CN104933937A - 一种3d打印物理相似模拟模型实验台及应用方法 - Google Patents

一种3d打印物理相似模拟模型实验台及应用方法 Download PDF

Info

Publication number
CN104933937A
CN104933937A CN201510374179.1A CN201510374179A CN104933937A CN 104933937 A CN104933937 A CN 104933937A CN 201510374179 A CN201510374179 A CN 201510374179A CN 104933937 A CN104933937 A CN 104933937A
Authority
CN
China
Prior art keywords
tooth
model
pressurization
guard plate
backactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510374179.1A
Other languages
English (en)
Other versions
CN104933937B (zh
Inventor
赵毅鑫
袁亮
张通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN201510374179.1A priority Critical patent/CN104933937B/zh
Publication of CN104933937A publication Critical patent/CN104933937A/zh
Application granted granted Critical
Publication of CN104933937B publication Critical patent/CN104933937B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/40Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for geology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mathematical Optimization (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种3D打印物理相似模拟模型实验台及应用方法。所述3D打印物理相似模拟模型实验台,包括构模机构、3D打印机构、加压开挖机构、监测机构。本发明通过构模机构构建模型模具,利用3D打印机构进行模型铺设,通过加压开挖机构进行物理相似模拟实验,最后在监测机构作用下进行模型应力应变及破坏情况的监测记录,最终在四大机构的高效配合下,实现不同地质条件下尤其是复杂地质构造下矿产采动情况的模拟,达到精确高效构建所需尺寸及地质条件的物理模型并进行可视化实验的目的。

Description

一种3D打印物理相似模拟模型实验台及应用方法
技术领域
本发明涉及一种3D打印物理相似模拟模型实验台、以及应用所述试验台的方法。
背景技术
我国矿产资源丰富,随着矿产资源的不断开采,地表环境破坏急剧恶化,开采安全事故频繁发生,如何高效科学的开采地下矿产资源一直是我国面临的重大问题,然而做到科学采矿的前提是准确的了解赋存矿产资源的地质条件及开采破坏情况,为此各科研单位及企业高校常用数值模拟、物理模拟等手段进行相关研究。三维物理模拟研究由于其操作难度大,不能进行可视化处理,科研过程中较少采用,然而三维物理模拟却可以更好的模拟矿产赋存及开采破坏情况。基于上述情况,迫切需要一种3D打印物理相似模拟模型实验台,实现不同地质条件下尤其是复杂地质构造下矿产采动情况的模拟,达到精确高效构建所需尺寸及地质条件的物理模型并进行可视化实验的目的。
发明内容
本发明实施例的目的在于提出一种3D打印物理相似模拟模型实验台,通过构模机构构建模型模具,利用3D打印机构进行模型铺设,通过加压开挖机构进行物理相似模拟实验,最后在监测机构作用下进行模型应力应变及破坏情况的监测记录,最终在四大机构的的高效配合下,实现不同地质条件下尤其是复杂地质构造下矿产采动情况的模拟,达到精确高效构建所需尺寸及地质条件的物理模型并进行可视化实验的目的。为了实现上述目的,本发明采用如下技术方案:
一种3D打印物理相似模拟模型实验台,包括:
构模机构,包括加热保护管、连接孔、侧护板、底板、滑槽结构,所述滑槽结构置于侧护板内侧,所述侧护板通过滑槽机构相互滑动连接,所述加热保护管置于侧护板及底板内部的连接孔内;
3D打印机构,包括出料口、竖滑架、料池、输料管、控制器、数据线、滑槽导轨、横滑架、伸缩臂、齿动结构、料浆泵、电源,所述出料口连接于伸缩臂下端,所述伸缩臂上端利用齿动结构齿于横滑架下部,所述横滑架两端利用齿动结构齿连接于竖滑架内侧,所述竖滑架下端利用齿动结构齿连接于滑槽导轨,所述料池通过输料管与料浆泵相连,所述料浆泵通过输料管与出料口连接,所述电源通过数据线与料浆泵及控制器连接,所述控制器通过数据线分别与料浆泵、齿动结构、加热保护管连接;
加压开挖机构,包括加压桁架、垂向加压臂、侧向加压臂、加压千斤顶、折叠式保护板、加压板、微型开挖机、微型开挖机遥控设备、抽排管、废料抽排泵站,所述加压桁架通过齿动结构与所述滑槽导轨齿连接,所述垂向加压臂通过齿动结构与所述加压桁架齿连接,所述加压千斤顶通过齿动结构分别与垂向加压臂及侧向加压臂齿连接,所述折叠式保护板通过连接孔利用加热保护管连接为加压板,所述加压板与加压千斤顶铰连接,所述侧向加载臂通过齿动结构与加压桁架齿连接,所述微型开挖机置于所构建模型内部并通过无线信号与微型开挖机遥控设备连接,所述废料抽排泵站通过抽排管与微型开挖机连接;
监测机构,包括超声波监测器、超声波分析仪、切割刀具、应力应变片,所述超声波监测器与侧护板外侧固定连接,所述超声波分析仪通过数据线与超声波监测器连接,所述切割刀具与加压千斤顶固定连接,所述应力应变片置于模型内部并通过数据线与控制器连接。
优选地,所述齿动结构由电动机、齿轮、齿条构成,通过电动机带动齿轮沿齿条运动。
优选地,所述折叠式保护板为由一定尺寸的钢块通过端部铰链接而成的长条状结构,其中各钢块具有横向和纵向的连接孔。
优选地,所述滑槽结构由梯形滑槽及梯形滑块构成,梯形滑槽及梯形滑块分别置于两连接物体上。
优选地,所述料浆池内置隔离板,隔离板将料浆池划分为多个部分。
优选地,所述侧护板及侧向加压臂间均通过滑槽连接并通过销钉固定。
优选地,所述微型开挖机内置定位芯片、无线接收及发送装置,通过无线信号与微型开挖机遥控设备连接。
优选地,所述加压千斤顶与垂向加压臂连接时其下端头与加压板铰连接,其与侧向加压臂连接时其下端头与侧护板通过轴承滑动连接。
本发明还提出了一种3D打印物理相似模拟模型实验台应用方法,应用上述实验台,其包括如下实验步骤:
a、根据所需模型尺寸,利用加热保护管通过连接孔将折叠式保护板连接为加压板,通过滑槽结构调节侧护板及侧向加压臂,构建所述尺寸的模型,并将加热保护管分别置于侧护板、底板、加压板内的连接孔内;
b、将滑槽导轨置于构模机构两侧,按顺序依次组装3D打印机构及加压开挖机构;
c、根据实验地质条件,通过控制器分别控制料浆泵、齿动结构通过出料口进行3D构模,同时利用控制器控制加热保护管加热烘干模型;
d、模型构建并烘干后,通过控制器控制齿动结构调动加压开挖机构,利用加压千斤顶通过加压板及侧护板对模型进行垂向及侧向加载,将微型开挖机通过底板中的小型圆孔置于模型内部,并利用微型开挖机遥控设备进行遥控开挖,并利用侧护板外侧的超声波监测器进行模型破坏监测并将信息传递至超声波分析仪,同时应力应变片向控制器传递模型应力应变信息;
e、实验完毕,按相反顺序拆除构模机构并留取底板,根据实验要求,将切割刀具横向或纵向装于加压千斤顶下端,通过控制器控制齿动机构调动加压开挖机构对模型形进行切剖;
f、提取各项实验数据,最后按相反顺序拆除转置,并妥善保存。
与现有三维模拟实验台相比,本发明具有如下优点:
本发明述及的3D打印物理相似模拟模型实验台,其中构模机构通过由滑槽连接的侧护板可构建不同尺寸的模型并实现加压时的自由移动,通过内置的加热保护管不仅可以实现各部件的连接而且可以加热构建过程中的模型起到快速烘干模型的作用;3D打印机构通过控制器控制料浆泵对料浆的供给,通过控制齿动结构配合相应部件实现出料口的自由移动,达到3D打印的效果;加压开挖机构可实现模型的垂向及侧向的自由加压,通过微型开挖机模拟矿山开挖情况;监测机构通过超声波监测器、应力应变片及切割工具进行模型实验监测,达到模型实验可视化的效果,最终构模机构、3D打印机构、加压开挖机构及监测机构高效配合,实现不同地质条件下尤其是复杂地质构造下矿产采动情况的模拟,达到精确高效构建所需尺寸及地质条件的物理模型并进行可视化实验的目的。
附图说明
图1为本发明实施例中切割刀具图;
图2为本发明实施例中折叠式保护板图;
图3为本发明实施例中加压板图;
图4为本发明实施例中加热保护管图;
图5为本发明实施例中侧向加压结构图;
图6为本发明实施例中构模机构图;
图7为本发明实施例中微型开挖机图;
图8为本发明实施例中3D打印模型过程图;
图9为本发明实施例中加压开挖监测图;
图10为本发明实施例中模型切割过程图。
图中:1-侧护板;2-出料口;3-滑槽结构;4-折叠式保护板;5-竖滑架;6-加热保护管;7-连接孔;8-加压桁架;9-加压板;10-料池;11-输料管;12-控制器;13-数据线;14-滑槽导轨;15-底板;16-横滑架;17-伸缩臂;18-垂向加压臂;19-侧向加压臂;20-加压千斤顶;21-应力应变片;22-齿动结构;23-料浆泵;24-电源;25-废料抽排泵站;26-微型开挖机;27-微型开挖机遥控设备;28-超声波监测器;29-超声波分析仪;30-切割刀具。
具体实施方式
结合图8、图9、图10所示,一种3D打印物理相似模拟模型实验台,包括构模机构、3D打印机构、加压开挖机构、监测机构,通过构模机构构建模型模具,利用3D打印机构进行模型铺设,通过加压开挖机构进行物理相似模拟实验,利用监测机构进行模型应力应变及破坏情况的监测,最终在四大机构的的高效配合下,实现不同地质条件下矿产采动情况的模拟。
构模机构中,所述滑槽结构3置于侧护板1内侧,所述侧护板1通过滑槽机构相互滑动连接,所述加热保护管6置于侧护板1及底板15内部的连接孔7内;
3D打印机构中,所述横滑架16两端利用齿动结构22齿连接于竖滑架5内侧,所述竖滑架5下端利用齿动结构22齿连接于滑槽导轨14,所述料池10通过输料管11与料浆泵23相连,所述料浆泵23通过输料管11与出料口2连接,所述电源24通过数据线13与料浆泵23及控制器12连接,所述控制器12通过数据线13分别与料浆泵23、齿动结构22、加热保护管6连接;
加压开挖机构中,所述加压桁架8通过齿动结构22与所述滑槽导轨14齿连接,所述垂向加压臂18通过齿动结构22与所述加压桁架8齿连接,所述加压千斤顶20通过齿动结构22分别与垂向加压臂18及侧向加压臂19齿连接,所述折叠式保护板4通过连接孔7利用加热保护管6连接为加压板9,所述加压板9与加压千斤顶20铰连接,所述侧向加载臂通过齿动结构22与加压桁架8齿连接,所述微型开挖机26置于所构建模型内部并通过无线信号与微型开挖机遥控设备27连接;
监测机构中,所述切割刀具30与加压千斤顶20固定连接,所述应力应变片21置于模型内部并通过数据线13与控制器12连接。
结合图1、图2、图3、图4、图5、图6、图7、图8、图9、图10所示,利用加热保护管6将折叠式保护板4连接成加压板9,利用滑槽结构3调节侧护板1及侧向加压臂19至合适尺寸,通过控制器12启动料浆泵23及齿动结构22并配合竖滑架5、横滑架16、伸缩臂17调节出料口2位置进行3D打印,模型打印完毕后,通过控制器12调动齿动结构22启动加压桁架8、垂向加压臂18、侧向加压臂19及加压千斤顶20通过加压板9及侧护板1对模型加压,并调动微型开挖机26对模型进行开挖,同时利用应力应变片21及超声波监测器28对模型变化情况进行采集,完毕后,拆除构模机构并保留底板15及模型,根据剖切方位要求,将切割刀具30安装于加压千斤顶20下端,启动控制器12,再次调动齿动结构22启动加压桁架8、垂向加压臂18、侧向加压臂19及加压千斤顶20通过切割刀具30对模型进行剖切。
其实验步骤大致如下:
a、根据所需模型尺寸,利用加热保护管6通过连接孔7将折叠式保护板4连接为加压板9,通过滑槽结构3调节侧护板1及侧向加压臂19,构建所述尺寸的模型,并将加热保护管6分别置于侧护板1、底板15、加压板9内的连接孔7内;
b、将滑槽导轨14置于构模机构两侧,按顺序依次组装3D打印机构及加压开挖机构;
c、根据实验地质条件,通过控制器12分别控制料浆泵23、齿动结构22通过出料口2进行3D构模,同时利用控制器12控制加热保护管6加热烘干模型;
d、模型构建并烘干后,通过控制器12控制齿动结构22调动加压开挖机构,利用加压千斤顶20通过加压板9及侧护板1对模型进行垂向及侧向加载,将微型开挖机26通过底板15中的小型圆孔置于模型内部,并利用微型开挖机遥控设备27进行遥控开挖,并利用侧护板1外侧的超声波监测器28进行模型破坏监测并将信息传递至超声波分析仪29,同时应力应变片21向控制器12传递模型应力应变信息;
e、实验完毕,按相反顺序拆除构模机构并留取底板15,根据实验要求,将切割刀具30横向或纵向装于加压千斤顶20下端,通过控制器12控制齿动机构调动加压开挖机构对模型形进行切剖;
f、提取各项实验数据,最后按相反顺序拆除转置,并妥善保存。
当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的教导下,所做出的所有等同替换、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。

Claims (9)

1.一种3D打印物理相似模拟模型实验台,其特征在于:所述3D打印物理相似模拟模型实验台包括:
构模机构,包括加热保护管、连接孔、侧护板、底板、滑槽结构,所述滑槽结构置于侧护板内侧,所述侧护板通过滑槽机构相互滑动连接,所述加热保护管置于侧护板及底板内部的连接孔内;
3D打印机构,包括出料口、竖滑架、料池、输料管、控制器、数据线、滑槽导轨、横滑架、伸缩臂、齿动结构、料浆泵、电源,所述出料口连接于伸缩臂下端,所述伸缩臂上端利用齿动结构齿于横滑架下部,所述横滑架两端利用齿动结构齿连接于竖滑架内侧,所述竖滑架下端利用齿动结构齿连接于滑槽导轨,所述料池通过输料管与料浆泵相连,所述料浆泵通过输料管与出料口连接,所述电源通过数据线与料浆泵及控制器连接,所述控制器通过数据线分别与料浆泵、齿动结构、加热保护管连接;
加压开挖机构,包括加压桁架、垂向加压臂、侧向加压臂、加压千斤顶、折叠式保护板、加压板、微型开挖机、微型开挖机遥控设备、抽排管、废料抽排泵站,所述加压桁架通过齿动结构与所述滑槽导轨齿连接,所述垂向加压臂通过齿动结构与所述加压桁架齿连接,所述加压千斤顶通过齿动结构分别与垂向加压臂及侧向加压臂齿连接,所述折叠式保护板通过连接孔利用加热保护管连接为加压板,所述加压板与加压千斤顶铰连接,所述侧向加载臂通过齿动结构与加压桁架齿连接,所述微型开挖机置于所构建模型内部并通过无线信号与微型开挖机遥控设备连接,所述废料抽排泵站通过抽排管与微型开挖机连接;
监测机构,包括超声波监测器、超声波分析仪、切割刀具、应力应变片,所述超声波监测器与侧护板外侧固定连接,所述超声波分析仪通过数据线与超声波监测器连接,所述切割刀具与加压千斤顶固定连接,所述应力应变片置于模型内部并通过数据线与控制器连接。
2.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述齿动结构由电动机、齿轮、齿条构成,通过电动机带动齿轮沿齿条运动。
3.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述折叠式保护板为由一定尺寸的钢块通过端部铰链接而成的长条状结构,其中各钢块具有横向和纵向的连接孔。
4.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述滑槽结构由梯形滑槽及梯形滑块构成,梯形滑槽及梯形滑块分别置于两连接物体上。
5.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述料浆池内置隔离板,隔离板将料浆池划分为多个部分。
6.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述侧护板及侧向加压臂间均通过滑槽连接并通过销钉固定。
7.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述微型开挖机内置定位芯片、无线接收及发送装置,通过无线信号与微型开挖机遥控设备连接。
8.根据权利要求1所述的3D打印物理相似模拟模型实验台,其特征在于:所述加压千斤顶与垂向加压臂连接时其下端头与加压板铰连接,其与侧向加压臂连接时其下端头与侧护板通过轴承滑动连接。
9.一种3D打印物理相似模拟模型实验台应用方法,其特征在于,采用如权利要求1至8任一项所述的3D打印物理相似模拟模型实验台,包括如下步骤:
a、根据所需模型尺寸,利用加热保护管通过连接孔将折叠式保护板连接为加压板,通过滑槽结构调节侧护板及侧向加压臂,构建所述尺寸的模型,并将加热保护管分别置于侧护板、底板、加压板内的连接孔内;
b、将滑槽导轨置于构模机构两侧,按顺序依次组装3D打印机构及加压开挖机构;
c、根据实验地质条件,通过控制器分别控制料浆泵、齿动结构通过出料口进行3D构模,同时利用控制器控制加热保护管加热烘干模型;
d、模型构建并烘干后,通过控制器控制齿动结构调动加压开挖机构,利用加压千斤顶通过加压板及侧护板对模型进行垂向及侧向加载,将微型开挖机通过底板中的小型圆孔置于模型内部,并利用微型开挖机遥控设备进行遥控开挖,并利用侧护板外侧的超声波监测器进行模型破坏监测并将信息传递至超声波分析仪,同时应力应变片向控制器传递模型应力应变信息;
e、实验完毕,按相反顺序拆除构模机构并留取底板,根据实验要求,将切割刀具横向或纵向装于加压千斤顶下端,通过控制器控制齿动机构调动加压开挖机构对模型形进行切剖;
f、提取各项实验数据,最后按相反顺序拆除转置,并妥善保存。
CN201510374179.1A 2015-07-01 2015-07-01 一种3d打印物理相似模拟模型实验台及应用方法 Expired - Fee Related CN104933937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510374179.1A CN104933937B (zh) 2015-07-01 2015-07-01 一种3d打印物理相似模拟模型实验台及应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510374179.1A CN104933937B (zh) 2015-07-01 2015-07-01 一种3d打印物理相似模拟模型实验台及应用方法

Publications (2)

Publication Number Publication Date
CN104933937A true CN104933937A (zh) 2015-09-23
CN104933937B CN104933937B (zh) 2016-02-03

Family

ID=54121083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510374179.1A Expired - Fee Related CN104933937B (zh) 2015-07-01 2015-07-01 一种3d打印物理相似模拟模型实验台及应用方法

Country Status (1)

Country Link
CN (1) CN104933937B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931559A (zh) * 2016-05-04 2016-09-07 河海大学 3d打印模型隧道及砂雨法模型试验制作装置及施工方法
CN105954076A (zh) * 2016-04-28 2016-09-21 西安科技大学 一种用于物理相似模拟实验的模型制作系统
CN105946090A (zh) * 2016-05-04 2016-09-21 河海大学 3d打印隧道或采空区上方桩基模型试验装置及打印方法
CN106053765A (zh) * 2016-07-27 2016-10-26 中国矿业大学 基于3d打印的三维矿山相似材料模拟试验装置及方法
CN108447381A (zh) * 2017-07-04 2018-08-24 河南理工大学 一种借助3d打印机打印相似模拟试验模型支架的方法
CN109470501A (zh) * 2018-10-24 2019-03-15 中国矿业大学(北京) 一种基于三维地质勘探的相似重构模型实验装置及方法
CN111968474A (zh) * 2020-09-23 2020-11-20 安徽理工大学 一种3d打印相似模拟实验操作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020013687A1 (en) * 2000-03-27 2002-01-31 Ortoleva Peter J. Methods and systems for simulation-enhanced fracture detections in sedimentary basins
CN201886019U (zh) * 2010-12-02 2011-06-29 中国矿业大学 氡气地表探测覆岩采动裂隙固气耦合综合试验系统
CN102444135A (zh) * 2011-12-02 2012-05-09 中钢集团马鞍山矿山研究院有限公司 一种采矿废石土与固化尾矿的联合混排技术
CN103541376A (zh) * 2013-10-10 2014-01-29 金川集团股份有限公司 采煤沉陷区地基在重复开采条件下的基础变形预测方法
CN103605169A (zh) * 2013-11-29 2014-02-26 河南理工大学 一种小型自重框式配载三维物理模拟实验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020013687A1 (en) * 2000-03-27 2002-01-31 Ortoleva Peter J. Methods and systems for simulation-enhanced fracture detections in sedimentary basins
CN201886019U (zh) * 2010-12-02 2011-06-29 中国矿业大学 氡气地表探测覆岩采动裂隙固气耦合综合试验系统
CN102444135A (zh) * 2011-12-02 2012-05-09 中钢集团马鞍山矿山研究院有限公司 一种采矿废石土与固化尾矿的联合混排技术
CN103541376A (zh) * 2013-10-10 2014-01-29 金川集团股份有限公司 采煤沉陷区地基在重复开采条件下的基础变形预测方法
CN103605169A (zh) * 2013-11-29 2014-02-26 河南理工大学 一种小型自重框式配载三维物理模拟实验方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954076A (zh) * 2016-04-28 2016-09-21 西安科技大学 一种用于物理相似模拟实验的模型制作系统
CN105931559A (zh) * 2016-05-04 2016-09-07 河海大学 3d打印模型隧道及砂雨法模型试验制作装置及施工方法
CN105946090A (zh) * 2016-05-04 2016-09-21 河海大学 3d打印隧道或采空区上方桩基模型试验装置及打印方法
CN106053765A (zh) * 2016-07-27 2016-10-26 中国矿业大学 基于3d打印的三维矿山相似材料模拟试验装置及方法
CN108447381A (zh) * 2017-07-04 2018-08-24 河南理工大学 一种借助3d打印机打印相似模拟试验模型支架的方法
CN109470501A (zh) * 2018-10-24 2019-03-15 中国矿业大学(北京) 一种基于三维地质勘探的相似重构模型实验装置及方法
CN111968474A (zh) * 2020-09-23 2020-11-20 安徽理工大学 一种3d打印相似模拟实验操作方法

Also Published As

Publication number Publication date
CN104933937B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
CN104933937B (zh) 一种3d打印物理相似模拟模型实验台及应用方法
CN203502301U (zh) 一种用于巷道围岩变形的相似模拟材料实验设备
CN205254990U (zh) 货物搬运机械手臂
CN108894764B (zh) 可视化二维水力裂缝模拟实验装置
CN103964001B (zh) 小型绳系卫星弹射机构及其弹射方法
CN107782607A (zh) 一种包装纸箱抗压强度测试装置及其测试方法
WO2005124545A3 (en) Method and apparatus for spreadsheet automation
CN204602549U (zh) 一种点胶机用翻转加热装置
CN104742365A (zh) 一种3d打印机
CN106708002A (zh) 一种液压支架电液控制系统测试装置
CN203803997U (zh) 一种钢材折弯装置
CN204817610U (zh) 一种高精度快速定位的自动折弯机
CN102806454A (zh) 一种mp3产品外壳压合组装装置
CN105403684A (zh) 用于模拟煤矿覆岩垮落的多尺度相似模拟试验平台
CN104713779A (zh) 一种矿用模拟试验装置
CN203358018U (zh) 自动印字机
EP2607023A3 (de) Eintreibvorrichtung
CN203383155U (zh) 一种全自动行走装置
CN107900200A (zh) 护栏打孔设备
CN208913917U (zh) 驻车制动拉索总成卡位装置
CN203370744U (zh) 提料装置
CN203778572U (zh) 一种自动管材型材冲孔设备
CN206839536U (zh) 一种医疗器械的插接装置
CN204556386U (zh) 一种矿用模拟试验装置
CN105034084A (zh) 一种木板平移打孔装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160203

Termination date: 20160701