CN104965374A - 高维路径纠缠源的制备及判断方法 - Google Patents

高维路径纠缠源的制备及判断方法 Download PDF

Info

Publication number
CN104965374A
CN104965374A CN201510455943.8A CN201510455943A CN104965374A CN 104965374 A CN104965374 A CN 104965374A CN 201510455943 A CN201510455943 A CN 201510455943A CN 104965374 A CN104965374 A CN 104965374A
Authority
CN
China
Prior art keywords
light
source
wave plate
path
parameteric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510455943.8A
Other languages
English (en)
Other versions
CN104965374B (zh
Inventor
柳必恒
胡晓敏
黄运锋
李传锋
郭光灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201811579533.4A priority Critical patent/CN109683423B/zh
Priority to CN201510455943.8A priority patent/CN104965374B/zh
Publication of CN104965374A publication Critical patent/CN104965374A/zh
Application granted granted Critical
Publication of CN104965374B publication Critical patent/CN104965374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种高维路径纠缠源的制备及判断方法,包括:设置一预定角度的半波片对输入的单偏振泵浦光进行偏振处理;利用一个或多个光束平移器BD对偏振处理后的单偏振泵浦光进行分束与平移处理,并利用一预定角度的半波片将经过BD处理后的水平偏振光H光处理为竖直偏振光V光;将所有V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成高维路径纠缠源的制备;利用BD对高维路径纠缠源中的光进行转换,并进行态层析,从而判断高维路径纠缠源的保真度。本发明公开的方法,具有成本低、容易实现的优点;同时,不仅可以有效的扩展到很高的维度,而且可以得到保真度较高的纠缠态。

Description

高维路径纠缠源的制备及判断方法
技术领域
本发明涉及量子信息技术领域,尤其涉及一种高维路径纠缠源的制备及判断方法。
背景技术
量子纠缠是一种非常重要的资源;比如量子信息领域如量子隐形传态,量子密集编码。对于使用光子实现量子纠缠现在最常用的方式就是使用各种非线性晶体通过自发参量下转换过程来实现。而对于高维纠缠对于光学领域最主要的实现方法利用拉格朗日-高斯模中光子的轨道角动量来实现。
1992年,Allen等人就观察到了不同的Laguerre-Gaussian(LG)光携带不同的轨道角动量,可以用光子的轨道角动量编码。2001年Mair等人在实验室上证明自发参量下转换过程中产生的双光子在轨道角动量上是纠缠的。
具体的过程是,在自发参量下转换过程中,一块薄的非线性晶体被一束z方向传播的激光激发。泵浦光的波失为kp束腰大小为ω0,那么产生双光子态函数为:
| ψ > = Σ l 1 , p 1 Σ l 2 , p 2 C p 1 , p 2 l 1 , l 2 | l 1 , p 1 ; l 2 , p 2 > ;
其中,(l1,p1)对应于信号光的模式,(l2,p2)对应于闲散光的模式,l和p分别代表了LG模中的两个量子数。代表的是量子力学狄拉克表示中的几率幅。
然而,上述都是基于理论所提出的方法,实际上通过上述方法制备与读取纠缠源是比较困难的事情,并且很难保证保真度做到很高。
发明内容
本发明的目的是提供一种高维路径纠缠源的制备及判断方法,具有成本低、容易实现的优点;同时,不仅可以有效的扩展到很高的维度,而且可以得到保真度较高的纠缠态。
本发明的目的是通过以下技术方案实现的:
一种高维路径纠缠源的制备及判断方法,包括:
设置一预定角度的半波片对输入的单偏振泵浦光进行偏振处理;
利用一个或多个光束平移器BD对偏振处理后的单偏振泵浦光进行分束与平移处理,并利用一预定角度的半波片将经过BD处理后的水平偏振光H光处理为竖直偏振光V光;
将所有V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成高维路径纠缠源的制备;
利用BD对高维路径纠缠源中的光进行转换,并进行态层析,从而判断高维路径纠缠源的保真度。
进一步的,进行二维路径纠缠源制备的步骤包括:
设置一个22.5°的半波片对输入的H光或V光进行偏振处理,处理后的光为H光与V光的叠加,形成45°的线偏振光;
利用一个BD对H光与V光进行分束与平移处理;其中,H光沿着之前的方向传播,V光则向下平移一段距离,并利用一个45°的半波片将H光处理为V光;
两路V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成二维路径纠缠源的制备。
进一步的,进行三维路径纠缠源制备的步骤包括:
设置一个17.6°的半波片对输入的H光进行偏振处理,处理后的光为H光与V光的叠加;
利用BD1对H光与V光进行分束与平移处理,其中,H光沿着之前的方向传播,V光则向下平移一段距离;
并分别利用0°与22.5°的半波片对从BD1射出的H光与V光进行偏振处理;其中,上方的H光经过0°半波片后,依然为H光,而下方的V光经过22.5°半波片后变为H光与V光的叠加;
利用BD2对于偏振处理后的光进行分束与平移处理;其中,上方的H光保持之前的方向传播,下方的H光与V光分束后,H光保持之前的方向传播,V光则向下平移一段距离,则BD2射出的光自上向下排布为H光、H光及V光;
分别对应的利用45°、45°与0°的半波片对从BD2射出光进行偏振处理,变成自上向下排布的三束V光;
这三束V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成三维路径纠缠源的制备。
进一步的,高维路径纠缠源制备时,BD与BD之间、半波片与半波片之间,以及BD与半波片之间均为平行放置。
进一步的,所述利用BD对高维路径纠缠源中的光进行转换,并进行态层析,从而判断高维路径纠缠源的保真度包括:
对于二维路径纠缠源,每一V光所产生的两路参量光均在实验室水平面内与泵浦光成3°角,不同的泵浦光产生的参量光竖直排列,将相邻V光所产生的参量光单独引出;其中,参量光均为H光;
引出的参量光呈上下排布,利用45°的半波片将上方的H光处理为V光;
上方的V光与下方的H光射入BD后,下方的H光保持之前的方向传播,V光则向下平移一段距离且与H光合并为一束光射出,实现路径编码至偏振编码的转换;
转换后的光,依次射入四分之一波片、半波片、偏振分束器及单光子探测器,进行态层析,从而判断高维路径纠缠源的保真度。
由上述本发明提供的技术方案可以看出,利用半波片与BD将射入的单偏振泵浦光分成等能量的V光,经过非线性晶体的V光会产生两束参量光,该方案相较于传统使用光子角动量实现的高维纠缠而言,具有成本低,易于调节与实现,可以广泛使用于需要高维纠缠的情况下;同时,该方案可以有效的扩展到很高的维度,并且可以得到保真度很高的纠缠态。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种高维路径纠缠源的制备及判断方法的流程图;
图2为本发明实施例提供的制备二维路径纠缠源的示意图;
图3为本发明实施例提供的光束平移器分束与平移的原理图;
图4为本发明实施例提供的制备三维路径纠缠源的示意图;
图5为本发明实施例提供的判断二维路径纠缠源的保真度的示意图;
图6为本发明实施例提供的判断三维路径纠缠源的保真度的示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明实施例提供一种高维路径纠缠源的制备及判断方法,该方案使用了路径编码的方式来实现。路径编码的方式如下:路径编码是利用路径里有无光子来实现编码的一种方式,以最简单的单qubit为例,如果存在两条路径(分别叫做上路和下路),则有:如果上路有光子下路没有光子编码为0(量子态表示为|0>),如果下路有光子上路没有光子编码为1(量子态表示为|1>),这样就可以构成一个两维的路径编码。如果有三路则可以构成一个三维的路径编码,更高维的编码可以以此类推。
同时,本方案还利用了非线性晶体参量下转换过程。即一束泵秿光照射在一块非线性晶体上(比如BBO晶体)会自发的劈裂成两束光,s光(信号光)和i光(闲散光)。这个过程保持动量守恒和能量守恒,根据对晶体不同的切割方式,会有不同的匹配角,所以s光和i光会沿着特定的方向产生。这样的两个光子可以认为是同时产生,可以利用符合仪进行测量。
下面结合具体实施例对本发明做详细说明。如图1所示,该方法主要包括如下步骤:
步骤11、设置一预定角度的半波片对输入的单偏振泵浦光进行偏振处理。
步骤12、利用一个或多个BD(光束平移器)对偏振处理后的单偏振泵浦光进行分束与平移处理,并利用一预定角度的半波片将经过BD处理后的水平偏振光H光处理为竖直偏振光V光。
步骤13、将所有V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成高维路径纠缠源的制备。
前述步骤11~步骤13为高维路径纠缠源制备的过程,其适用于二维路径以上纠缠源的制备,为了便于理解,下面以制备二维与三维路径纠缠源为例进行说明。
如图2所示,为制备二维路径纠缠源的示意图,其主要包括如下步骤:
1)设置一个22.5°的半波片对输入的H光或V光进行偏振处理,处理后的光为H光与V光的叠加,形成45°的线偏振光。
2)利用一个BD对H光与V光进行分束与平移处理;其中,H光沿着之前的方向传播,V光则向下平移一段距离,并利用一个45°的半波片将H光处理为V光。
一般BD都由双折射晶体做成,其作用是将一束入射光分成平行的H光和V光,如图3所示,H光沿着不变的方向传播,V光向下平移一段距离。
3)两路V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成二维路径纠缠源的制备。
本示例中,非线性晶体可以为I型的BBO晶体;这两束V光射入I型的BBO晶体后会在以光线为中轴3°角的锥面产生参量光,由一个泵浦光劈裂开的s光和i光角动量守恒,每对光子出现在圆锥对称的方向上,在实际的应用中一般收集水平方向上对称的两光子做成参量光源。现在有两束V光光入射到BBO晶体上如图2会在以两束光为中心3°角的圆锥面产生参量光,偏振均为H光,此时二维的路径纠缠源就制备成功。
如果以1,2路H光为第一个路径qubit(如果1路有光子2路没有光子编码为0,如果1路没有光子2路有光子编码为1),3,4路H光为第二个路径qubit(编码使用与1、2路相同的规则)。
此时产生的纠缠态为:
|ψ>=a|00>±be|11>);
其中,a和be是量子态中的几率幅;两项中间的位相是依据实际使用中测量装置而定,可以任意调节。因为在产生的过程中无法观察到路径高维纠缠的相位,因此只能在测量的时候体现出来,通过微调测量BD的角度就可以调节中间的相位。
如图4所示,为制备三维路径纠缠源的示意图,其主要包括如下步骤:
1)设置一个17.6°的半波片对输入的H光进行偏振处理,处理后的光为H光与V光的叠加。
2)利用BD1对H光与V光进行分束与平移处理,其中,H光沿着原来的方向传播,V光则向下平移一定的距离。
3)并分别利用0°与22.5°的半波片对从BD1射出的H光与V光进行偏振处理;其中,上方的H光经过0°半波片后,依然为H光,而下方的V光经过22.5°半波片后变为H光与V光的叠加。
4)利用BD2对于偏振处理后的光进行分束与平移处理;其中,上方的H光保持之前的方向传播,下方的H光与V光分束后,H光保持之前的方向传播,V光则向下平移一段距离,则BD2射出的光自上向下排布为H光、H光及V光。
5)分别对应的利用45°、45°与0°的半波片对从BD2射出光进行偏振处理,变成自上向下排布的三束V光。
6)这三束V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成三维路径纠缠源的制备。
此时会产生的六路参量光其分布和原理与二维路径纠缠源的类似,利用0,1,2进行编码,其纠缠态为:
| ψ > = 1 2 ( | 00 > ± | 11 > ± | 22 > )
依据相同的原理,就可以更高维的纠缠制备出来,比如四维纠缠态利用0,1,2,3进行编码,其纠缠态为:
| ψ > = 1 2 ( | 00 > ± | 11 > ± | 22 > ± | 33 > ) .
上述高维路径纠缠源制备时,BD与BD之间、半波片与半波片之间,以及BD与半波片之间均为平行放置。
另外,本方案不仅可制备出最大纠缠态,还可以依据比例制备出其他形式的纠缠态,如果改变输入光的的分光比例就可以得到不同的纠缠态。以二维纠缠为例,如果把两束泵浦光的分光比设计为2:1的话,造出的纠缠态即为:
1 3 | 00 > + 2 3 | 11 > ;
通过这种方法可以使其产生任意这种形式的纠缠态:
|ψ>=a|00>±be|11>);
同样的再高维的也可以类似的形式产生。
另一方面,维度增加的方式除了利用BD竖直方向将泵浦分开之外也可以使用BD水平分束,这样的话就可以将泵浦光分成多行多列的功率相等的阵列,有多少束泵浦光入射到BBO晶体,就可以产生多少维的纠缠源。需要说明的,如果使用水平分束的,则为了使同一光子对的光程保持一致,需要进行补偿。
步骤14、利用BD对高维路径纠缠源中的光进行转换,并进行态层析,从而判断高维路径纠缠源的保真度。
本步骤可通过现有的常规方法实现,以二维路径纠缠源的保真度判断方法为例,其具体步骤如下:
1)每一V光所产生的两路参量光均在实验室水平面内与泵浦光成3°角,不同的泵浦光产生的参量光竖直排列,将相邻V光的参量光单独引出;其中,参量光均为H光;
2)引出的参量光呈上下排布,利用45°的半波片将上方的H光处理为V光;
3)上方的V光与下方的H光射入BD后,下方的H光保持之前的方向传播,V光则向下平移一段距离且与H光合并为一束光射出,实现路径编码至偏振编码的转换;
4)转换后的光,依次射入四分之一波片、半波片、偏振分束器及单光子探测器,进行态层析,从而判断高维路径纠缠源的保真度。
示例性的,以前述制备的二维路径纠缠源为例,判断二维路径纠缠源的保真度的示意图如图5所示。将图2中的光源的1,2路单独引出,制作测量基,在上路中加入一个半波片置于45°,使得上路的H光变为V光,再经过一个BD将两束光合并,从而就将原来的路径编码转化成了偏振编码,其中,路径编码中的0对应偏振编码中的V,路径编码中的1对应于偏振编码中的H,确定偏振编码的纠缠就可以确定路径编码的纠缠,之后再加入四分之一波片(QWP),半波片(HWP)、偏振分束器(PBS)以及单光子探测器(D)这样就构成了一个对单qubit基的测量装置,再依据态层析的方法,从而判断二维路径纠缠源的保真度。
判断三维路径纠缠源的保真度的方式类似,如图6所示。
利用图5中最后的测量装置测量,16组基分别是:
HH  HV  VV  VH  RH  RV  DV  DH
DR  DD  RD  HD  VD  VL  HL  RL
其中,H光代表的水平偏振光基,V代表的是竖直偏振光,R代表左旋光基(H+iV),D代表45°线偏振基(H+V),L代表右旋光基(H-iV),这样就可以把测量路径纠缠的问题转换成测量偏振纠缠的层析技术;而现在的偏振层析技术已经很成熟。
需要强调的是,对于BBO晶体来说,不同的光入射产生的光也是不同的,本实施例上述方案中,BBO晶体、BD与半波片均为平行设置,因此,BBO晶体只对V光响应,当V光入射时会产生两个H光的参量光,当H光入射时就不会产生参量光。但是,本实施例中的H光和V光是相对于实验室坐标的定义,相对于晶体来说,当将上述的BBO晶体旋转90°,这时晶体感受到的光的偏振方向发生了改变,这时只对H光响应产生两束V光的参量光。所以本方案的可以任意改变泵浦光的偏振,需要BBO晶体光轴进行响应的调整。
本发明实施例的上述方案,利用半波片与BD将射入的单偏振泵浦光分成等能量的V光,经过非线性晶体的V光会产生两束参量光,该方案相较于传统使用光子角动量实现的高维纠缠而言,具有成本低,易于调节与实现,可以广泛使用于需要高维纠缠的情况下;同时,该方案可以有效的扩展到很高的维度,并且可以得到保真度很高的纠缠态。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种高维路径纠缠源的制备及判断方法,其特征在于,包括:
设置一预定角度的半波片对输入的单偏振泵浦光进行偏振处理;
利用一个或多个光束平移器BD对偏振处理后的单偏振泵浦光进行分束与平移处理,并利用一预定角度的半波片将经过BD处理后的水平偏振光H光处理为竖直偏振光V光;
将所有V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成高维路径纠缠源的制备;
利用BD对高维路径纠缠源中的光进行转换,并进行态层析,从而判断高维路径纠缠源的保真度。
2.根据权利要求1所述的方法,其特征在于,进行二维路径纠缠源制备的步骤包括:
设置一个22.5°的半波片对输入的H光或V光进行偏振处理,处理后的光为H光与V光的叠加,形成45°的线偏振光;
利用一个BD对H光与V光进行分束与平移处理;其中,H光沿着之前的方向传播,V光则向下平移一段距离,并利用一个45°的半波片将H光处理为V光;
两路V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成二维路径纠缠源的制备。
3.根据权利要求1所述的方法,其特征在于,进行三维路径纠缠源制备的步骤包括:
设置一个17.6°的半波片对输入的H光进行偏振处理,处理后的光为H光与V光的叠加;
利用BD1对H光与V光进行分束与平移处理,其中,H光沿着之前的方向传播,V光则向下平移一段距离;
并分别利用0°与22.5°的半波片对从BD1射出的H光与V光进行偏振处理;其中,上方的H光经过0°半波片后,依然为H光,而下方的V光经过22.5°半波片后变为H光与V光的叠加;
利用BD2对于偏振处理后的光进行分束与平移处理;其中,上方的H光保持之前的方向传播,下方的H光与V光分束后,H光保持之前的方向传播,V光则向下平移一段距离,则BD2射出的光自上向下排布为H光、H光及V光;
分别对应的利用45°、45°与0°的半波片对从BD2射出光进行偏振处理,变成自上向下排布的三束V光;
这三束V光射入预先设置的非线性晶体中,每一射入的V光均产生两路参量光,从而完成三维路径纠缠源的制备。
4.根据权利要求1-3任一项所述的方法,其特征在于,高维路径纠缠源制备时,BD与BD之间、半波片与半波片之间,以及BD与半波片之间均为平行放置。
5.根据权利要求1-3任一项所述的方法,其特征在于,所述利用BD对高维路径纠缠源中的光进行转换,并进行态层析,从而判断高维路径纠缠源的保真度包括:
对于二维路径纠缠源,每一V光所产生的两路参量光均在实验室水平面内与泵浦光成3°角,不同的泵浦光产生的参量光竖直排列,将相邻V光所产生的参量光单独引出;其中,参量光均为H光;
引出的参量光呈上下排布,利用45°的半波片将上方的H光处理为V光;
上方的V光与下方的H光射入BD后,下方的H光保持之前的方向传播,V光则向下平移一段距离且与H光合并为一束光射出,实现路径编码至偏振编码的转换;
转换后的光,依次射入四分之一波片、半波片、偏振分束器及单光子探测器,进行态层析,从而判断高维路径纠缠源的保真度。
CN201510455943.8A 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法 Active CN104965374B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811579533.4A CN109683423B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法
CN201510455943.8A CN104965374B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510455943.8A CN104965374B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201811579533.4A Division CN109683423B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法

Publications (2)

Publication Number Publication Date
CN104965374A true CN104965374A (zh) 2015-10-07
CN104965374B CN104965374B (zh) 2020-10-27

Family

ID=54219413

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510455943.8A Active CN104965374B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法
CN201811579533.4A Active CN109683423B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201811579533.4A Active CN109683423B (zh) 2015-07-28 2015-07-28 高维路径纠缠源的制备及判断方法

Country Status (1)

Country Link
CN (2) CN104965374B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658634A (zh) * 2019-08-28 2020-01-07 西安空间无线电技术研究所 连续变量偏振与轨道角动量混合纠缠的处理系统和方法
CN111147154A (zh) * 2019-12-24 2020-05-12 北方工业大学 基于不同维度量子中继器的多单播网络编码方法
WO2020143927A1 (en) * 2019-01-09 2020-07-16 Österreichische Akademie der Wissenschaften Source for high-dimensional entangled photon pairs
CN111487784A (zh) * 2019-05-29 2020-08-04 南京大学 一种窄带偏振纠缠源制备装置
CN111624830A (zh) * 2020-05-11 2020-09-04 南京大学 一种高维量子纠缠光源光学系统
CN111880351A (zh) * 2020-08-14 2020-11-03 山东大学 一种任意维度可提纯纠缠态的制备装置及制备方法
CN111880352A (zh) * 2020-08-14 2020-11-03 山东大学 一种任意维度Werner态的制备装置及制备方法
CN112882260A (zh) * 2021-03-18 2021-06-01 南京邮电大学 一种偏振、空间、时间片段三自由度超纠缠的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379558B (zh) * 2020-11-23 2022-07-08 南京邮电大学 一种制备三个自由度超纠缠源的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114464A (ja) * 2005-10-20 2007-05-10 Tohoku Univ 偏光もつれ光子対発生デバイス
JP2008216369A (ja) * 2007-02-28 2008-09-18 Japan Science & Technology Agency 量子もつれ光子対生成装置及び量子もつれ光子対生成方法
CN101495907A (zh) * 2006-07-27 2009-07-29 惠普开发有限公司 产生极化纠缠光子的紧凑系统
US20100232279A1 (en) * 2007-06-28 2010-09-16 Kabushiki Kaisha Toshiba Optical retrieval system, data storage system, data storage medium and method of optical retrieval and data storage
CN104410464A (zh) * 2014-11-28 2015-03-11 华南师范大学 一种自旋-轨道角动量混合纠缠态的产生系统及方法
JP2015114539A (ja) * 2013-12-12 2015-06-22 沖電気工業株式会社 光源装置、並びに相関光子対発生装置、偏光量子もつれ光子対発生装置、及び時間位置量子もつれ光子対発生装置
CN104914589A (zh) * 2015-06-29 2015-09-16 中国科学技术大学 一种单色光可调比例偏振无关分束器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752944A (zh) * 2015-04-07 2015-07-01 中国科学技术大学 一种窄线宽高维度量子纠缠光源产生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114464A (ja) * 2005-10-20 2007-05-10 Tohoku Univ 偏光もつれ光子対発生デバイス
CN101495907A (zh) * 2006-07-27 2009-07-29 惠普开发有限公司 产生极化纠缠光子的紧凑系统
JP2008216369A (ja) * 2007-02-28 2008-09-18 Japan Science & Technology Agency 量子もつれ光子対生成装置及び量子もつれ光子対生成方法
US20100232279A1 (en) * 2007-06-28 2010-09-16 Kabushiki Kaisha Toshiba Optical retrieval system, data storage system, data storage medium and method of optical retrieval and data storage
JP2015114539A (ja) * 2013-12-12 2015-06-22 沖電気工業株式会社 光源装置、並びに相関光子対発生装置、偏光量子もつれ光子対発生装置、及び時間位置量子もつれ光子対発生装置
CN104410464A (zh) * 2014-11-28 2015-03-11 华南师范大学 一种自旋-轨道角动量混合纠缠态的产生系统及方法
CN104914589A (zh) * 2015-06-29 2015-09-16 中国科学技术大学 一种单色光可调比例偏振无关分束器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.L.OBRIEN等: "Demonstration of an all-optical quantum controlled-NOT gate", 《NATURE》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143927A1 (en) * 2019-01-09 2020-07-16 Österreichische Akademie der Wissenschaften Source for high-dimensional entangled photon pairs
CN111487784B (zh) * 2019-05-29 2021-06-15 南京大学 一种窄带偏振纠缠源制备装置
CN111487784A (zh) * 2019-05-29 2020-08-04 南京大学 一种窄带偏振纠缠源制备装置
CN110658634A (zh) * 2019-08-28 2020-01-07 西安空间无线电技术研究所 连续变量偏振与轨道角动量混合纠缠的处理系统和方法
CN110658634B (zh) * 2019-08-28 2021-10-01 西安空间无线电技术研究所 连续变量偏振与轨道角动量混合纠缠的处理系统和方法
CN111147154A (zh) * 2019-12-24 2020-05-12 北方工业大学 基于不同维度量子中继器的多单播网络编码方法
CN111147154B (zh) * 2019-12-24 2021-03-30 北方工业大学 基于不同维度量子中继器的多单播网络编码方法
CN111624830A (zh) * 2020-05-11 2020-09-04 南京大学 一种高维量子纠缠光源光学系统
CN111624830B (zh) * 2020-05-11 2021-08-27 南京大学 一种高维量子纠缠光源光学系统
CN111880351A (zh) * 2020-08-14 2020-11-03 山东大学 一种任意维度可提纯纠缠态的制备装置及制备方法
CN111880352A (zh) * 2020-08-14 2020-11-03 山东大学 一种任意维度Werner态的制备装置及制备方法
CN111880352B (zh) * 2020-08-14 2021-07-09 山东大学 一种任意维度Werner态的制备装置及制备方法
CN111880351B (zh) * 2020-08-14 2021-09-03 山东大学 一种任意维度可提纯纠缠态的制备装置及制备方法
CN112882260A (zh) * 2021-03-18 2021-06-01 南京邮电大学 一种偏振、空间、时间片段三自由度超纠缠的制备方法

Also Published As

Publication number Publication date
CN109683423A (zh) 2019-04-26
CN104965374B (zh) 2020-10-27
CN109683423B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN104965374A (zh) 高维路径纠缠源的制备及判断方法
Hu et al. Efficient generation of high-dimensional entanglement through multipath down-conversion
Sansoni et al. Two-particle bosonic-fermionic quantum walk via integrated photonics
Fickler et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information
Nisbet-Jones et al. Photonic qubits, qutrits and ququads accurately prepared and delivered on demand
Wang et al. Experimental ten-photon entanglement
Barkhofen et al. Measuring topological invariants in disordered discrete-time quantum walks
Vallone et al. Hyperentanglement of two photons in three degrees of freedom
Madsen et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity
Xue et al. Experimental quantum-walk revival with a time-dependent coin
CN110198189B (zh) 基于芯片集成光路的高维复用量子通信方法、系统及存储介质
Nitsche et al. Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer
US20060163465A1 (en) Quantum state transfer between matter and light
He et al. Order-controllable cylindrical vector vortex beam generation by using spatial light modulator and cascaded metasurfaces
CN107045247B (zh) 一种窄线宽高维度纠缠光子源产生系统
CN105406962B (zh) 多用户轨道角动量波分复用qkd网络系统及其密钥分发方法
Dada et al. Indistinguishable single photons with flexible electronic triggering
Zeilinger et al. Information transfer with two-state two-particle quantum systems
CN107124227A (zh) 基于光注入的cv‑qkd系统以及发送端、接收端和cv‑qkd方法
Li et al. Higher-order topological biphoton corner states in two-dimensional photonic lattices
Pont et al. High-fidelity generation of four-photon GHZ states on-chip
Chen et al. Single-photon Bell state measurement based on a quantum random walk
Li et al. Direct measurement of density-matrix elements with a phase-shifting technique on a quantum photonic chip
Yan et al. Experimental implementation of precisely tailored light-matter interaction via inverse engineering
Liu et al. Modes coded modulation of vector light beams using spatial phase cross-polarized modulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant