CN104955978A - 用于在基材上制备单一介电层和/或阻挡层或多层的方法以及用于实施所述方法的装置 - Google Patents

用于在基材上制备单一介电层和/或阻挡层或多层的方法以及用于实施所述方法的装置 Download PDF

Info

Publication number
CN104955978A
CN104955978A CN201380062194.1A CN201380062194A CN104955978A CN 104955978 A CN104955978 A CN 104955978A CN 201380062194 A CN201380062194 A CN 201380062194A CN 104955978 A CN104955978 A CN 104955978A
Authority
CN
China
Prior art keywords
base material
layer
multilayer
dielectric layer
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380062194.1A
Other languages
English (en)
Inventor
豪尔赫·希尔罗斯彻
维克特·里科加维拉
弗朗西斯科·尤贝罗巴伦西亚
胡安·佩德罗·埃斯皮诺斯曼索罗
阿古斯丁·罗德里格斯冈萨雷斯-埃莉佩
埃米利奥·桑切斯科尔特宗
何塞·玛丽亚·德尔加多桑切斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A Benge Solar Solutions LLC
Abengoa Solar New Technologies SA
Original Assignee
A Benge Solar Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Benge Solar Solutions LLC filed Critical A Benge Solar Solutions LLC
Publication of CN104955978A publication Critical patent/CN104955978A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3473Composition uniformity or desired gradient
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02145Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing aluminium, e.g. AlSiOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3323Problems associated with coating uniformity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及在基材上制备介电层和/或阻挡层的方法,其特征在于包括下列阶段:(a)清洁基材,(b)将所述基材置于样品架上,并将其导入到真空仓室中,(c)在所述真空仓室中计量投入惰性气体和反应性气体,(d)在所述真空仓室中注入具有待沉积化合物的至少一种阳离子的挥发性前体,(e)激活射频源并激活至少一个磁控管,(f)使用等离子体分解所述挥发性前体,在所述挥发性前体的阳离子与所述反应性气体之间的反应,发生在所述等离子体中包含的反应性气体与通过阴离子溅射来自于靶的阳离子之间的反应发生的同时,由此导致薄膜沉积在所述基材上。本发明还涉及用于执行所述方法的装置。

Description

用于在基材上制备单一介电层和/或阻挡层或多层的方法以及用于实施所述方法的装置
技术领域
本发明属于制备具有阻挡层/介电层效应并具有各种广泛用途的薄膜的领域。所提出的发明特别可以用于微电子和光电子行业中,主要是在大面积器件的制造中。在光电子领域中,可以在金属基材上的薄膜光伏太阳能模块的设计和制造中发现本发明的运用的明显例证,其中单片集成的概念被付诸实施用于太阳能电池的互连,并且其中另外还起到扩散阻挡层作用的薄介电层的开发是绝对必要的。
总的来说,本发明可用于必需利用发挥电绝缘和扩散阻挡层功能的中间层将两种金属电绝缘的电子器件中。
背景技术
用于电绝缘金属基材或半导体的介电层和阻挡层的开发是极为重要的问题,其决定了尺寸更小的电子线路的开发,以及在另一个层面上,决定了在这些类型的材料上的光电子应用的工业开发这两者。在这种意义上,典型的情况是基于在金属基材上生长的薄膜的光伏模块的开发。事实上,目前不存在利用单片集成技术将太阳能电池互连的金属基材上的薄膜商品化光伏模块。其原因之一是缺少实现电池后电极的金属基材的有效绝缘的介电材料。在这些情况下,由于在金属基材与所述电池的后电极之间发生短路,不能在金属基材上制造单片集成。作为单片集成的可替选方案,利用被称为“分接(tapping)”的常规方法的电池连接方法被使用,其中通过焊接两个电池来制造接触,利用电导体将两者的正极和负极相连。然而,这种方法没有利用模块的有效面积;在美观方面它限制了产品进入建筑市场,并且没有将产品与常规的硅技术区分开,此外还涉及高成本。
目前现有的商业化产品是基于薄膜金属基材(通常为采取带形式的钢、钛或另外的可锻造金属),通常受到小厚度的金属层(例如,厚度在数十微米范围内的铬或其他金属)保护。引入所述层(阻挡层)是为了防止来自于基材的金属杂质向半导体扩散,并由于它们可以改变半导体的特征或简单地由于引起电子-空穴载荷子和/或对的重组的不想要的增加而改变半导体的性能。然而,这些金属层不具有防止电荷向金属基材迁移的任何电绝缘功能,因此不可能在模块中建立起电池的单片集成。在这些产品中,电池的互连通过常规的焊接方法例如单晶硅或多晶硅技术来进行,这暗示了由模块中有用面积较小而带来的缺点,同样地,模块中的功率较低(效率降低),生产速率较低,暗示了最终产品较高的销售成本,进而不能为BIPV(光伏建筑一体化)市场带来有吸引力的产品。
因此,薄金属层的作用是防止来自于基材的杂质扩散到半导体。然而,实现这种对抗化学元素的扩散的阻挡功能并同时具有防止绝缘击穿的有效电绝缘功能,要求使用在本质上介电的材料。此外,为了在实践中优化这种功能,可以证实这样的层需要其他难以获得并支撑本专利的基础的特点:具有致密微观结构的阻挡层和介电层,并且对于约几微米的厚度来说,不经历可以引起其脱层的机械应力过程。在例如包含金属基材的太阳能电池中,所述层的这些特征是必需的,因为这些层必须能够阻断载荷子从电池后电极通往金属基材的通路,即使是在其以峰、颗粒或对金属的固有粗糙性来说典型的其他要素为特征的区域中,在所述区域中,在局部范围内,电场的密度可能非常高。
绝缘击穿过程作为通过介电阻挡层的某些区域的高度局域化效应的结果而产生,在所述区域中,由于多种因素例如层的局部厚度的减小、作为某些互连的孔隙的结果而存在某些电学上有利的通路、杂质和/或OH基团或在氧化物的情形中被吸附的水分子的积累等,可以产生电子级联,其电刺穿所述材料并产生具有可忽略的电阻的永久性通路,其将金属基材连接到半导体。
为了减少这样的绝缘“击穿”的发生,考虑了几种策略:
●增加层的厚度:厚度越大,电荷到达金属基材的可能性越低,从而维持整体电绝缘,
●提高层的密度和适形性:微观结构越致密,载荷子发现便于其扩散的“开放通路”——不论是点缺陷(杂质)还是表面缺陷(晶界)——的可能性越低。基材的表面粗糙度的良好适形性将不仅使介电层具有防止绝缘击穿所必需的平均厚度,而且局部地,在基材的表面粗糙度的最显著要素的尖端或顶端上方,将获得防止其中的电场引起局部绝缘击穿所必需的最小厚度。
已尝试使用各种不同方法制备具有介电阻挡功能的层,包括湿式化学法(溶胶-凝胶等),以及执行在需要真空的环境中操作的加工技术的其他干式方法。在第一种情形(湿式化学法)中,使用的方法需要几个阶段和明显长的加工时间长度(反应、干燥、沉积、煅烧等),获得没有化学或微观结构缺陷(裂纹、脱层等)的几微米的层相当困难。此外,从它在主要利用真空沉积过程的工业过程中的一体化的观点来看,它们存在着需要分开的加工线的重要限制。
常用于阻挡层或介电层形成的其他技术是真空加工技术,其中可以发现使用一个或几个靶的溅射的物理气相沉积(PVD)以及化学气相沉积(CVD)。然而,这些技术的一些问题涉及下述事实,即不容易在合理的时间长度内获得大于1微米的层厚度,并且总的来说,它们不产生在粗糙导电基材上没有结构缺陷,能够确保高击穿电压的密实、适形的层。
在CVD技术中,等离子体增强化学气相沉积(PECVD)也被用于形成层或涂层。经典的PECVD技术由使用等离子体分解挥发性金属前体构成,取决于等离子体本身的本性,这诱导在基材上沉积一层氧化物、氮化物、氮氧化物、碳化物等。因此,它被用于其中良好的适形性和不能加热基材的品质是两个必不可少的要求的大量工业过程。应该指出,这种技术也可以在高于室温的基材温度下操作。PECVD的主要不便之处是设备的高投资(需要具有其自身源的仓室或特定系统、处理/附加沉积系统等)以及控制PECVD过程的复杂性。这种技术的另一个值得注意的不便之处是在非常厚的层的情形中,所使用的前体的量非常高,以及由此造成的环境影响。
另一方面,常用于大规模工业过程的溅射技术本身并不完全适合于制造阻挡层和介电层,这是由于它通常不防止局部缺陷的掺入,这是为在绝缘击穿中产生的电子级联产生特定通路的明显来源。因此,通过溅射制备的介电层通常需要非常高的厚度才能获得高效绝缘。在实践中,出于经济和时间原因并且因为如此厚的层具有脱层的强烈趋势,这种方法被预先排除。
由于目前现有的用于获得具有接近微米的厚度、适形、密实并且没有结构缺陷,使得它们最适且有效地执行其功能的阻挡层和/或介电层的技术的不方便性,因此本发明基于PECVD和PVD技术的组合,提出了一种用于开发介电层或多层、阻挡层和整平层的结构的过程,其解决了常规技术的不方便性问题。具有介电层允许基材的电绝缘,阻挡层防止化学元素从基材的扩散,并且被整平的事实意味着它消除或最小化了样品的表面形态缺陷的影响,屏蔽了基材的拓扑结构中波和峰的影响。由于通过本发明的过程沉积的层的最适特征,所述过程具有各种不同用途,包括正如前面提到的,在光电子领域和包含金属基材的太阳能电池的制造中的用途,因为它允许获得介电层,避免金属基材与太阳能电池后电极之间的电连通。此外,通过所宣称的过程获得的层允许防止化学元素从基材向半导体扩散,发挥整平效果,这防止基材的拓扑结构中的缺陷(峰和其他突起)对进行沉积的器件性能的不想要的影响。然而,这个过程也可以应用于在其中必须沉积阻挡层、介电层和/或整平层的非金属基材或非导体。
接下来是公开了涂层或其沉积过程的现有技术状态的一些文献的实例:
-专利US20100243047(A1):该文献公开了用作阻挡层以防止钠从(玻璃)基材扩散,通过掺入外部源来提供钠在模块中的含量的精确控制的层。
-“用于金属性基材上的CIGS太阳能电池的扩散阻挡层”(Diffusion barriers for CIGS solar cells on metallic substrates),K.Herz等,Thin Solid Films 431-432,392(2003)
-“覆盖有ZnO扩散阻挡层的不锈钢基材上的Cu(In,Ga)Se2太阳能电池”(Cu(In,Ga)Se2solar cells on stainless-steel substrates coveredwith ZnO diffusion barriers),C.Y.Shi等,Solar Energy Materials andSolar Cells,93(5),654(2009)
-“用于柔性CIGS太阳能模块的介电阻挡层”(Dielectric barriersfor flexible CIGS solar modules),K.Herz等,Thin Solid Films 403-404,382(2002).
-“柔性CIGS太阳能电池和模块的技术特点”(Technologicalaspects of flexible CIGS solar cells and modules),F Kessler等,SolarEnergy 77(6),685(2004)
在这些现有技术状态出版物中,被沉积的层用作阻挡层,但不是介电层。此外,它们不使用允许获得密实、适形并且在粗糙导体基材上没有结构缺陷、确保高击穿电压的阻挡层和/或介电层的本发明的组合过程。
发明内容
具有允许获得良好介电层功能的特征的阻挡层的沉积,要求所述层具有接近微米的厚度、致密(密实)以及在常规金属基材的粗糙表面上具有适形的微观结构。为了实现整个电池的更平坦的生长,表面拓扑结构的“整平”效应可能也是方便的。提出了薄的层或多层的沉积方法,以便通过基于等离子体的使用以同时通过已知技术PECVD和PVD(溅射)引起沉积的组合过程来获得这些特征。溅射过程是通过用高能离子轰击靶而使原子从被称为“靶”或“阴极”的固体材料气化的物理过程;用于溅射过程的离子从在溅射设备的内部产生的等离子体获得。PECVD技术如前所述,由利用等离子体从挥发性金属前体的分解构成,取决于等离子体本身的本性,这引起在基材上沉积一层氧化物、氮化物、碳化物等。将PECVD和PVD技术一起执行(两种等离子体源具有独立的控制),不仅实现了均匀单层的微观结构性质的改良,而且产生通过在不同过程条件下沉积几个层而形成的多层,因此适应于所使用的基材的所有可能的表面条件和拓扑结构。因此,本发明的用于在基材上获得单一阻挡层和/或介电层或多层的方法,包含同时使用从挥发性前体化合物和含有待沉积化合物的元素的至少一个阴极或靶的PVD(溅射)和PECVD沉积技术的至少一个阶段。
同时执行PVD和PECVD技术在基材上形成涂层或层,在单一真空仓室中进行,激活产生等离子体的至少一个磁控管,并将挥发性前体直接注入到等离子体区域中。另外,通过向基材施加RF(射频)极化,可以提高等离子体形成过程的有效性,进一步改进被沉积的层的特征,帮助其生长。通过磁控管的激活、基材的RF极化或通过磁控管和RF极化的组合作用,可以维持等离子体。在任一种情形中,产生的等离子体能够使PVD和PECVD过程同时产生。
如果挥发性前体没有被注入到仓室中并且如果相应的磁控管被激活,将只发生材料从靶或阴极的沉积(PVD过程),并且如果磁控管未被激活并且如果将挥发性前体注入到仓室中,将只发生材料从挥发性前体的沉积(PECVD过程)。
通过确定特定加工流程,实现关于适形性、厚度、沉积时间减少的标准的优化,以便获得临界厚度和绝缘击穿电压的提高。所述流程是指各种不同过程可以被组合的方式,也就是说,通过PVD或PECVD过程的适当组合,或通过两者同时的组合,并管理作为其他控制参数的基材温度以优化最终结构的绝缘击穿性质和机械稳定性,来获得多层。
用于沉积具有优化结构的介电多层的一种可能性由下述阶段构成:沉积第一适形层,其中选择PECVD过程,随后是PVD沉积和PECVD沉积的同时组合过程,这将提高沉积速度并产生略微不太均匀的层,但是在其中不产生纯粹PVD过程典型具有的不太密实的柱状结构,其不适合于防止绝缘击穿并且最后能够或不能使用纯粹PVD过程精整。执行所宣称的技术,这些过程或另一种不同过程的改变将是可能的,温度是优化组件性能的另一个过程参数。厚度、组成、PVD过程相对于PECVD的相对强度、不同层的顺序和数目、基材的温度等的变化,将是每种具体情况的可优化和可调整的变量。
应该指出,所宣称的过程允许用一种或几种金属元素沉积化合物层。在第一种情形中,要被等离子体分解的磁控管的靶和挥发性化合物两者含有相同金属元素。在第二种情形中,靶含有与挥发性前体不同的金属元素,使层具有不同金属元素。
包括同时执行PVD和PECVD技术来沉积一个或多个层的本发明的过程,包括下列阶段:
●清洁基材:这包括基材的清洗和干燥。清洗可以用水、水和丙酮、水和去污剂、有机溶剂,根据情况按照大量顺序来进行,并且可以通过采用超声浴来协助。
●将基材置于样品架或基材载体(它是基材被固定或放置在其上的底座)中,并将它插入到真空仓室中。如有必要,在将基材导入到进行PVD和PECVD过程的真空仓室中之前,可以将它们用氮气干燥。取决于基材的类型和尺寸,可以将它们固定或放置成与加热系统和RF场的施加系统直接接触,以便可以将它有效地施加到用于沉积层的表面。
●同时开始PECVD和PVD过程,为此,可以进行下列阶段:
-在真空仓室中注入具有待沉积化合物的至少一种阳离子的挥发性前体。计量投入到仓室中的挥发性前体的分压的典型但非限制性值在2×10-3毫巴左右,常见值在10-3至10-2毫巴之间。一般来说,前体的计量投入通过质量流量控制器或计量阀来进行。在希望获得混合组成层的情形中,过程也与两种或更多种挥发性前体的计量投入相容。取决于待沉积的化合物的金属元素,所使用的挥发性前体可以是有机金属化合物、氢化物、氯化物或其组合配方。
-在所述真空仓室中计量投入惰性气体和/或反应性气体。在所制备的层是氧化物的情形中通常使用氧气作为反应性气体,或者使用氮化物气体,以制备氮化物,或者使用其混合物,用于制备氮氧化物,例如氮氧化铝。取决于工作条件,可以仅使用反应性气体。其计量投入通常通过质量流量控制器来进行,典型而非限制性的分压值在3×10-3毫巴左右。这个惰性气体和/或反应性气体计量投入的阶段也可以在注入挥发性前体之前进行。
-激活连接到基材载体的射频源或与仓室偶联的外部等离子体源,并激活位于真空仓室内部的至少一个磁控管,所述磁控管被提供有含有待沉积化合物的金属元素的至少一个阴极或一个靶。这些用于激活射频源和激活至少一个磁控管的过程可以是同时或相继的。
-使用等离子体分解一种或多种挥发性前体,一种或多种挥发性前体与反应性气体等离子体之间的反应,发生在等离子体与来自于溅射靶的阳离子之间的相互作用发生的同时,由此导致薄膜沉积在基材上。
这种薄膜的组成,在前体和靶具有单一类型的金属元素的情形中可以是简单的,含有单一金属阳离子,或者在存在具有各种不同金属元素的超过一个靶和/或计量投入超过一种挥发性前体的情形中,可以是混合的。
在挥发性前体注入之前,应该将样品架或基材的固定系统的温度调整到约20℃的室温至500℃之间的范围内,其旋转速度为每分钟20转左右的值,在这种功能在沉积系统中执行的情况下,挥发性前体计量投入系统的温度、气体流速和工作压力,必须被调整。
在人们希望进行单独执行PECVD技术的初始沉积的情况下,将不激活提供有含有待沉积化合物的元素的阴极或靶的磁控管,然而,如果人们希望只通过PVD技术进行另一个阶段,将不向真空仓室注入挥发性前体。
通过关闭挥发性前体测量、关掉RF电源、关掉磁控管的电力供应、关闭工作气体入口、关掉样品架的加热和旋转,来停止所述过程。将样品保持在制备仓室中,直至实现足以避免热应力的相对冷却。约100℃的温度通常是足够的,但不是限制性的。一旦样品已冷却并且达到它们的热平衡,可以将它们从真空仓室取出。
考虑到在确定了在沉积过程中使用的温度后的热稳定性,可用于这个过程的基材可以是金属或非金属本性的,例如玻璃、聚合物、陶瓷材料、半导体等。
惰性工作气体通常为氩气、氦气或另一种等离子体激活气体例如氮气,并且反应性气体为氧气、氮气或其混合物。元素例如Si、Al等或化合物例如Si3Al2等,可以用作靶或阴极。
在希望在PVD过程中形成基于氧化硅的介电阻挡层的情形中,使用纯二氧化硅或轻微掺杂有铝的二氧化硅的靶,与工业靶的情形中相同(也可以使用氧化硅靶或氧化硅与氧化铝的混合物),并将硅挥发性前体用于PECVD过程。挥发性硅前体的实例是六甲基二硅氧烷(HMDSO)、四乙氧基硅(TEOS)、其他烷氧化物、氢化物、氯化物或烯丙基硅烷。所选的靶和所选的挥发性前体取决于待形成的层或多层的所需组成。因此,例如,可以具有氧化物例如硅(SiO2)、铝或混合氧化物例如来自于铝和硅的氧化物(AlSiO)的层或由不同组成的层形成的多层。
通过使用本发明的基于PVD和PECVD技术的同时和/或相继使用的过程,可以获得从100纳米到超过1微米的值的广范围内,并可能达到几微米的值的受控厚度的层。
层或多层的最小厚度的优化、与其机械应力相关的问题的抑制以及介电层的化学组成和厚度的独立控制,是所宣称的过程的其他优点。在层的沉积期间独立地控制和/或改变基材温度的能力,为优化最终多层结构的性能提供了另一个变量。
一般来说,在相等的厚度和组成下,当在通常高于200℃的高温下进行PECVD或组合过程时,获得较高的绝缘击穿值。因此,过程温度的选择将服务于这个判据以及沉积速率、温度依赖性应力、成本等对这个参数的依赖两者。
还应该指出,本文中宣称的过程的开发,从可工业化过程的观点来看也呈现出与沉积时间的减少和资源优化相关的几个优点,因为它与纯粹溅射过程中使用的相同PVD源相容,使得可以通过基材的直接RF(射频)极化来进行PECVD过程。面对使用其他等离子体源的明显选择,这种可能性将使过程的开发廉价和简化。
用于通过执行本发明的过程的沉积获得层或多层的装置包含真空仓室,其提供有由一个或几个真空泵构成的真空系统,所述真空泵允许在仓室内获得过程所需的真空;它还包含至少一个用于惰性气体的入口和另一个用于反应性气体的入口,以及至少一个用于挥发性前体的入口,沉积通过PECVD技术从所述挥发性前体发生。在仓室内部存在至少一个磁控管,其具有含有待沉积化合物的一种元素的靶或阴极,溅射或PVD过程从所述靶或阴极发生。在仓室内部还存在一个固持基材的样品架,所述样品架被连接到电源和温度控制器。样品架可以连接到RF源,所述RF源将产生和/或增强负责挥发性前体的分解的等离子体。等离子体源也可以偶联到仓室。因此,仓室集成了同时进行PVD和PECVD过程以在基材上形成层或多层所必需的要素。任选地,在仓室内部可以存在放置在样品架附近的测厚仪,以控制被沉积的层的厚度。
附图说明
图1.用于通过同时应用PVD和PECVD技术进行沉积过程的装置的示意图。
图2.具有按照本发明的实施例1中所描述的过程制备的二氧化硅(SiO2)层的横截面的SEM图像(扫描电子显微术)。
图3.在按照本发明的实施例1中所描述的过程制备的二氧化硅(SiO2)层的不同点处测量到的I_V(强度对电压)曲线,示出了在所有被分析的点中可忽略的电流泄漏。
图4示出了按照本发明的实施例2中描述的过程的阶段获得的层的横截面SEM显微照片。
图5对应于按照本发明的实施例2中描述的过程的阶段获得的层的击穿曲线I-V(电压对强度),其中可以看到击穿过程如何在35V左右的电压处发生。
图1中出现的数字指称是指下列元件:
1.-真空仓室
2.-射频源
3.-挥发性前体入口
4.-真空系统
5.-惰性气体入口
6.-反应性气体入口
7.-磁控管
8.-样品架
9.-基材
10.-被沉积的层
11.-测厚仪
12.-温度计
13.-用于加热器的电力输入
发明详述
图1示出了用于利用同时应用PVD和PECVD技术进行沉积过程的装置的示意图。正如可以看到的,所述装置包含提供有真空系统(4)的真空仓室(1),所述真空系统允许在仓室内部实现过程所必需的真空。它还包含惰性气体入口(5)和反应性气体入口(6)以及用于挥发性前体的入口(3)。在仓室内部存在至少一个磁控管(7),其具有含有待沉积化合物的金属元素的靶,并引起溅射或PVD过程。在仓室(1)内部还存在固持基材(9)的样品架(8),所述样品架(8)被连接到用于加热器的电力输入(13)和控制温度的温度计(12)。样品架被连接到射频源(2)。仓室还提供有用于被沉积的层或多层(10)的测厚仪(11)。
实施例1:
下面详细描述用于从置于磁控管的阴极上的硅靶在金属基材上沉积二氧化硅(SiO2)层的过程的实例(实施例1),其中所述过程包括执行PECVD技术的沉积阶段、同时执行PVD和PECVD技术的另一个沉积阶段以及应用PVD技术(溅射)的最终沉积阶段:
1.第一阶段由通过用水性相、有机溶剂或组合溶剂和超声清洗基材(9)来清洁它构成。它们是工业中金属基材上的涂层的标准预处理过程,并根据材料的类型和先前进行的形成和热处理过程充分描述。
2.将清洁和干燥的基材(9)置于旋转且可极化的直径为10cm的样品架(8)上,将其导入到真空仓室中。清洁通过RF等离子体中的离子轰击来进行,在不存在挥发性前体蒸气的情况下直接激活样品架。设置20sccm(立方厘米/分钟)的Ar流速和下列参数:仓室压力为5.0×10-3毫巴,基材温度为200℃,RF源功率为50W,250V直流电(DC-Bias)。这些条件的保持时间为20分钟。
3.通过PECVD技术,使用HMDSO作为Si的有机挥发性前体来沉积SiO2。为此,在设置下列参数后将挥发性前体注入到仓室中:
Ar流速为10sccm,O2流速为17.5sccm,HMDSO(Si的有机前体)流速为4sccm,仓室压力为5.0×10-3毫巴,基材温度为200℃,RF源功率为50W,直流电(DC-Bias)为250V。这些条件的保持时间为120分钟。
4.通过同时执行PECVD和PVD技术来沉积SiO2
维持前一阶段的条件,另外激活具有Si 3”靶的磁控管,参数设置如下:样品架至靶的距离为12cm,双极溅射电源为300W,频率为80KHz,以及2.5毫秒。在这些条件下的执行时间为350分钟。
5.通过执行PVD技术来沉积SiO2
挥发性前体的注入停止,并设置下列参数:Ar流速为40sccm,O2流速为4sccm,仓室压力为5.0×10-3毫巴,基材温度为200℃。
具有Si 3”靶的磁控管保持激活,维持前面在第4点中指明的磁控管源的参数。在这些条件下的执行时间为300分钟。
6.过程的结束:通过关闭RF源、关闭磁控管源、关闭工作气体入口和关闭样品架的加热和旋转来停止过程。
图2示出了按照前面在实施例1中所描述的过程阶段(按照前面的方案,通过PECVD沉积SiO2,然后是使用PECVD+PVD获得的SiO2,以及通过PVD技术沉积SiO2的最终阶段)获得的层的横截面SEM显微照片。这个厚度为2.4微米的层具有如图3中所证明的非常良好的电绝缘特性,图3是在0至40V范围内I-V(示出了强度对电压)曲线的统计分析,其中可以看出,在所有情况下,在被分析的整个电压范围内,电流小于10-13安培,由此证实了所制备的层的总绝缘特点。
实施例2:
下面详细描述为了在金属基材上沉积多层系统而遵从的过程的实例(实施例2),其中所述过程包括执行PECVD技术的SiO2沉积阶段、同时执行PVD和PECVD技术的另一个铝和硅的混合氧化物(AlxSiyOz)沉积阶段,以及执行PVD技术(溅射)的氧化铝(Al2O3)最终沉积阶段。
1.第一阶段由通过用水性相、有机或组合溶剂和超声清洗基材(9)来清洁它构成。它们是工业中金属基材上的涂层的标准预处理过程,并根据材料的类型和先前进行的形成和热处理过程充分描述。
2.将清洁和干燥的基材(9)置于旋转且可极化的直径为10cm的样品架(8)上,将其导入到真空仓室中。清洁通过RF等离子体中的离子轰击来进行,在不存在挥发性前体蒸气的情况下直接激活样品架。设置20sccm(立方厘米/分钟)的Ar流速和下列参数:仓室压力为5.0×10-3毫巴,基材温度为200℃,RF源功率为50W,250V直流电(DC-Bias)。这些条件的保持时间为20分钟。
3.通过PECVD技术,使用HMDSO作为Si的有机挥发性前体来沉积SiO2。为此,在设置下列参数后将挥发性前体注入到仓室中:
Ar流速为10sccm,O2流速为17.5sccm,HMDSO(Si的有机前体)流速为4sccm,仓室压力为5.0×10-3毫巴,基材温度为200℃,RF源功率为50W,直流电(DC-Bias)为250V。这些条件的保持时间为120分钟。
4.通过同时执行PECVD和PVD技术来沉积AlxSiyOz
维持前一阶段的条件,另外激活具有Al 3”靶的磁控管,参数设置如下:样品架至靶的距离为12cm,双极溅射电源为300W,频率为80KHz,以及2.5毫秒脉冲。在这些条件下的执行时间为480分钟。
5.通过执行PVD技术来沉积Al2O3
挥发性前体的注入停止,并设置下列参数:Ar流速为40sccm,O2流速为4sccm,仓室压力为5.0×10-3毫巴,基材温度为200℃。
具有Al 3”靶的磁控管保持激活,维持前面在第4点中指明的磁控管源的参数。在这些条件下的执行时间为300分钟。
6.过程的结束:通过关闭RF源、关闭磁控管源、关闭工作气体入口和关闭样品架的加热和旋转来停止过程。
正如前面提到的,图4示出了按照前面在实施例2中描述的过程阶段(通过PECVD沉积SiO2,然后是通过PECVD(SiO2)+PVD(Al2O3)获得的AlxSiyOz混合氧化物层,以及最终执行PVD技术沉积Al2O3)获得的2.5微米厚的层的横截面SEM显微照片。图5对应于这种样品的击穿曲线I-V,在其中可以看出击穿过程如何在35V左右的电压处发生。

Claims (14)

1.用于在基材上制备单一阻挡层和/或介电层或多层的方法,其特征在于包括下列阶段:
(a)通过清洗和干燥来清洁基材,
(b)将所述基材置于样品架上,并将它插入到真空仓室中,
(c)向所述真空仓室计量投入至少一种惰性气体和/或一种反应性气体,
(d)向所述真空仓室中注射具有待沉积化合物的至少一种阳离子的挥发性前体,其中所述注射使用质量流量控制器或计量阀来进行,
(e)激活连接到样品架的射频源以及激活位于所述真空仓室内部的至少一个磁控管,所述磁控管被提供有含有待沉积的金属元素化合物的至少一个阴极或一个靶,
(f)使用等离子体分解所述挥发性前体,在所述挥发性前体的阳离子与所述反应性气体之间的反应,发生在所述等离子体中包含的反应性气体与通过溅射来自于靶的阳离子之间的反应发生的同时,由此导致薄膜沉积在所述基材上。
2.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于所述基材是金属、玻璃、聚合物、陶瓷材料或半导体。
3.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于获得的阻挡层和/或介电层具有从100纳米至各种微米的厚度。
4.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于挥发性前体含有的金属元素的阳离子与所述靶或阴极含有的金属元素的阳离子不同。
5.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于所述挥发性前体含有的金属元素的阳离子与所述靶或阴极含有的金属元素的阳离子相同。
6.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其中使用六甲基二硅氧烷(HMDSO)作为挥发性前体化合物。
7.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其中所述阴极的靶由硅、铝或氧化硅和铝(AlSiO)构成。
8.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于所述反应性气体是氧气、氮气或二者的混合物。
9.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于所述惰性气体是氩气、氦气或氮气。
10.权利要求6的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于所述沉积的层由二氧化硅(SiO2)构成。
11.权利要求1的用于在基材上获得单一阻挡层和/或介电层或多层的方法,其特征在于在将所述基材放置在所述样品架上之后,将所述基材的温度设定到20℃的室温至500℃之间的温度。
12.通过权利要求1所述的方法获得的阻挡层和/或介电层或多层。
13.用于实施权利要求1的方法的装置,其特征在于所述装置包含真空仓室(1),所述仓室被提供有真空系统(4),惰性气体入口(5)和反应性气体入口(6),以及用于挥发性前体化合物的入口(3),由其产生PECVD沉积;在所述仓室(1)内部存在至少一个具有待沉积元素的靶或阴极的磁控管(7),由其产生PVD过程;所述装置在所述仓室(1)内还包含固持基材(9)的样品架(8),所述样品架(8)被连接到直流输入(13)、射频源(2)和控制温度的温度计(12)。
14.权利要求13的装置,其特征在于所述装置包含靠近所述样品架放置、用于被沉积的层(10)的测厚仪(11)。
CN201380062194.1A 2012-11-28 2013-11-27 用于在基材上制备单一介电层和/或阻挡层或多层的方法以及用于实施所述方法的装置 Pending CN104955978A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12380053.4A EP2738790A1 (en) 2012-11-28 2012-11-28 Procedure for preparing one single barrier and/or dielectric layer or multilayer on a substrate and device for the implementation thereof
EP12380053.4 2012-11-28
PCT/ES2013/000264 WO2014083218A1 (es) 2012-11-28 2013-11-27 Procedimiento para la preparación de una capa o multicapa barrera y/o dieléctrica sobre un sustrato y dispositivo para su realización

Publications (1)

Publication Number Publication Date
CN104955978A true CN104955978A (zh) 2015-09-30

Family

ID=47598652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380062194.1A Pending CN104955978A (zh) 2012-11-28 2013-11-27 用于在基材上制备单一介电层和/或阻挡层或多层的方法以及用于实施所述方法的装置

Country Status (6)

Country Link
US (1) US20150325418A1 (zh)
EP (1) EP2738790A1 (zh)
KR (1) KR20150099764A (zh)
CN (1) CN104955978A (zh)
ES (1) ES2542252B1 (zh)
WO (1) WO2014083218A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874154A (zh) * 2023-02-13 2023-03-31 广州粤芯半导体技术有限公司 半导体结构、芯片及其应用和膜层沉积方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101025A1 (de) * 2015-01-23 2016-07-28 Von Ardenne Gmbh Verfahren und Vorrichtung zur Abscheidung einer dotierten Metalloxidschicht
FR3045033B1 (fr) * 2015-12-09 2020-12-11 Saint Gobain Procede et installation pour l'obtention d'un vitrage colore
DE102017003042B3 (de) * 2017-03-29 2018-08-16 Rodenstock Gmbh Gradienten-Hartschicht mit sich änderndem E-Modul
FR3073865B1 (fr) * 2017-11-17 2022-05-27 Centre Nat Rech Scient Revetement pour recepteur solaire et dispositif comportant un tel revetement
FR3073864B1 (fr) * 2017-11-28 2022-08-05 Centre Nat Rech Scient Reacteur de depot de couches et procede de depot associe
CN115110048B (zh) * 2022-06-20 2023-05-02 肇庆市科润真空设备有限公司 基于磁控溅射的pecvd镀膜装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613393B1 (en) * 1998-05-30 2003-09-02 Robert Bosch Gmbh Method for applying a wear protection layer system having optical properties onto surfaces
US6841044B1 (en) * 2002-08-28 2005-01-11 Novellus Systems, Inc. Chemically-enhanced physical vapor deposition
CN102246293A (zh) * 2008-12-30 2011-11-16 国际商业机器公司 具有改进的电介质线路到过孔的抗电迁移性界面层的互连结构及其制造方法
EP2468915A1 (de) * 2010-12-22 2012-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abscheiden dielektrischer Schichten im Vakuum sowie Verwendung des Verfahrens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668365A (en) * 1984-10-25 1987-05-26 Applied Materials, Inc. Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US6176983B1 (en) * 1997-09-03 2001-01-23 Vlsi Technology, Inc. Methods of forming a semiconductor device
FR2922362B1 (fr) 2007-10-16 2009-12-18 Avancis Gmbh & Co Kg Perfectionnements apportes a un boitier de connexion pour elements capables de collecter de la lumiere.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613393B1 (en) * 1998-05-30 2003-09-02 Robert Bosch Gmbh Method for applying a wear protection layer system having optical properties onto surfaces
US6841044B1 (en) * 2002-08-28 2005-01-11 Novellus Systems, Inc. Chemically-enhanced physical vapor deposition
CN102246293A (zh) * 2008-12-30 2011-11-16 国际商业机器公司 具有改进的电介质线路到过孔的抗电迁移性界面层的互连结构及其制造方法
EP2468915A1 (de) * 2010-12-22 2012-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abscheiden dielektrischer Schichten im Vakuum sowie Verwendung des Verfahrens

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NING LI ET.AL: ""integrated model for chemically enhanced physical vapor deposition of tantalum nitride-based films"", 《JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B》 *
R.A.POWELL ET.AL: ""chemically enhanced physical vapor deposition of tantalum nitride-based films for ultra-large-scale integrated devices"", 《JOURAL OF VACUUM SCIENCE & TECHNOLOGY B》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874154A (zh) * 2023-02-13 2023-03-31 广州粤芯半导体技术有限公司 半导体结构、芯片及其应用和膜层沉积方法

Also Published As

Publication number Publication date
WO2014083218A1 (es) 2014-06-05
ES2542252R1 (es) 2015-08-17
ES2542252B1 (es) 2016-05-25
KR20150099764A (ko) 2015-09-01
US20150325418A1 (en) 2015-11-12
EP2738790A1 (en) 2014-06-04
ES2542252A2 (es) 2015-08-03

Similar Documents

Publication Publication Date Title
CN104955978A (zh) 用于在基材上制备单一介电层和/或阻挡层或多层的方法以及用于实施所述方法的装置
CN104919542B (zh) 透明导电性薄膜及其制造方法
Yuan et al. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum
Li et al. Influence of oxygen on the sputtering of aluminum oxide for the surface passivation of crystalline silicon
CN101164689A (zh) 纳米晶多孔TiO2薄膜及其制备方法
Galmiz et al. Deposition of Zn-containing films using atmospheric pressure plasma jet
Lee et al. UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature
CN102251216B (zh) 一种制备掺钨氧化钒薄膜的方法
CN101949006A (zh) 氮化铜薄膜、氮化铜/铜以及铜二维有序阵列的制备方法
CN101805891A (zh) 一种低温高速沉积氢化非晶氮化硅薄膜的方法
CN101805894B (zh) 一种低温下制备氢化纳米晶态碳化硅薄膜的方法
CN110061073A (zh) 一种晶硅太阳能电池及其制备方法
CN102002683B (zh) 一种含氢类金刚石膜的制备方法
CN102157262B (zh) 一种以Ta2O5薄膜为电介质膜的电容器制备方法
CN103866277B (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
Takenaka et al. High-rate deposition of silicon nitride thin films using plasma-assisted reactive sputter deposition
Chae et al. Ultrafast deposition of microcrystalline Si by thermal plasma chemical vapor deposition
CN103451612A (zh) 高k二氧化铪非晶薄膜的制备方法
Kaminski et al. High rate deposition of thin film CdTe solar cells by pulsed dc magnetron sputtering
CN101660132B (zh) 一种磁控溅射制备氢化硅碳薄膜的方法
Kaminski et al. Blistering of magnetron sputtered thin film CdTe devices
JP4813637B2 (ja) 薄膜多結晶シリコン及びシリコン系光電変換素子の製造方法
CN102140621A (zh) 一种致密复合二氧化钛薄膜的制备方法
Liu et al. Phosphorous Catalytic‐Doping of Silicon Alloys for the Use in Silicon Heterojunction Solar Cells
CN102779845A (zh) 一种叠层金属氧化物栅介质层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150930

WD01 Invention patent application deemed withdrawn after publication