数字信号处理器(“DSP”)。这样的计算机程序可以存储在计算机可读存储介质中,如但不限于任何类型的磁盘,包括软磁盘、光盘、CD-ROM、磁光盘、只读存储器(ROM)、随机存取存储器(RAM)、电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、磁性或光学卡,或任何其他类型的适合于存储电子指令并且能够耦联到计算机系统总线上的介质。
本文中所提出的过程和显示方式并非本来就与任何特定的计算机或其他设备相关。各种通用系统都可以与根据此处的教导的程序一起使用,或者其可以证明很方便地构建一个更专用的设备以执行所期望的方法。各种这些系统所希望的结构将从以下描述中得以明了。此外,本发明的实施例并没有参考任何具体的编程语言而进行描述。将认识到的是,各种编程语言都可以用来实现如此处所描述的本发明的教导。
现在将参考附图描述本发明的非限制性实施例,在附图中
-图1是流程图,展现了根据本发明的一个实施例的方法的步骤,
-图2展示了在TABO惯例中的镜片的散光轴线γ,
-图3展示了在用于表征非球面表面的惯例中的柱面轴线γAX
-图4展示了沿着任何轴线的局部球面,
-图5和图6分别为带有微标记的表面和为不带有微标记的表面示出了关于微标记定义的参考系,
-图7和图8用以图解方式示出了眼睛和镜片的光学系统,
-图9示出了从眼睛的转动中心开始的光线追踪,
-图10是展示本发明的实施方式的一个示例的表格,
-图11是展示本发明的实施方式的一个进一步示例的表格,
一种渐进式镜片包括至少一个但优选地两个非旋转对称的非球面表面,例如但不限于渐进表面、回归表面、复曲面或非复曲面表面。
如已知的是,表面的最小曲率CURVmin通过以下公式在所述表面上的任一点处定义:
其中,Rmax为表面的最大曲率半径,用米来表示,并且CURVmin用屈光度来表示。
类似地,表面的最大曲率CURVmax可以通过以下公式在表面上的任一点处定义:
其中,Rmin为表面的最小曲率半径,用米来表示,并且CURVmax用屈光度来表示。
可以注意到,当表面局部为球面时,最小曲率半径Rmin和最大曲率半径Rmax是完全相同的,并且相应地,最小和最大曲率CURVmin和CURVmax也是完全相同的。当表面是非球面时,局部最小曲率半径Rmin和局部最大曲率半径Rmax是不同的。
根据最小曲率CURVmin和最大曲率CURVmax的这些表达式,标记为SPHmin和SPHmax的最小球面和最大球面可以根据所考虑的表面类型来推断。
当所考虑的表面是物体侧表面(也称为前表面)时,这些表达如下:
以及
其中,n为镜片的成分材料的折射率。
如果所考虑的表面是眼球侧表面(也称为后表面)时,这些表达如下:
以及
其中,n为镜片的成分材料的折射率。
如熟知的,在非球面表面上的任一点处的平均球面SPHmean也可以通过下公式来定义:
因此,平均球面的表示取决于所考虑的表面:
-如果该表面是物体侧表面,那么
-如果该表面是眼球侧表面,那么
-柱面CYL也通过公式CYL=|SPHmax-SPHmin|定义。
镜片的任何非球面的特性可以借助于局部平均球面和柱面来表示。当该柱面为至少0.25屈光度时,可以认为该表面是局部非球面的。
对于非球面表面而言,局部柱面轴线γAX可以被进一步定义。图2展示了如在TABO惯例中定义的散光轴线γ,而图3展示了被定义成用于表征非球面表面的惯例中的柱面轴线γAX
柱面轴线γAX为最大曲率CURVmax的定向相对于参考轴线并且在所选的旋转方向上的角度。在以上定义的惯例中,参考轴线是水平的(此参考轴线的角度为0°),并且在看向佩戴者时该旋转方向对于每一只眼睛而言是逆时针的(0°≤γAX≤180°)。因此,+45°的柱面轴线γAX的轴线值表示一条倾斜定向的轴线,在看向佩戴者时,该轴线从位于右上方的象限延伸到位于左下方的象限。
此外,基于对局部柱面轴线γAX的值的了解,高斯公式能够表示沿着任何轴线θ的局部球面SPH,θ为图3中定义的参考系中的一个给定角度。图4中示出了轴线θ。
SPH(θ)=SPHmax cos2(θ-γAX)+SPHmin sin2(θ-γAX)
如所预期的,当使用高斯公式时,SPH(γAX)=SPHmax并且SPH(γAX+90°)=SPHmin
因此,表面可以局部由一个三元组来定义,该三元组由最大球面SPHmax、最小球面SPHmin和柱面轴线γAX构成。可替代地,该三元组可以由平均球面SPHmean、柱面CYL和柱面轴线γAX构成。
每当镜片特征在于参考其非球面表面之一时,如在图5和图6中所示,分别为带有微标记的表面和为不带有任何微标记的表面定义了关于微标记的参考系。
渐进式镜片包括已经被协调标准ISO 8990-2作成强制性的微标记。还可以在镜片的表面上应用临时标记,从而指示镜片上的屈光度测量位置(有时被称为控制点)(如针对远视觉和针对近视觉),例如棱镜参考点以及拟合交叉点。应当理解,在此由术语远视屈光度测量位置(“FV位置”)和近视屈光度测量位置(“NV位置”)提及的可以是包括在镜片的第一表面上的由镜片制造商分别提供的FV和NV临时标记的正交投影中的点中的任何一个点。如果没有临时标记或者其已经被清除,技术人员始终可以通过使用安装图纸和永久性微标记在镜片上定位这些控制点。
这些微标记还使得可以定义用于为该镜片的两个表面的参考系。
图5示出了用于带有微标记的表面的参考系。该表面的中心(x=0,y=0)为该表面的点,在该点上,该表面的法线N与连接这两个微标记的线段的中心相交。MG为这两个微标记定义的共线单一向量。该参考系的向量Z等于该单一法线(Z=N);该参考系的向量Y等于Z与MG的向量乘积;该参考系的向量X等于Y与Z的向量乘积。{X,Y,Z}由此形成一个直接标准正交三面形。该参考系的中心为该表面的中心x=0mm,y=0mm。X轴为水平轴线并且Y轴为竖直轴线,如图3所示。
图6示出了用于与带有微标记的表面相反的表面的参考系。此第二表面的中心(x=0,y=0)为与连接该第一表面上的两个微标记的区段的中心相交的法线N与该第二表面相交所在的点。以与该第一表面的参考相同的方式构建该第二表面的参考,即,向量Z等于该第二表面的单一法线;向量Y等于Z与MG的向量乘积;向量X等于Y与Z的向量乘积。至于第一表面,X轴为水平轴线并且Y轴为竖直轴线,如图3所示。该表面的参考系的中心也为x=0mm,y=0mm。
类似地,在半成品镜片毛坯上,标准ISO 10322-2要求应用微标记。因此可以与如上所述的参考系一样良好地确定半成品镜片毛坯的经机加工的表面的中心。
图7和8是眼睛和镜片的光学系统的图形展示,因此示出了在说明书中使用的定义。更精确地,图7展现了这种系统的一个透视图,展示了用于定义注视方向的参数α和β。图8是平行于佩戴者的头的前后轴线的竖直平面图,并且在参数β等于0的情况下时该竖直平面穿过眼睛的转动中心。
将眼睛的转动中心标记为Q’。图8中以一条点划线示出的轴线Q’F’是穿过眼睛的转动中心并且在佩戴者前方延伸的水平轴线,即,对应于主注视视角的轴线Q’F’。此轴线在称为拟合交叉点的一个点上切割镜片的后表面,该点在镜片上存在而使得眼科医生能够将镜片定位在一个参考系中。镜片的后表面与轴线Q’F’的交叉点是点O。如果位于后表面上,那么O可以是拟合交叉点。具有中心Q’和半径q’的顶点球面,在水平轴线的一点上与镜片的后表面相切。作为示例,25.5mm的半径q’的值对应于一个常用值,并且在佩戴镜片时提供令人满意结果。
图7上用一条实线表示的给定凝视方向对应于围绕Q’旋转的眼睛的一个位置并且对应于顶点球面的点J;角β是在轴线Q’F’与直线Q’J在包括轴线Q’F’的水平平面上的投影之间形成的角;这个角出现在图7上的方案中。角α是在轴线Q’J与直线Q’J在包含轴线Q’F’的水平平面上的投影之间形成的角,这个角出现在图7和8的示意图中。一个给定的注视图因此对应于顶点球面的点J或者对应于一对(α,β)。如果下降注视角的值为正并且越大,则注视下降越大;如果该值为负并且越大,则注视上升越大。
在一个给定的注视方向上,在物体空间中位于给定物距处的点M的图像形成在对应于最小距离JS和最大距离JT的两个点S与T之间,该最小距离和最大距离将是矢状局部焦距和切向局部焦距。在点F’处形成了无穷远处的物体空间中一点的图像。距离D对应于镜片的后冠状平面。
工作视景(Ergorama)是使一个物点的通常距离关联于每一个注视方向的函数。典型地,在遵循主注视方向的远视觉中,物点处于无穷远处。在遵循基本上对应于在朝向鼻部侧的绝对值为约35°的角α和约5°的角β的注视方向的近视中,物距大约为30cm到50cm。为了了解关于工作视景的可能定义的更多细节,可以考虑美国专利US-A-6,318,859。此文献描述了工作视景、其定义及其建模方法。对于本发明的方法而言,点可以处于无穷远处或不处于无穷远处。工作视景可以是佩戴者的屈光不正的函数。
使用这些元素可以在每一个注视方向上定义佩戴者的光学屈光力和散光。针对注视方向(α,β)来考虑在由工作视景给定的物距处的物点M。在物体空间中在对应光线上针对点M将物体接近度ProxO定义为顶点球面的点M与点J之间的距离MJ的倒数:
ProxO=1/MJ
这使得能够在针对顶点球面的所有点的一种薄镜片近似内计算物体接近度,该薄镜片近似用于确定工作视景。对于真实镜片而言,物体接近度可以被视为物点与镜片的前表面之间的在对应光线上的的距离的倒数。
对于同一注视方向(α,β)而言,具有给定物体接近度的点M的图像形成于分别对应于最小焦距和最大焦距(其将是矢状焦距和切向焦距)的两个点S与T之间。量ProxI称为点M的图像接近度:
通过用一个薄镜片的情况类推,因此针对一个给定注视方向和一个给定物体接近度,即,针对物体空间在对应光线上的一点,可以将光学屈光力Pui定义为图像接近度与物体接近度之和。
Pui=ProxO+ProxI
借助于相同的符号,针对每个注视方向和一个给定物体接近度,将散光Ast定义为:
此定义对应于由镜片产生的一条射束的散光。可以注意到,该定义在主注视方向上给定了散光的典型值。通常称为轴线的散光角是角γ。角γ是在与眼睛关联的参考系{Q’,xm,ym,zm}中测量的。它对应于借以形成图像S或T的角,该角取决于相对于平面{Q’,zm,ym}中的方向zm所使用的惯例。
在佩戴条件中,镜片的光学屈光力和散光的可能定义因此可以如B.Bourdoncle等人的论文中所阐释那样计算,该论文的题目为“通过渐进式眼镜片的光线追踪(Raytracing through progressive ophthalmic lenses)”(1990年国际镜片设计会议,D.T.Moore编,英国光电光学仪器学会会议记录)。标准佩戴条件应当理解为镜片相对于一位标准佩戴者的眼睛的位置,尤其通过-8°的全景角、12mm的镜片-瞳孔距离、13.5mm的瞳孔-眼睛转动中心以及0°的包角来定义。该广角是眼镜片的光轴与处于主位置的眼睛的视轴之间的竖直平面中的角,通常被视为是水平的。该包角是眼镜片的光轴与处于主位置的眼睛的视轴之间的水平平面中的角,通常被视为是水平的。也可以使用其他条件。可以从用于一个给定镜片的光线跟踪程序来计算佩戴条件。此外,可以计算光学屈光力和散光,使得针对在这些佩戴条件中佩戴眼镜的一位佩戴者在参考点(即,远视中的控制点)处满足处方或者通过一个前聚焦计来测得处方。
图9描绘了一种配置的透视图,其中参数α和β非零。因此,可以通过示出固定参考系{x,y,z}和与眼睛关联的参考系{xm,ym,zm}来展示眼睛的转动的影响。参考系{x,y,z}的原点在点Q’处。x轴是Q’O轴,并且是从镜片朝向眼睛定向。y轴是竖直的并且向上定向。z轴使得参考系{x,y,z}是正交且直接的。参考系{xm,ym,zm}关联于眼睛,并且其中心是点Q’。xm轴对应于注视方向JQ’。因此,对于主注视方向而言,这两个参考系{x,y,z}和{xm,ym,zm}是相同的。已知的是,镜片的性质可以用若干不同的方式表示,并且值得注意的是,用表面和光学方式表示。因此,表面表征等效于光学表征。在毛坯的情况下,只可以使用表面表征。需理解,光学表征要求根据佩戴者的处方来对镜片进行机械加工。相比之下,在眼镜片的情况下,该表征可以是表面类型或光学类型,这两种表征能用两种不同观点描述同一物体。每当镜片的表征为光学类型时,它指代上述工作视景眼镜片系统。为了简单,术语‘镜片’用于本说明书中,但是须被理解为‘工作视景眼镜片系统’。表面项的值可以相对于各点来表示。各点借助于如上关于图3、图5和图6所定义的参考系中的横坐标或纵坐标来定位。
光学项中的值可以针对注视方向来表达。注视方向通常是由它们的降低程度以及原点在眼睛的旋转中心的一个参考系中的方位角来给定。当镜片被安装在眼睛前方时,对于一个主注视方向而言,称为拟合交叉点的一个点被置于眼睛的瞳孔或转动中心Q’前面。该主注视方向对应于一位佩戴者正直视前方的情形。在所选择的眼镜架中,不论该拟合交叉点定位在镜片的什么表面(后表面或前表面),该拟合交叉点因此对应于一个0°的降低角α和一个0°的方位角β。
以上参考图7至图9所作的描述是针对中央视觉给出。在周边视觉中,由于注视方向固定,因此瞳孔的中心取代眼睛的旋转中心而被考虑并且周边光线方向取代注视方向而被考虑。当考虑外围视觉时,角α和角β对应于光线方向,而非注视方向。
在该描述的剩余部分,可以使用术语如《向上》、《底部》、《水平》、《垂直》、《以上》、《以下》,或其他指示相对位置的字。在镜片的佩戴条件下理解这些术语。值得注意地,镜片的“上”部分对应于一个负降低角α<0°以及镜片的“下”部分对应于一个正降低角α>0°。类似地,镜片或半成品镜片毛坯的表面的“上”部分对应于沿着y轴的一个正值,并且优选地对应于沿着y轴的、大于拟合交叉点处的y_值的一个值;而镜片或半成品镜片毛坯的表面的“下”部分对应于在上文参考图3、图5和图6定义的参考系中沿着y轴的一个负值,并且优选地对应于沿着y轴的、小于拟合交叉点处的y_值的一个值。
根据本发明的方法是一种由计算机装置来实现的用于确定通过眼镜片制造工艺制造的眼镜片的可行性的方法,该眼镜片适应于一个佩戴者并且包括至少两个光学表面,这些光学表面中的至少一个光学表面有待基于一个标称眼镜片的一个也称为“标称表面”的相应表面通过该眼镜片制造工艺来制造。
根据本发明的不同实施例,该眼镜片可以是单视觉眼镜片、多焦点眼镜片、或渐进式多焦点眼镜片。
根据本发明的一个实施例,该眼镜片适应于佩戴者;具体地,该眼镜片适应于佩戴者的处方。
根据本发明的方法的可行性检查基于一组n个光学参数(P1,P2,…,Pn),n是大于等于1的整数。
根据一个实施例,在由该眼镜片之外的至少一个参考点以及该眼镜片相对于该参考点的位置和取向所定义的特定条件下,确定至少一个光学参数Pi,例如,确定所有光学参数(P1,P2,…,Pn)。
这些特定条件可以是佩戴条件,并且该参考点可以表示佩戴者的眼睛的转动中心。该眼镜片的位置和取向可以由该眼镜片的表面中之一(例如,该眼镜片的后表面)相对于该佩戴者的眼睛的转动中心的位置的位置以及该眼镜片的全景角和包角定义。
根据一个使眼镜片适应于佩戴者的实施例,这些佩戴条件可以通过对佩戴者进行特定的测量来获得,从而提高了根据本发明的方法的精确度。
还可以使用一般佩戴条件来定义这些光学参数中的至少一个光学参数(例如,所有光学参数)。
一般佩戴条件可以被定义为:佩戴者的主观看方向与眼镜片的拟合交叉点相交、眼睛的转动中心与眼镜片的后面之间的距离为27mm、全景角为8°以及包角为0°。
可选地,一般佩戴条件可以考虑佩戴者的瞳孔来进行定义。这种佩戴条件可以由8°的全景角、12mm的镜片-瞳孔距离、13.5mm的瞳孔-眼睛转动中心以及0°的包角来定义。
根据一个实施例,至少一个光学参数为局部光学参数。例如,这些光学参数可以从由以下各项所组成的列表当中选择:球面屈光力、散光幅度和轴线、竖直棱镜偏差、水平棱镜偏差、总棱镜偏差。
光学参数的其他示例在以下ISO标准中进行了定义:
-针对非磨边单视觉眼镜片的ISO 8980-1,或者
-针对非磨边多焦点眼镜片的ISO 8980-2,或者
-针对磨边眼镜片的ISO 21987。
每一个局部光学参数都可以在一个参考点处进行定义。例如,对于多焦点眼镜片而言,该参考点可以在由以下各项所组成的列表中选择:近视点、远视点、棱镜参考点或拟合交叉点。
根据一个实施例,至少一个光学参数为全局光学参数。
全局光学参数在与一个锥体与该眼镜片的这些表面之一的交集相对应的一个区上进行定义。该锥体的轴线穿过第一和第二参考点。该第一参考点是一个位于该眼镜片之外的点,并且该第二参考点是一个位于该眼镜片的表面之一上的点。
该锥体可以是视锥,并且该第一参考点为眼睛的转动中心。例如,如果使该眼镜片适应于佩戴者,该第一参考点可以对应于佩戴者的眼睛的转动中心。
该第二参考点在多焦点眼镜片的情况下可以是近视点、远视点、棱镜参考点或拟合交叉点。
根据一个实施例,锥体的孔大于等于5°(例如大于等于10°)并且小于等于20°(例如小于或等于15°)。
根据本发明的一个实施例,本发明的方法可以包括:
-一个眼镜片数据提供步骤S1,
-一组表面参数提供步骤S2,
-一个光学参数提供步骤S3,以及
-一个可行性检查确定步骤S4。
在眼镜片数据提供步骤S1过程中,提供表示标称眼镜片的表面的数据。
如之前所指示的,标称眼镜片可以是单视觉眼镜片、多焦点眼镜片、或多焦点渐进式眼镜片。
在该组表面参数提供步骤S2过程中,提供一组m个表面参数(α1,α2,…,αm),m是大于等于1的整数。
这些表面参数表示一个眼镜片的至少一个制造表面与该标称表面的位置和/或形状的差异。
根据本发明的一个实施例,该组m个表面参数(α1,α2,…,αm)至少包括多个位置参数和多个变形参数。
通过一种由计算机装置实现的用于确定对一个所制造的可推导表面相对于一个标称表面的相对位置进行定义的多个表面参数的方法来确定至少一个表面参数(例如所有表面参数)的值。
这种方法可以包括:
-一个标称表面提供步骤,
-一个测量表面提供步骤,
-一个变形表面提供步骤,
-一个合成表面确定步骤,以及
-一个表面参数确定步骤。
在该标称表面提供步骤过程中,提供安装在一个标称参考系中的一个眼镜片的一个标称表面,并且该标称表面与有待用对该标称表面相对于该参考表面的位置进行定义的这些位置参数的一个标称值制造的理论上可推导表面相对应。
在该测量表面提供步骤过程中,提供所制造的可推导表面的用标称参考系表示的测量表面。
在该变形表面提供步骤过程中,提供由至少一个变形可调参数定义的至少一个变形表面。
该变形表面可以与由一个球面参数、一个柱面参数和一个轴参数定义的一个球环面表面相对应。
该变形表面可以进一步与由一个轴线参数和一个角参数定义的一个直立圆锥相对应。
根据本发明的一个实施例,这些表面误差参数包括至少六个位置参数,例如,该眼镜片的至少一个制造表面相对于该标称表面的三个平移参数(Tx,Ty,Tz)和三个旋转参数(Rx,Ry,Rz)。
在该合成表面提供步骤过程中,通过添加该测量表面以及该变形表面来确定一个合成表面。
在该表面参数确定步骤过程中,通过例如使用阻尼最小二乘法来最小化该标称表面和该合成表面之间的差异以确定这些位置参数和至少一个变形参数。
根据一个实施例,该表面参数确定步骤进一步包括一个区确定步骤,在该区确定步骤中,在该标称表面内确定一个相关区,并且通过最小化该标称表面与该相关区内的合成表面之间的差异来确定这些表面参数。
在该光学参数提供步骤过程中,提供一组n个光学参数(P1,P2,…,Pn)的值的方法,n是一个大于等于1的整数。每一个光学参数Pi被提供有参照标称值Pi,0定义的一个公差值εi,该标称值是该标称眼镜片的光学参数Pi的值。
根据本发明的一个实施例,取决于眼镜片的类型,这些公差值εi中的至少一个(例如全部)按照在适用的标准ISO 8980-1、或ISO 8980-2、或ISO 21987之一中那样进行设置。
在该可行性检查确定步骤过程中,通过确定对于i从1至n以下公式是否成立来确定通过该眼镜片制造工艺制造的眼镜片的可行性:
其中,是Pi关于该标称表面上的第j个表面参数αj的导数的值,并且Δαj是第j个表面参数的值,并且Ai是对于每一个Pi而言阶数大于等于2的项的一个组合。
根据本发明的一个实施例,第j个表面参数的值Δαj是这种表面参数的一个平均值,例如在类似的眼镜片上获得的表面参数的平均值。
为了减少计算资源,在可行性检查确定步骤过程中,通过对于i从1至n设置:
来确定这些可行性检查的至少一部分,例如所有可行性检查,其中,是Pi关于该标称表面上的第j个表面参数αj和第k个表面参数αk的二阶导数的值,Δαj是第j个表面参数的值,并且Δαk是第k个表面参数的值。
换言之,在可行性检查确定步骤过程中,通过确定对于i从1至n以下公式是否成立来确定这些可行性检查的至少一部分(例如全部):
其中,是Pi关于该标称表面上的第j个表面参数αj和第k个表面参数αk的二阶导数的值,Δαj是第j个表面参数的值,并且Δαk是第k个表面参数的值。
根据本发明的一个实施例,在该可行性检查确定步骤过程中,通过设置Ai=0来确定这些可行性检查的至少一部分,例如所有可行性检查。
换言之,在可行性检查确定步骤过程中,通过确定对于i从1至n以下公式是否成立来确定这些可行性检查的至少一部分(例如全部):
其中,是Pi关于该标称表面上的第j个表面参数αj的导数的值,并且Δαj是第j个表面参数的值。
计算任意阶数的Pi的偏导数可能是非常耗时的。取决于光学性能,将Pi的偏导数的演算阶数限制到最小阶数(必要时)会是有利的。
示例1
发明人实现了根据本发明的方法以针对给定的眼镜片确定一组表面误差对一组光学参数的影响。
在本示例中,该眼镜片是渐进式多焦点镜片。该眼镜片的前表面具有5.5屈光度的基础弯曲度、2.0屈光度的增加以及“万里路舒适型(Comfort Varilux)”设计。
该光学镜片的后表面是球面的,并且被安排成用于在近视点处提供2.0球面屈光度、0柱面屈光度以及0°轴线的眼科处方。
该光学镜片由折射率为1.502的奥玛(Orma)材料制成。
沿一个直径为60mm、以该眼镜片的棱镜参考点为中心的圆,该光学镜片的厚度为至少0.8mm。该光学镜片在棱镜参考点处的厚度大于2.5mm。
发明人在表面误差当中选择了考虑如下定位误差:
- D_Tx:眼镜片的后表面相对于眼镜片的前表面沿着x轴的平移定位误差,
- D_Ty:眼镜片的后表面相对于眼镜片的前表面沿着y轴的平移定位误差,
- D_Tz:眼镜片的后表面相对于眼镜片的前表面沿着z轴的平移定位误差,
- D_Rx:眼镜片的后表面相对于眼镜片的前表面围绕x轴的旋转定位误差,
- D_Ry:眼镜片的后表面相对于眼镜片的前表面围绕y轴的旋转定位误差,以及
- D_Rz:眼镜片的后表面相对于眼镜片的前表面围绕z轴的旋转定位误差。
发明人进一步决定通过将以下各项添加至后表面上以考虑表面误差当中的倾斜误差:
-与(x/R)2项相对应的D_xx误差,其中R为表面的半径,
-与(x/R)*(y/R)项相对应的D_xy误差,其中R为表面的半径,以及
-与(y/R)2项相对应的D_yy误差,其中R为表面的半径。
已经评估了上述表面误差对远视光学参数和近视光学参数的光学影响。
在远视光学参数中,发明人已经决定考虑从最小屈光力轴线开始不同取向上在远视点处的平均光学屈光力:
- 45°取向:Pfv_45,
- 30°取向:Pfv_30,以及
- 60°取向:Pfv_60。
在近视光学参数中,已经决定考虑从最小屈光力轴线开始不同取向上在近视点处的平均光学屈光力:
- 45°取向:Pnv_45,
- 30°取向:Pnv_30,以及
- 60°取向:Pnv_60。
已经通过考虑棱镜参考点处的水平棱镜偏差Dh_prp和棱镜参考点处的竖直棱镜偏差Dv_prp来评估在眼镜片的棱镜参考点处上述表面误差的光学棱镜效应。
在本示例中,针对每一个光学参数Pi,评估了Pi关于每一个表面误差参数的导数值。
图10中总结了这种评估的结果。
可以使用图10的表格基于所测量的表面误差来确定所制造的眼镜片的光学特性。
通常,当已经制造出眼镜片时,可以测量表面误差D_Tx、D_Ty、D_Tz、D_Rx、D_Ry、D_Rz、D_xx、D_xy和D_yy并且使用图10的表格来估计这些光学参数的期望值。
例如,远视点处的平均光学屈光力的标称值Pfv_45,0与远视点处的所述平均光学屈光力的所得到的值Pfv_45之间的差值可以被估计为等于:
2.28E-05*D_Tx+7.40E-03*D_Ty-1.73E-02*D_Tz+2.39E-02*D_Rx+3.40E-
05*D_Ry+2.08E-06*D_Rz-5.69E-01*D_xx+2.46E-05*D_xy-5.77E-01*D_yy。
因此,通过测量表面误差可以确定所制造的眼镜片的光学特性。
可以逐行使用图10中所提供的表格,以确定对于每一个表面误差而言最受影响的光学参数。
例如,在逐行分析图10的表格时考虑倾斜误差D_xx、D_xy和D_yy,看起来镜片的后表面的这种倾斜误差对水平和竖直棱镜偏差具有较小的影响,而相同的倾斜误差对于近视点和远视点处的光学屈光力的值具有非常大的影响。
还可以逐排使用图10的表格,以确定对给定光学参数影响最大的表面误差。
例如,在考虑图10的表格时,看起来光学屈光力参数Pfv_45、Pfv_30、Pfv_60、Pnv_45、Pnv_30和Pnv_60主要受到倾斜误差D_xx、D_xy和D_yy的影响。
此外,棱镜参考点处的水平棱镜偏差Dh_prp看起来似乎受到以下各项很大影响:
- D_Tx:眼镜片的后表面相对于眼镜片的前表面沿着x轴的平移定位误差,以及
- D_Ry:眼镜片的后表面相对于眼镜片的前表面围绕y轴的旋转定位误差。
示例2
发明人进一步用类似于示例1的渐进式多焦点镜片实现了根据本发明的方法,该眼镜片的前表面具有5.5屈光度的基础弯曲度、3.5屈光度的增加以及“万里路舒适型”设计。
该光学镜片的后表面是球面的,并且被安排成用于在近视点处提供0球面屈光度、3柱面屈光度以及30°轴线的眼科处方。
该光学镜片由折射率为1.502的奥玛(Orma)材料制成。
沿一个直径为60mm、以该眼镜片的棱镜参考点为中心的圆,该光学镜片的厚度为至少0.8mm。该光学镜片在棱镜参考点处的厚度为至少2.5mm。
这些光学参数和表面误差与示例1相同。如在示例1中,针对每一个光学参数Pi,评估了Pi关于每一个表面误差参数的导数值。
图11中总结了这种评估的结果。
示例1与示例2之间出现差异。例如,可以观察到,对于根据示例1的眼镜片,眼镜片的后表面相对于眼镜片的前表面沿x轴的平移定位误差D_Tx对棱镜参考点处的竖直棱镜偏差Dv_prp具有非常小的影响,而眼镜片的后表面相对于眼镜片的前表面沿x轴的相同平移定位误差D_Tx对根据示例2的眼镜片的棱镜参考点处的竖直棱镜偏差Dv_prp具有很大的影响。
示例3
示例3示出了使用示例1和示例2的表格来确定通过眼镜片制造工艺制造的眼镜片的可行性。
可以考虑引入以下表面误差的制造工艺:这些表面误差中的每一个误差都具有一个具有以下标准偏差的独立正态分布:
-对于眼镜片的后表面相对于眼镜片的前表面沿着x轴的平移定位误差D_Tx:σ_Tx=0.01mm,
-对于眼镜片的后表面相对于眼镜片的前表面沿着y轴的平移定位误差D_Ty:σ_Ty=0.01mm,
-对于眼镜片的后表面相对于眼镜片的前表面沿着z轴的平移定位误差D_Tz:σ_Tz=0.01mm,
-对于眼镜片的后表面相对于眼镜片的前表面围绕x轴的旋转定位误差D_Rx:σ_Rx=1°,
-对于眼镜片的后表面相对于眼镜片的前表面围绕y轴的旋转定位误差D_Ry:σ_Ry=0.6°,以及
-对于眼镜片的后表面相对于眼镜片的前表面围绕z轴的旋转定位误差D_Rz:σ_Rz=0.6°,
-对于误差D_xx:σ_xx=0.005,
-对于误差D_xy:σ_xy=0.005,
-对于误差D_yy:σ_yy=0.005。
制造工艺的这些表面误差中的每一个误差的标准偏差可以通过制造预先确定的光学镜片的样品来确定。
可能希望由这种制造工艺所生产的光学镜片的95%遵守:
- Pfv_45=Pfv_45_标称±0.125,其中,Pfv_45是在远视点处的平均光学屈光力,
- Pfv_30=Pfv_30_标称±0.125,其中,Pfv_30是在远视点处的平均光学屈光力,
- Pfv_60=Pfv_60_标称±0.125,其中,Pfv_60是在远视点处的平均光学屈光力,
- Pnv_45=Pnv_45_标称±0.125,其中,Pnv_45是在远视点处的平均光学屈光力,
- Pnv_30=Pnv_30_标称±0.125,其中,Pnv_30是在远视点处的平均光学屈光力,
- Pnv_60=Pnv_60_标称±0.125,其中,Pnv_60是在远视点处的平均光学屈光力,
- Dh_prp=Dh_prp_标称±0.025,其中,Dh_prp是在棱镜参考点处的水平棱镜偏差,以及
- Dv_prp=Dv_prp_标称±0.025,其中,Dv_prp是在棱镜参考点处的竖直棱镜偏差。
大致上,为了针对每一个光学参数找到在其上所制造的眼镜片的95%都将适合的区间,可以将图10和图11的表格的相应列(绝对值)乘以一个由所期望的标准偏差的二倍构成的向量。
发明人已经获得了以下结果:
对于根据示例1的眼镜片:
Pfv45 Pfv30 Pfv60 Pnv45 Pnv30 Pnv60 Dh_prp Dv_prp
5.97E-02 6.50E-02 7.00E-02 1.54E-01 1.19E-01 1.92E-01 1.08E+00 1.72E+00
对于根据示例2的眼镜片:
Pfv45 Pfv30 Pfv60 Pnv45 Pnv30 Pnv60 Dh_prp Dv_prp
5.41E-02 5.92E-02 5.70E-02 1.55E-01 1.36E-01 1.96E-01 1.10E+00 1.73E+00
从以上结果,看起来对于制造根据示例1和示例2的眼镜片,不应该使用这种制造工艺。
对于根据示例1的眼镜片,看起来在使用上述制造工艺来制造所述眼镜片时,至少光学参数Pv_45、Pnv_60、Dh_prp以及Dv_prp并不遵守所期望的质量水平。
对于根据示例2的眼镜片,看起来在使用上述制造工艺来制造所述眼镜片时,至少光学参数Pnv_45、Pnv_30、Pnv_60、Dh_prp以及Dv_prp并不遵守所期望的质量水平。
如示例3所展示的,本发明的方法提供了通过制造工艺制造的眼镜片的可行性检查。
以上已经借助于实施例描述了本发明,这些实施例并不限制本发明的发明构思。具体而言,根据本发明的方法可以用于双表面制造工艺,即,对眼镜片的前后表面都进行机加工的工艺。

Claims (26)

1.一种由计算机装置来实现的用于确定通过眼镜片制造工艺制造的眼镜片的可行性的方法,该眼镜片适应于一个佩戴者并且包括至少两个光学表面,这些光学表面中的至少一个光学表面有待基于一个标称眼镜片的一个也称为“标称表面”的相应表面通过该眼镜片制造工艺来制造,该方法包括:
-一个眼镜片数据提供步骤,在该步骤过程中,提供表示该标称眼镜片的这些表面的数据,
-一组表面参数提供步骤,在该步骤过程中,提供一组m个表面参数(α1,α2,…,αm),m是一个大于等于1的整数,这些表面参数表示一个眼镜片的至少一个制造表面与该标称表面的位置和/或形状的差异,
-一个光学参数提供步骤,在该步骤过程中,提供一组n个光学参数(P1,P2,…,Pn),n是一个大于等于1的整数,每一个光学参数Pi被提供有参照一个标称值Pi,0定义的一个公差值εi,该标称值是该标称眼镜片的该光学参数Pi的值,
-一个可行性检查确定步骤,在该步骤过程中,通过确定对于i从1至n以下公式是否成立来确定通过眼镜片制造工艺制造的该眼镜片的可行性:
- &epsiv; i &le; &lsqb; &Sigma; j = 1 m ( &part; P i &part; &alpha; j ) 0 &times; &Delta;&alpha; j &rsqb; + A i &le; &epsiv; i
其中,是Pi关于该标称表面上的第j个表面参数αj的导数的值,并且Δαj是第j个表面参数的值,并且Ai是对于每一个Pi而言阶数大于等于2的项的一个组合。
2.根据权利要求1所述的方法,其中,在该可行性检查确定步骤过程中,通过对于i从1至n设置:
A i = 1 2 &lsqb; &Sigma; j , k = 1 m ( &part; 2 P i &part; &alpha; j &part; &alpha; k ) 0 &times; &Delta;&alpha; j &times; &Delta;&alpha; k &rsqb;
来确定这些可行性检查的至少一部分,其中,是Pi关于该标称表面上的第j个表面参数αj和第k个表面参数αk的二阶导数的值,Δαj是第j个表面参数的值,并且Δαk是第k个表面参数的值。
3.根据权利要求1所述的方法,其中,在该可行性检查确定步骤过程中,通过对于i从1至n设置:
A i = 1 2 &lsqb; &Sigma; j , k = 1 m ( &part; 2 P i &part; &alpha; j &part; &alpha; k ) 0 &times; &Delta;&alpha; j &times; &Delta;&alpha; k &rsqb;
来确定所有可行性检查,其中,是Pi关于该标称表面上的第j个表面参数αj和第k个表面参数αk的二阶导数的值,Δαj是第j个表面参数的值,并且Δαk是第k个表面参数的值。
4.根据权利要求1至3中任一项所述的方法,其中,在该可行性检查确定步骤过程中,通过设置Ai=0来确定这些可行性检查的至少一部分。
5.根据权利要求1至3中任一项所述的方法,其中,在该可行性检查确定步骤过程中,通过设置Ai=0来确定这些可行性检查的所有可行性检查。
6.根据权利要求1至3中任一项所述的方法,其中,在至少由该眼镜片的这些表面之一的相对于该佩戴者的眼睛的转动中心的一个位置的一个位置以及该眼镜片的一个全景角和一个包角所定义的多个给定佩戴条件下,确定至少一个光学参数。
7.根据权利要求6所述的方法,其中,该眼镜片的这些表面之一是该眼镜片的后表面。
8.根据权利要求6所述的方法,其中,这些佩戴条件是从对该佩戴者以及一个由该佩戴者所选择的眼镜架的测量中定义的。
9.根据权利要求1至3中任一项所述的方法,其中,至少一个光学参数是一个局部光学参数。
10.根据权利要求9所述的方法,其中,该至少一个光学参数是从由以下各项所组成的列表当中选择的:球面屈光力、散光幅度和轴线、竖直棱镜偏差、水平棱镜偏差、总棱镜偏差。
11.根据权利要求1至3中任一项所述的方法,其中,至少一个光学参数是在至少一个参考点上定义的。
12.根据权利要求11所述的方法,其中,该至少一个参考点是在由以下各项所组成的列表中选择的:近视点、远视点、棱镜参考点、拟合交叉点。
13.根据权利要求1至3中任一项所述的方法,其中,至少一个光学参数是一个全局光学参数。
14.根据权利要求13所述的方法,其中,全局光学参数是在与一个视锥相对应的一个区上所定义的,该视锥是一个锥体,其中,该视锥的轴线穿过该眼睛的中心Q’与该眼镜片的一个参考点,该视锥的孔大于等于5°并且小于等于20°。
15.根据权利要求14所述的方法,其中,该眼镜片的该参考点选自包括以下的列表:近视点、远视点、棱镜参考点、拟合交叉点。
16.根据权利要求14所述的方法,其中,该视锥的孔大于等于10°。
17.根据权利要求14所述的方法,其中,该视锥的孔小于等于15°。
18.根据权利要求1至3中任一项所述的方法,其中,这些公差值按照在标准ISO 8980-1、或ISO 8980-2、或ISO 21987之一中那样进行设置。
19.根据权利要求1至3中任一项所述的方法,其中,第j个表面参数的值Δαj是这种表面参数的一个平均值。
20.根据权利要求19所述的方法,其中,这种表面参数的该平均值是在多个眼镜片上获得的相应的表面参数的平均值。
21.根据权利要求1至3中任一项所述的方法,其中,该组m个表面参数(α1,α2,…,αm)至少包括多个位置参数和多个变形参数。
22.根据权利要求21所述的方法,其中,通过一种由计算机装置实现的用于确定对一个所制造的可推导表面相对于一个标称表面的相对位置进行定义的多个表面参数的方法来获得多个表面参数的值,该方法包括:
-一个标称表面提供步骤,在该步骤过程中,提供安装在一个标称参考系中的一个眼镜片的一个标称表面,并且该标称表面与有待用对该标称表面相对于该参考表面的位置进行定义的这些位置参数的一个标称值制造的理论上可推导表面相对应,
-一个测量表面提供步骤,在该步骤过程中,提供所制造的该可推导表面的一个用该标称参考系表示的测量表面,
-一个变形表面提供步骤,在该步骤过程中,提供由至少一个变形可调参数定义的至少一个变形表面,
-一个确定合成表面步骤,在该步骤过程中,通过添加该测量表面以及该变形表面来确定一个合成表面,
-一个表面参数确定步骤,在该步骤过程中,通过最小化该标称表面和该合成表面之间的差异来确定这些位置参数和至少一个变形参数。
23.根据权利要求22所述的方法,其中,这些位置参数包括至少六个参数。
24.根据权利要求23所述的方法,其中,这些位置参数包括该眼镜片的该至少一个制造表面相对于该标称眼镜片的该至少一个相应表面的三个平移参数(Tx,Ty,Tz)和三个旋转参数(Rx,Ry,Rz)。
25.根据权利要求22所述的方法,其中,该变形表面对应于由一个球面参数、一个柱面参数和一个轴线参数定义的一个球环面表面。
26.根据权利要求22所述的方法,其中,该变形表面对应于由一个轴线参数和一个角参数定义的一个直立圆锥。
CN201380059424.9A 2012-11-14 2013-11-13 用于确定眼镜片的可行性的方法 Active CN104995547B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12306416.4 2012-11-14
EP12306416 2012-11-14
PCT/EP2013/073768 WO2014076156A2 (en) 2012-11-14 2013-11-13 Method for determining the feasibility of an ophthalmic lens

Publications (2)

Publication Number Publication Date
CN104995547A CN104995547A (zh) 2015-10-21
CN104995547B true CN104995547B (zh) 2017-04-12

Family

ID=47358567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380059424.9A Active CN104995547B (zh) 2012-11-14 2013-11-13 用于确定眼镜片的可行性的方法

Country Status (8)

Country Link
US (1) US10261341B2 (zh)
EP (1) EP2920640B1 (zh)
KR (1) KR102125745B1 (zh)
CN (1) CN104995547B (zh)
BR (1) BR112015011025B1 (zh)
CA (1) CA2891568C (zh)
MX (1) MX344975B (zh)
WO (1) WO2014076156A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180118116A (ko) * 2016-03-04 2018-10-30 에씰로 앙터나시오날 안과용 렌즈를 주문하는 방법 및 해당 시스템
DE102022200462B3 (de) 2022-01-17 2023-03-30 Rodenstock Gmbh Computerimplementiertes Verfahren zum Bestimmen eines Fertigungskorrekturmodells für die Herstellung von ophthalmischen Linsen, Speichervorrichtung, Computerprogrammprodukt, Verfahren sowie Vorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508272A (ja) * 2007-12-28 2011-03-10 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) 眼科用レンズのベースカーブを選択するための方法および関連するメガネレンズの製造方法
JP2011508275A (ja) * 2007-12-28 2011-03-10 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) フレームに適合する眼鏡レンズを選択するための方法およびコンピュータ手段

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960442A (en) * 1974-08-05 1976-06-01 American Optical Corporation Ophthalmic lens series
US4676610A (en) * 1983-07-22 1987-06-30 Sola International Holdings Ltd. Method of making progressive lens surface and resulting article
US4838675A (en) * 1987-06-19 1989-06-13 Sola International Holdings, Ltd. Method for improving progressive lens designs and resulting article
FR2753805B1 (fr) 1996-09-20 1998-11-13 Essilor Int Jeu de lentilles ophtalmiques multifocales progressives
WO1999066308A1 (en) 1998-06-18 1999-12-23 Optikos Corporation Automated optical measurement apparatus and method
US6755524B2 (en) * 2001-12-12 2004-06-29 Inray Ltd. Ophthalmic optical elements and methods for the design thereof
FR2858693B1 (fr) * 2003-08-08 2005-10-28 Essilor Int Procede de determination d'une lentille ophtalmique utilisant une prescription d'astigmatisme en vision de loin et en vision de pres
DE102005023126B4 (de) * 2005-05-19 2022-06-30 Rodenstock Gmbh Serie von Brillengläsern, Verfahren zur Herstellung
FR2893151B1 (fr) * 2005-11-08 2008-02-08 Essilor Int Lentille ophtalmique.
WO2009028685A1 (ja) 2007-08-31 2009-03-05 Hoya Corporation 累進屈折力レンズの評価方法および評価装置、並びに累進屈折力レンズの製造方法
US8721076B2 (en) * 2007-11-30 2014-05-13 Essilor International (Compagnie Generale D'optique) Process for controlling a lens manufacturing process
MY160945A (en) 2009-05-04 2017-03-31 Coopervision Int Holding Co Lp Use of accommodative error measurements in providing ophthalmic lenses
EP2270578A1 (en) * 2009-06-30 2011-01-05 Essilor International (Compagnie Générale D'Optique) Method of and apparatus for designing an optical lens
JP5399304B2 (ja) 2010-03-23 2014-01-29 富士フイルム株式会社 非球面体測定方法および装置
WO2012014810A1 (ja) 2010-07-27 2012-02-02 Hoya株式会社 眼鏡レンズの評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズの製造システム、及び眼鏡レンズ
DE102010049168A1 (de) * 2010-10-21 2012-04-26 Rodenstock Gmbh Verordnungs- und individualisierungsabhängige Modifikation des temporalen peripheren Sollastigmatismus und Anpassung der Objektabstandsfunktion an veränderte Objektabstände für die Nähe und/oder die Ferne
EP2522458B1 (en) 2011-05-13 2016-07-06 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Process for determining position parameters of a manufactured surface relative to a reference surface
ES2380979B1 (es) * 2011-12-19 2013-01-30 Indo Internacional S.A. "Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente"
US9671618B2 (en) * 2012-11-14 2017-06-06 Essilor International (Compagnie Generale D'optique) Method of determining optical parameters of an ophthalmic lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508272A (ja) * 2007-12-28 2011-03-10 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) 眼科用レンズのベースカーブを選択するための方法および関連するメガネレンズの製造方法
JP2011508275A (ja) * 2007-12-28 2011-03-10 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) フレームに適合する眼鏡レンズを選択するための方法およびコンピュータ手段

Also Published As

Publication number Publication date
KR102125745B1 (ko) 2020-06-23
KR20150083860A (ko) 2015-07-20
EP2920640A2 (en) 2015-09-23
WO2014076156A2 (en) 2014-05-22
BR112015011025A8 (pt) 2018-08-14
MX2015006042A (es) 2016-02-05
WO2014076156A3 (en) 2014-07-31
US10261341B2 (en) 2019-04-16
CN104995547A (zh) 2015-10-21
EP2920640B1 (en) 2018-05-30
MX344975B (es) 2017-01-12
US20160274376A1 (en) 2016-09-22
BR112015011025A2 (pt) 2017-07-11
BR112015011025B1 (pt) 2021-02-23
CA2891568A1 (en) 2014-05-22
CA2891568C (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN104903781B (zh) 至少具有稳定区的眼镜片
US9454019B2 (en) Progressive ophthalmic lens
CN104781644B (zh) 确定眼镜片的光学参数的方法
CN101317121B (zh) 眼镜片
CN104620160B (zh) 用于确定渐进式眼镜片的方法
US10365503B2 (en) Method implemented by computer means for calculating a lens optical system of a spectacle ophthalmic lens for a wearer
EP2667241B1 (en) A method of manufacturing a spectacle lens providing an astigmatic correction and spectacles including such spectacle lens
CN104303094B (zh) 用于确定一副渐进式眼镜片的方法
CN104995547B (zh) 用于确定眼镜片的可行性的方法
CN107077008B (zh) 用于修改眼科镜片表面的屈光功能的方法
CN107111157B (zh) 用于比较第一眼科镜片与第二眼科镜片的方法
CN103988116A (zh) 用于确定渐进式眼镜片和半成品镜片毛坯集合的方法
CN105283799B (zh) 用于优化眼镜架的测量轮廓的方法
CN103930823B (zh) 用于提供眼镜片的光学系统的方法和用于制造眼镜片的方法
CN105283798B (zh) 用于优化光学表面的方法
CN111263912A (zh) 眼科镜片组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180211

Address after: France Sharon Ton Le Pon

Patentee after: Essilor International Ltd.

Address before: France Sharon Ton Le Pon

Patentee before: Essilor International General Optical Co., Ltd.