CN104943995A - 自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法 - Google Patents

自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法 Download PDF

Info

Publication number
CN104943995A
CN104943995A CN201510332735.9A CN201510332735A CN104943995A CN 104943995 A CN104943995 A CN 104943995A CN 201510332735 A CN201510332735 A CN 201510332735A CN 104943995 A CN104943995 A CN 104943995A
Authority
CN
China
Prior art keywords
heating
temperature
coal sample
tank body
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510332735.9A
Other languages
English (en)
Other versions
CN104943995B (zh
Inventor
文虎
金永飞
刘文永
郭军
程方明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Jinchuang Ante Technology Co ltd
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201510332735.9A priority Critical patent/CN104943995B/zh
Publication of CN104943995A publication Critical patent/CN104943995A/zh
Application granted granted Critical
Publication of CN104943995B publication Critical patent/CN104943995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种自加热煤样罐,包括箱式罐体、罐盖、加热温度控制系统和气路,箱式罐体和罐盖均为双层结构,外层均由碳钢材料制成,内层均由耐火材料制成,箱式罐体的内侧壁上和内底面上均设置有加热丝,箱式罐体内下部设置有钢网,箱式罐体的内底面上固定连接有多根高温加热棒,高温加热棒的最高加热温度不低于1200℃;加热温度控制系统包括S型单铂铑热电偶、温控仪、第一可控硅和第二可控硅;气路包括进气管出气管;本发明还公开了一种利用自加热煤样罐进行煤自燃特性测试加热煤的方法。本发明能够实现煤样的均匀加热,能够有效提高煤自燃特性测试的精度,且能够用于进行高温阶段煤自燃特性研究,实用性强,使用效果好,便于推广使用。

Description

自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法
技术领域
本发明属于煤自燃特性测试技术领域,具体涉及一种自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法。
背景技术
我国大多数矿井存在煤自燃发火现象,一旦发生煤自燃火灾,就会造成煤炭资源损失,威胁矿工生命安全和煤矿的安全生产,造成巨大的经济损失。目前我国对煤自燃特性的测试,主要分为煤低温自然发火实验和煤低温程序升温实验。前者是将煤样装入实验台,靠其自身氧化放热模拟井下自然发火,模拟得较为真实,但是周期太长;后者是将煤样放入圆柱形煤样罐后,将煤样罐放入程序升温箱,对煤样人为加热,测试煤样燃烧特性,周期短,用煤量小。但是,由于煤的导热系数小,因此在实验过程中,实验装置中不同位置处的煤样温度差异较大,需要人工校正数据。而且,这两个实验装置都仅仅处于研究煤自燃的低温(200℃以下)阶段特性,无法进行高温阶段煤自燃特性研究。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种结构简单、设计合理、实现方便、能够实现煤样的均匀加热、能够有效提高煤自燃特性测试的精度的自加热煤样罐。
为解决上述技术问题,本发明采用的技术方案是:一种自加热煤样罐,其特征在于:包括箱式罐体、罐盖、加热温度控制系统和气路,所述罐盖通过螺栓连接在箱式罐体的顶部,所述箱式罐体和罐盖均为双层结构,所述箱式罐体和罐盖的外层均由碳钢材料制成,所述箱式罐体和罐盖的内层均由耐火材料制成,所述箱式罐体的内侧壁上和内底面上均设置有加热丝,所述箱式罐体内下部设置有用于托起煤样的钢网,所述钢网与箱式罐体内底面之间的空间为用于预热进气的气体缓冲区,所述钢网与罐盖之间的空间为用于放置煤样的炉膛,所述箱式罐体的内底面上固定连接有多根穿过钢网竖直向上设置的高温加热棒,所述高温加热棒的最高加热温度不低于1200℃;所述加热温度控制系统包括伸入箱式罐体内部且用于对箱式罐体内煤样的温度进行实时检测的S型单铂铑热电偶和与S型单铂铑热电偶连接的温控仪,所述温控仪上设置有温控面板和超温指示灯,所述温控仪的输出端接有用于对加热丝的通断电进行控制的第一可控硅和用于对高温加热棒的通断电进行控制的第二可控硅,所述第一可控硅串联在加热丝的供电回路中,所述第二可控硅串联在高温加热棒的供电回路中;所述气路包括设置在箱式罐体的侧壁上且伸入气体缓冲区中的进气管和设置在罐盖的几何中心位置处且伸入炉膛内的出气管。
上述的自加热煤样罐,其特征在于:所述自加热煤样罐的长度为400mm,所述自加热煤样罐的宽度为400mm,所述自加热煤样罐的高度为450mm;所述炉膛的长度为200mm,所述炉膛的宽度为200mm,所述炉膛的高度为200mm,所述钢网与箱式罐体内底面之间的距离为50mm。
上述的自加热煤样罐,其特征在于:所述耐火材料为陶瓷纤维。
上述的自加热煤样罐,其特征在于:所述高温加热棒的数量为九根,九根高温加热棒在炉膛内均匀布设。
上述的自加热煤样罐,其特征在于:所述钢网的密度为100~300目。
上述的自加热煤样罐,其特征在于:所述进气管和出气管均由耐腐蚀特种钢材制成,所述进气管和出气管的管径均为10mm,所述进气管与箱式罐体的侧壁螺纹连接,所述出气管与罐盖螺纹连接。
本发明还提供了一种方法步骤简单、实现方便、能够用于进行高温阶段煤自燃特性研究、实用性强的利用自加热煤样罐进行煤自燃特性测试加热煤的方法,其特征在于该方法包括以下步骤:
步骤一、将破碎、筛分好的煤样装入箱式罐体中,并用螺栓将罐盖连接在箱式罐体的顶部;
步骤二、将进气管连接到气源的出气口,将出气管连接到气相色谱分析仪的进样管;并检查所述自加热煤样罐的气密性,保证密封效果;
步骤三、连接好所述加热温度控制系统后,操作温控仪的温控面板,设定加热温度的上限值,然后,温控仪通过第一可控硅控制加热丝开始加热,并通过第二可控硅控制高温加热棒开始加热;
步骤四、煤样加热过程中,S型单铂铑热电偶对箱式罐体内煤样的温度进行实时检测并将检测到的温度实测信号实时输出给温控仪,温控仪将温度实测信号与加热温度的上限值相比对,当温度实测信号高于加热温度的上限值时,温控仪通过第一可控硅控制加热丝停止加热,并通过第二可控硅控制高温加热棒停止加热;同时,温控仪记录煤样的十倍数温度点,气相色谱分析仪在煤样的十倍数温度点到来时检测出气管输出的气体组分并记录。
上述的方法,其特征在于:步骤三中设定的加热温度的上限值为1000℃。
本发明与现有技术相比具有以下优点:
1、本发明自加热煤样罐的结构简单,设计合理,实现方便。
2、本发明将炉膛设计为正方体,并在箱式罐体的内侧壁上和内底面上均设置加热丝,并将多根高温加热棒均匀布设在炉膛内,减小了不同位置煤样的温差,能够有效提高煤自燃特性测试的精度。
3、本发明能够将煤自燃程序升温实验的温度提高到1000℃,能够更加真实地反映煤自燃高温条件下的反应情况。
4、本发明加热温度控制系统的设计新颖合理,使用操作方便,能够实现煤样温度的自动巡检和控制,能够使炉膛内气氛温度的控制更加智能化,精确度更高。
5、利用本发明的自加热煤样罐进行煤自燃特性测试加热煤的方法步骤简单,实现方便。
6、本发明能够解决煤自燃特性测试实验过程中煤样温度不均匀的问题,提高了实验精度,且能够测试高温阶段煤自燃的各种特性参数,基于此进行高温阶段煤自燃特性研究,实用性强,使用效果好,便于推广使用。
综上所述,本发明设计合理,实现方便,能够实现煤样的均匀加热,能够有效提高煤自燃特性测试的精度,且能够用于进行高温阶段煤自燃特性研究,实用性强,使用效果好,便于推广使用。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明自加热煤样罐的主视图。
图2为图1的俯视图。
附图标记说明:
1—箱式罐体;     2—罐盖;         3—螺栓;
4—钢网;         5—气体缓冲区;   6—炉膛;
7—煤样;         8—高温加热棒;   9—S型单铂铑热电偶;
10—温控仪;      11—第一可控硅;  12—加热丝;
13—第二可控硅;  14—进气管;      15—出气管。
具体实施方式
如图1和图2所示,本发明的自加热煤样罐,包括箱式罐体1、罐盖2、加热温度控制系统和气路,所述罐盖2通过螺栓3连接在箱式罐体1的顶部,所述箱式罐体1和罐盖2均为双层结构,所述箱式罐体1和罐盖2的外层均由碳钢材料制成,所述箱式罐体1和罐盖2的内层均由耐火材料制成,所述箱式罐体1的内侧壁上和内底面上均设置有加热丝12,所述箱式罐体1内下部设置有用于托起煤样7的钢网4,所述钢网4与箱式罐体1内底面之间的空间为用于预热进气的气体缓冲区5,所述钢网4与罐盖2之间的空间为用于放置煤样7的炉膛6,所述箱式罐体1的内底面上固定连接有多根穿过钢网4竖直向上设置的高温加热棒8,所述高温加热棒8的最高加热温度不低于1200℃;所述加热温度控制系统包括伸入箱式罐体1内部且用于对箱式罐体1内煤样7的温度进行实时检测的S型单铂铑热电偶9和与S型单铂铑热电偶9连接的温控仪10,所述温控仪10上设置有温控面板和超温指示灯,所述温控仪10的输出端接有用于对加热丝12的通断电进行控制的第一可控硅11和用于对高温加热棒8的通断电进行控制的第二可控硅13,所述第一可控硅11串联在加热丝12的供电回路中,所述第二可控硅13串联在高温加热棒8的供电回路中;所述气路包括设置在箱式罐体1的侧壁上且伸入气体缓冲区5中的进气管14和设置在罐盖2的几何中心位置处且伸入炉膛6内的出气管15。
本实施例中,所述自加热煤样罐的长度为400mm,所述自加热煤样罐的宽度为400mm,所述自加热煤样罐的高度为450mm;所述炉膛6的长度为200mm,所述炉膛6的宽度为200mm,所述炉膛6的高度为200mm,所述钢网4与箱式罐体1内底面之间的距离为50mm。所述耐火材料为陶瓷纤维。具体实施时,所述箱式罐体1采用焊接工艺制造。
本实施例中,所述高温加热棒8的数量为九根,九根高温加热棒8在炉膛6内均匀布设。具体实施时,所述高温加热棒8的升温速度为1℃/min~20℃/min,所述高温加热棒8的温度稳定性为±1℃。
本实施例中,所述钢网4的密度为100~300目,优选为200目。具体实施时,所述钢网4需要耐1200℃高温。
本实施例中,所述进气管14和出气管15均由耐腐蚀特种钢材制成,所述进气管14和出气管15的管径均为10mm,所述进气管14与箱式罐体1的侧壁螺纹连接,所述出气管15与罐盖2螺纹连接。通过螺纹连接的方式连接进气管14与箱式罐体1,以及出气管15与罐盖2,方便了进气管14和出气管15的更换和维修。
本发明的利用自加热煤样罐进行煤自燃特性测试加热煤的方法,包括以下步骤:
步骤一、将破碎、筛分好的煤样7装入箱式罐体1中,并用螺栓3将罐盖2连接在箱式罐体1的顶部;
步骤二、将进气管14连接到气源的出气口,将出气管15连接到气相色谱分析仪的进样管;并检查所述自加热煤样罐的气密性,保证密封效果;
本实施例中,步骤三中设定的加热温度的上限值为1000℃。
步骤三、连接好所述加热温度控制系统后,操作温控仪10的温控面板,设定加热温度的上限值,然后,温控仪10通过第一可控硅11控制加热丝12开始加热,并通过第二可控硅13控制高温加热棒8开始加热;
步骤四、煤样7加热过程中,S型单铂铑热电偶9对箱式罐体1内煤样7的温度进行实时检测并将检测到的温度实测信号实时输出给温控仪10,温控仪10将温度实测信号与加热温度的上限值相比对,当温度实测信号高于加热温度的上限值时,温控仪10通过第一可控硅11控制加热丝12停止加热,并通过第二可控硅13控制高温加热棒8停止加热;同时,温控仪10记录煤样7的十倍数温度点,气相色谱分析仪在煤样7的十倍数温度点到来时检测出气管15输出的气体组分并记录。这样,在煤样7加热结束后,相关工作人员就能够记录的各十倍数温度点处的气体组分来判断煤样7的燃烧情况,并建立相关的煤自燃模型,指导煤火的防治工程。
另外,具体实施时,还可以设置支架,并在支架上设置用于支撑安装箱式罐体1的转动轴,所述转动轴的转动通过手摇铰链控制,通过手摇铰链实现该自加热煤样罐的翻转,在支架上设置用于对该自加热煤样罐翻转的最大倾角进行限位的限位器,这样就能够安全方便地清理实验后该自加热煤样罐内的煤样7。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (8)

1.一种自加热煤样罐,其特征在于:包括箱式罐体(1)、罐盖(2)、加热温度控制系统和气路,所述罐盖(2)通过螺栓(3)连接在箱式罐体(1)的顶部,所述箱式罐体(1)和罐盖(2)均为双层结构,所述箱式罐体(1)和罐盖(2)的外层均由碳钢材料制成,所述箱式罐体(1)和罐盖(2)的内层均由耐火材料制成,所述箱式罐体(1)的内侧壁上和内底面上均设置有加热丝(12),所述箱式罐体(1)内下部设置有用于托起煤样(7)的钢网(4),所述钢网(4)与箱式罐体(1)内底面之间的空间为用于预热进气的气体缓冲区(5),所述钢网(4)与罐盖(2)之间的空间为用于放置煤样(7)的炉膛(6),所述箱式罐体(1)的内底面上固定连接有多根穿过钢网(4)竖直向上设置的高温加热棒(8),所述高温加热棒(8)的最高加热温度不低于1200℃;所述加热温度控制系统包括伸入箱式罐体(1)内部且用于对箱式罐体(1)内煤样(7)的温度进行实时检测的S型单铂铑热电偶(9)和与S型单铂铑热电偶(9)连接的温控仪(10),所述温控仪(10)上设置有温控面板和超温指示灯,所述温控仪(10)的输出端接有用于对加热丝(12)的通断电进行控制的第一可控硅(11)和用于对高温加热棒(8)的通断电进行控制的第二可控硅(13),所述第一可控硅(11)串联在加热丝(12)的供电回路中,所述第二可控硅(13)串联在高温加热棒(8)的供电回路中;所述气路包括设置在箱式罐体(1)的侧壁上且伸入气体缓冲区(5)中的进气管(14)和设置在罐盖(2)的几何中心位置处且伸入炉膛(6)内的出气管(15)。
2.按照权利要求1所述的自加热煤样罐,其特征在于:所述自加热煤样罐的长度为400mm,所述自加热煤样罐的宽度为400mm,所述自加热煤样罐的高度为450mm;所述炉膛(6)的长度为200mm,所述炉膛(6)的宽度为200mm,所述炉膛(6)的高度为200mm,所述钢网(4)与箱式罐体(1)内底面之间的距离为50mm。
3.按照权利要求1所述的自加热煤样罐,其特征在于:所述耐火材料为陶瓷纤维。
4.按照权利要求1所述的自加热煤样罐,其特征在于:所述高温加热棒(8)的数量为九根,九根高温加热棒(8)在炉膛(6)内均匀布设。
5.按照权利要求1所述的自加热煤样罐,其特征在于:所述钢网(4)的密度为100~300目。
6.按照权利要求1所述的自加热煤样罐,其特征在于:所述进气管(14)和出气管(15)均由耐腐蚀特种钢材制成,所述进气管(14)和出气管(15)的管径均为10mm,所述进气管(14)与箱式罐体(1)的侧壁螺纹连接,所述出气管(15)与罐盖(2)螺纹连接。
7.一种利用如权利要求1所述的自加热煤样罐进行煤自燃特性测试加热煤的方法,其特征在于该方法包括以下步骤:
步骤一、将破碎、筛分好的煤样(7)装入箱式罐体(1)中,并用螺栓(3)将罐盖(2)连接在箱式罐体(1)的顶部;
步骤二、将进气管(14)连接到气源的出气口,将出气管(15)连接到气相色谱分析仪的进样管;并检查所述自加热煤样罐的气密性,保证密封效果;
步骤三、连接好所述加热温度控制系统后,操作温控仪(10)的温控面板,设定加热温度的上限值,然后,温控仪(10)通过第一可控硅(11)控制加热丝(12)开始加热,并通过第二可控硅(13)控制高温加热棒(8)开始加热;
步骤四、煤样(7)加热过程中,S型单铂铑热电偶(9)对箱式罐体(1)内煤样(7)的温度进行实时检测并将检测到的温度实测信号实时输出给温控仪(10),温控仪(10)将温度实测信号与加热温度的上限值相比对,当温度实测信号高于加热温度的上限值时,温控仪(10)通过第一可控硅(11)控制加热丝(12)停止加热,并通过第二可控硅(13)控制高温加热棒(8)停止加热;同时,温控仪(10)记录煤样(7)的十倍数温度点,气相色谱分析仪在煤样(7)的十倍数温度点到来时检测出气管(15)输出的气体组分并记录。
8.按照权利要求7所述的方法,其特征在于:步骤三中设定的加热温度的上限值为1000℃。
CN201510332735.9A 2015-06-16 2015-06-16 自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法 Active CN104943995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510332735.9A CN104943995B (zh) 2015-06-16 2015-06-16 自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510332735.9A CN104943995B (zh) 2015-06-16 2015-06-16 自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法

Publications (2)

Publication Number Publication Date
CN104943995A true CN104943995A (zh) 2015-09-30
CN104943995B CN104943995B (zh) 2017-10-17

Family

ID=54159162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510332735.9A Active CN104943995B (zh) 2015-06-16 2015-06-16 自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法

Country Status (1)

Country Link
CN (1) CN104943995B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510383A (zh) * 2016-01-10 2016-04-20 西安科技大学 煤最短自然发火期与自然发火特性参数测试装置及方法
CN106018468A (zh) * 2016-05-06 2016-10-12 辽宁工程技术大学 一种便携式煤样控温加热实验装置及方法
CN106338565A (zh) * 2016-09-30 2017-01-18 西安科技大学 罐式煤自燃气体测试装置及方法
CN106501310A (zh) * 2016-10-25 2017-03-15 中国矿业大学(北京) 基于采空区空气参数实测的遗煤氧化升温模拟试验方法
CN113640174A (zh) * 2021-06-30 2021-11-12 中煤科工集团沈阳研究院有限公司 煤的瓦斯吸附解吸升温氧化耦合实验平台及其试验方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204705607U (zh) * 2015-06-16 2015-10-14 西安科技大学 一种煤自燃特性测试用自加热煤样罐

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8600882A (en) * 1982-07-06 1984-01-19 Pavlodarsky Industrialny Institut Determining content of combustibles in end products
CN2718396Y (zh) * 2004-07-23 2005-08-17 西安交通大学 常压粉煤流化床煤气化炉
CN103644732B (zh) * 2013-11-29 2015-04-29 西安科技大学 煤自燃高温程序升温装置及利用该装置的测试方法
CN204287095U (zh) * 2014-10-24 2015-04-22 中国神华能源股份有限公司 煤自燃升温实验罐

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204705607U (zh) * 2015-06-16 2015-10-14 西安科技大学 一种煤自燃特性测试用自加热煤样罐

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金永飞等: "煤自燃高温贫氧氧化燃烧特性参数的实验研究", 《煤炭学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510383A (zh) * 2016-01-10 2016-04-20 西安科技大学 煤最短自然发火期与自然发火特性参数测试装置及方法
CN105510383B (zh) * 2016-01-10 2017-03-15 西安科技大学 煤最短自然发火期与自然发火特性参数测试装置及方法
CN106018468A (zh) * 2016-05-06 2016-10-12 辽宁工程技术大学 一种便携式煤样控温加热实验装置及方法
CN106338565A (zh) * 2016-09-30 2017-01-18 西安科技大学 罐式煤自燃气体测试装置及方法
CN106501310A (zh) * 2016-10-25 2017-03-15 中国矿业大学(北京) 基于采空区空气参数实测的遗煤氧化升温模拟试验方法
CN106501310B (zh) * 2016-10-25 2019-02-12 中国矿业大学(北京) 基于采空区空气参数实测的遗煤氧化升温模拟试验方法
CN113640174A (zh) * 2021-06-30 2021-11-12 中煤科工集团沈阳研究院有限公司 煤的瓦斯吸附解吸升温氧化耦合实验平台及其试验方法

Also Published As

Publication number Publication date
CN104943995B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
CN104943995A (zh) 自加热煤样罐及用该罐进行煤自燃特性测试加热煤的方法
CN204705607U (zh) 一种煤自燃特性测试用自加热煤样罐
CN107421987B (zh) 一种测量煤低温氧化发热率的装置与方法
CN110173976A (zh) 一种电弧炉强化废钢预热装置
CN103644732B (zh) 煤自燃高温程序升温装置及利用该装置的测试方法
CN107677134A (zh) 一种铝电解槽用阳极炭块热处理炉
CN202830081U (zh) 箱式保护气氛退火炉
CN204039324U (zh) 热解炉
CN211781083U (zh) 一种磷酸法活性炭加工用天然气燃烧装置
CN204695873U (zh) 一种漆包机烘炉
CN114608309A (zh) 一种氢氧化铝球的节能分段焙烧炉及其焙烧工艺
CN204115496U (zh) 一种隧道窑余热的利用装置
CN202511449U (zh) 一种烧结杯试验用热风制备装置
CN102778133A (zh) 台车式燃气热处理炉进风系统
CN206512136U (zh) 一种分段加热复热式捣固焦炉
CN202582188U (zh) 快速降温试验加热炉
CN205808113U (zh) 一种耐高温砖的热处理装置
CN205133513U (zh) 移动式床式裂解处理器
CN206192054U (zh) 燃气烘干炉
CN205774690U (zh) 一种智能型热处理炉
CN201503201U (zh) 立式蛭石电膨胀炉
CN205505708U (zh) 一种带有通风冷却装置的节能型双段式隧道窑
CN105368477B (zh) 一种利用废弃物料制备水焦油的裂解设备及其生产工艺
CN204694084U (zh) 一种金属合金熔炼炉余热再利用装置
CN205537106U (zh) 一种提高生产效率的加长型坩埚炉

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Guo Jun

Inventor after: Wen Hu

Inventor before: Wen Hu

Inventor before: Jin Yongfei

Inventor before: Liu Wenyong

Inventor before: Guo Jun

Inventor before: Cheng Fangming

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231102

Address after: 710086 Room 049, F2001, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New Area, Shaanxi Province

Patentee after: Shaanxi Jinchuang ante Technology Co.,Ltd.

Address before: 710054 No. 58, middle section, Yanta Road, Shaanxi, Xi'an

Patentee before: XI'AN University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right