CN104914626B - 液晶配向方法 - Google Patents

液晶配向方法 Download PDF

Info

Publication number
CN104914626B
CN104914626B CN201510304516.XA CN201510304516A CN104914626B CN 104914626 B CN104914626 B CN 104914626B CN 201510304516 A CN201510304516 A CN 201510304516A CN 104914626 B CN104914626 B CN 104914626B
Authority
CN
China
Prior art keywords
chain
paramagnetism
particle
magnetic field
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510304516.XA
Other languages
English (en)
Other versions
CN104914626A (zh
Inventor
张伟基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL China Star Optoelectronics Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Technology Co Ltd
Priority to CN201510304516.XA priority Critical patent/CN104914626B/zh
Priority to US14/778,201 priority patent/US20170102572A1/en
Priority to PCT/CN2015/081791 priority patent/WO2016192137A1/zh
Publication of CN104914626A publication Critical patent/CN104914626A/zh
Application granted granted Critical
Publication of CN104914626B publication Critical patent/CN104914626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Abstract

本发明涉及一种液晶配向方法。该方法包括以下步骤,步骤一:将含有顺磁性链状颗粒的液态配向膜料涂布在基板的显示区域;步骤二:将所述基板置于恒定磁场中,以使所述顺磁性链状颗粒沿着所述磁场的方向稳定排列;步骤三:撤去所述磁场;步骤四:向所述基板的显示区域内加入液晶材料,所述液晶材料的分子按照所述顺磁性链状颗粒的排列方向而排列。根据本发明的方法,能够避免使用摩擦布,并且以非接触方式实现液晶配向。

Description

液晶配向方法
技术领域
本发明涉及液晶显示领域,特别涉及一种液晶配向方法。
背景技术
在制备液晶显示器的过程中,为了使液晶分子按照一定方向取向排列,通常需要进行配向制程。
在现有技术中,通常使用摩擦布与玻璃基板上进行摩擦。在摩擦后,会在玻璃基板上产生按一定方向排列的沟槽。液晶分子会按照这些沟槽排列并形成预定的预倾角,而完成配向制程。
但是,在摩擦布与玻璃基板摩擦后,不可避免地会对玻璃基板造成破坏和产生静电,这会极大地影响配向制程的良率稳定性。由此,所制备的液晶显示器的良率也较低。
发明内容
针对上述问题,本发明提出了一种液晶配向方法。根据本发明的方法,能够避免使用摩擦布,并且以非接触方式实现液晶配向。
本发明的液晶配向方法包括以下步骤:步骤一:将含有顺磁性链状颗粒的液态配向膜料涂布在基板的显示区域;步骤二:将基板置于恒定磁场中,以使顺磁性链状颗粒沿着磁场的方向稳定排列;步骤三:撤去磁场;步骤四:向基板的显示区域内加入液晶材料,液晶材料的分子按照顺磁性链状颗粒的排列方向而排列。
根据本发明的方法,在使用磁场将大量的顺磁性链状颗粒按照预定方向在稳定基板上排列后,这些链状颗粒可引导液晶材料的分子在基板上按照预定方向排列,由此实现了液晶配向。通过这种方法,实现了非接触式的液晶配向过程,因此也就不会对玻璃基板造成破坏,也不会产生静电。所制造的液晶显示器的良率也会因此而大幅提升。
在一个实施例中,在步骤二中,还将液态配向膜料预固化。这里,预固化是指将流体态配向膜料变成非流体状,以避免其浪费。在一个优选的实施例中,在步骤二中,对基板进行预烘烤,以将液态配向膜料预固化。
在一个实施例中,在步骤二中,恒定磁场为匀强磁场。在匀强磁场中,各个位置的方向和磁感应强度均相同,由此能够确保所有的顺磁性链状颗粒按照相同的方向稳定排列。
在一个实施例中,顺磁性链状颗粒为带有[Cu(NH3)4]2+或[Cu(H2O)4]2+的铜络合物。液态配向膜料还包括作为顺磁性链状颗粒的载液的聚酰亚胺和N-甲基吡咯烷酮。在一个优选的实施例中,预烘烤的温度在80℃到100℃之间,匀强磁场的磁感应强度在0.1T到1.5T之间。在这种条件下,顺磁性链状颗粒会快速转向为沿着匀强磁场的方向稳定排列。在液态配向膜料预固化后,已经排列好的顺磁性链状颗粒的排列状态也就不再会发生变化,由此方便了后续步骤的实施。
如果温度高于100℃,会导致在顺磁性链状颗粒没有完全稳定地排列之前,液态配向膜料已经发生固化,也就不能实现后续将液晶材料的分子按照顺磁性链状颗粒的排列方向而排列。更重要地是,如果温度过高,有可能导致顺磁性链状颗粒的顺磁性丧失,这样就完全不能实现使用匀强磁场来引导顺磁性链状颗粒的排列。而温度低于80℃,液态配向膜料的预固化速度非常慢,不利于提高生产效率。此外,磁感应强度提高虽然可以使顺磁性链状颗粒快速排列,但是这会导致能源浪费。而磁感应强度降低,则顺磁性链状颗粒无法克服转动阻力,也就不能实现将顺磁性链状颗粒完全按照磁场方向排列。
在一个优选的实施例中,顺磁性链状颗粒在其载液中的质量含量在0.2%到1%之间。在这种液态配向膜料中,顺磁性链状颗粒可以在磁场的作用下顺畅地转动而不会由于顺磁性链状颗粒的含量过多导致相互缠结,而发生难以转动或转动不到位的情况。
在一个实施例中,在步骤三和步骤四之间,还具有去除顺磁性链状颗粒的顺磁性的附加步骤。在除去了顺磁性链状颗粒的顺磁性后,可以避免在随后的工艺过程中,磁场对这些顺磁性链状颗粒产生不良影响而影响液晶材料的分子的排列。由此,可以保证所制备的液晶显示器具有良好的性能。
在一个实施例中,在附加步骤中,对基板进行温度高于预烘烤温度的强化烘烤。优选地,强化烘烤的温度在230-250℃之间。通过强化烘烤,顺磁性链状颗粒不再具有顺磁性,外界磁场也就不会再对其产生影响。此外,在这种强化烘烤过程中,液态配向膜料中的N-甲基吡咯烷酮会挥发掉,聚酰亚胺会发生聚合反应而形成牢固地附着在基板上的配向膜,由此简化了液晶显示器的生产步骤。
与现有技术相比,本发明的优点在于:(1)根据本发明的方法,在使用磁场将大量的顺磁性链状颗粒按照预定方向在稳定基板上排列,这些链状颗粒又可引导液晶材料的分子在基板上按照预定方向排列,由此实现了非接触式的液晶配向。因此,也就不会对玻璃基板造成破坏,也不会产生静电。所制造的液晶显示器的良率也会因此而大幅提升。(2)本发明的方法简单便捷,生产成本低。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1到4示意性地显示了实施根据本发明的方法的步骤。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
下面将结合附图对本发明作进一步说明。
在实施根据本发明的方法时,可以首先配制液态配向膜料。在一个实施例中,液态配向膜料含有N-甲基吡咯烷酮、聚酰亚胺和顺磁性链状颗粒,其中N-甲基吡咯烷酮和聚酰亚胺作为顺磁性链状颗粒的载液。含有N-甲基吡咯烷酮和聚酰亚胺的液态配向膜料是本领域的技术人员所熟知的技术,这里不再赘述。顺磁性链状颗粒可为带有[Cu(NH3)4]2+或[Cu(H2O)4]2+的铜络合物,这些物质也是本领域的技术人员所熟知的,这里不再赘述。顺磁性链状颗粒可用作液晶材料的分子的排列引导体。聚酰亚胺可用于形成基板上的配向膜,这将在下文中详细描述。
如图1所示,将所配置的液态配向膜料涂布到基板1的显示区域内。由于没有磁场对顺磁性链状颗粒3进行引导,因此这些顺磁性链状颗粒3在基板1上的取向是杂乱无章的。
接下来将基板1放置到恒定磁场4中。在磁场4的作用下,这些顺磁性链状颗粒3沿着磁场4的方向排列。在一个优选的实施例中,所使用的恒定磁场4为匀强磁场4,如图2所示。在匀强磁场4的范围内,各点的磁感应强度均相同。尤其应理解地是,磁感应强度是矢量,因此在匀强磁场4的范围内,各点的磁感应强度的数值和方向均相同。这时,磁场4的方向就是液晶配向的预定方向。因此,在这种实施例中,多个顺磁性链状颗粒3中的每一个都沿着磁场4的方向稳定排列,也就是沿着液晶配向的预定方向稳定排列。
在一个具体的实施例中,匀强磁场4的磁感应强度在0.1T到1.5T之间。在这种条件下,顺磁性链状颗粒3完全能够克服转动阻力而完全按照匀强磁场4的方向排列。在一个具体的实施例中,顺磁性链状颗粒3在其载液中的质量含量在0.2%到1%之间。在这种情况下,顺磁性链状颗粒3相互之间不会发生大量的缠结,而是各个顺磁性链状颗粒3能够较为独立地转动。当顺磁性链状颗粒3的含量进一步增加时,顺磁性链状颗粒3在转动时相互之间的阻力会大大增加,甚至可能直接导致这些顺磁性链状颗粒3不能沿着匀强磁场4的方向而排列。
在另一个实施例中,在将涂布有液态配向膜料的基板1放置到恒定磁场4的同时,还将液态配向膜料预固化。例如,对基板1进行预烘烤,以使液态配向膜料预固化。在一个具体的实施例中,预烘烤的温度在80℃到100℃之间。在将液态配向膜料预固化后,已经排列完成的顺磁性链状颗粒3的排列状态也就不再会发生变化,由此方便了后续步骤的实施。由于顺磁性链状颗粒3能够在匀强磁场4的作用下迅速转向,而预固化的速度较慢,因此将液态配向膜料预固化不但不会影响顺磁性链状颗粒3的排列,相反还有助于将排列完成的顺磁性链状颗粒3的排列状态固定下来。
在将液态配向膜料预固化后,撤去磁场4。
待液态配向膜料中的N-甲基吡咯烷酮完全挥发之后,聚酰亚胺就会形成附着在基板1上的配向膜5。在这种情况下,顺磁性链状颗粒3则以伸出到配向膜5之外的梳齿9的形式存在。如图3所示,这些梳齿9的延伸方向为大体平行,这是由于顺磁性链状颗粒3之前已经按照匀强磁场4的方向而排列,因此实际上梳齿9的延伸方向就是前文所述的匀强磁场4的方向。
优选地,在撤去磁场4后,还对基板1进行强化烘烤。强化烘烤的温度高于预烘烤的温度。在一个具体的实施例中,强化烘烤的温度在230-250℃之间。强化烘烤可以加快N-甲基吡咯烷酮的挥发速度。聚酰亚胺也能够在这种强化烘烤下发生聚合反应,由此在基板1上牢固地形成配向膜5。更重要地是,强化烘烤还能够破坏顺磁性链状颗粒3的顺磁性,由此可以避免在后期制程中顺磁性链状颗粒3再次受到其他磁场的影响,而发生重新排列,这会极大地影响预定的液晶配向,如下文所述的液晶材料的分子8在梳齿9的引导下的排列取向。
最后,向基板1的显示区域内加入液晶材料。液晶材料的分子8在梳齿9的引导下,而沿着预定的方向排列。
由此,实现了非接触式的液晶配向制程。
虽然已经参考优选实施例对本发明进行了描述,但在只要不存在冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (6)

1.一种液晶配向方法,包括以下步骤,
步骤一:将含有顺磁性链状颗粒的液态配向膜料涂布在基板的显示区域;
步骤二:将所述基板置于恒定磁场中,以使所述顺磁性链状颗粒沿着所述磁场的方向稳定排列;
在所述步骤二中,还将所述液态配向膜料预固化;
在所述步骤二中,对所述基板进行预烘烤,以将所述液态配向膜料预固化;
步骤三:撤去所述磁场;
步骤四:向所述基板的显示区域内加入液晶材料,所述液晶材料的分子按照所述顺磁性链状颗粒的排列方向而排列;
在所述步骤三和步骤四之间,还具有去除所述顺磁性链状颗粒的顺磁性的附加步骤;
在所述附加步骤中,对所述基板进行温度高于预烘烤温度的强化烘烤,所述强化烘烤的温度在230-250℃之间。
2.根据权利要求1所述的方法,其特征在于,在所述步骤二中,所述恒定磁场为匀强磁场。
3.根据权利要求2所述的方法,其特征在于,所述顺磁性链状颗粒为带有[Cu(NH3)4]2+或[Cu(H2O)4]2+的铜络合物。
4.根据权利要求3所述的方法,其特征在于,所述液态配向膜料还包括作为所述顺磁性链状颗粒的载液的聚酰亚胺和N-甲基吡咯烷酮。
5.根据权利要求4所述的方法,其特征在于,所述预烘烤的温度在80℃到100℃之间,所述匀强磁场的磁感应强度在0.1T到1.5T之间。
6.根据权利要求4所述的方法,其特征在于,所述顺磁性链状颗粒在其载液中的质量含量在0.2%到1%之间。
CN201510304516.XA 2015-06-04 2015-06-04 液晶配向方法 Active CN104914626B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510304516.XA CN104914626B (zh) 2015-06-04 2015-06-04 液晶配向方法
US14/778,201 US20170102572A1 (en) 2015-06-04 2015-06-18 Method for liquid crystal alignment
PCT/CN2015/081791 WO2016192137A1 (zh) 2015-06-04 2015-06-18 液晶配向方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510304516.XA CN104914626B (zh) 2015-06-04 2015-06-04 液晶配向方法

Publications (2)

Publication Number Publication Date
CN104914626A CN104914626A (zh) 2015-09-16
CN104914626B true CN104914626B (zh) 2018-12-18

Family

ID=54083827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510304516.XA Active CN104914626B (zh) 2015-06-04 2015-06-04 液晶配向方法

Country Status (3)

Country Link
US (1) US20170102572A1 (zh)
CN (1) CN104914626B (zh)
WO (1) WO2016192137A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596960A (zh) * 2019-09-10 2019-12-20 东莞通华液晶有限公司 一种液晶显示屏的非接触式配向方法
CN113589594B (zh) * 2021-07-19 2022-07-12 Tcl华星光电技术有限公司 显示面板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818763A (zh) * 2005-02-07 2006-08-16 Lg.菲利浦Lcd株式会社 液晶显示器定向层的形成方法和形成装置
CN101359128A (zh) * 2007-08-03 2009-02-04 群康科技(深圳)有限公司 液晶面板、液晶面板的配向膜及其制造方法
CN103966608A (zh) * 2013-12-13 2014-08-06 陶克(苏州)机械设备有限公司 一种气体循环装置及装置内气体循环方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950963B2 (ja) * 1976-05-31 1984-12-11 セイコーインスツルメンツ株式会社 液晶パネル
KR100960496B1 (ko) * 2003-10-31 2010-06-01 엘지디스플레이 주식회사 액정표시소자의 러빙방법
JP2005275193A (ja) * 2004-03-26 2005-10-06 Seiko Epson Corp 液晶装置の製造方法、電子機器
EP2307924A4 (en) * 2008-07-14 2012-02-29 Lensvector Inc LIQUID CRYSTAL LENS WITH SURFACE PROGRAMMING
TW201019016A (en) * 2008-11-03 2010-05-16 Chi Mei Optoelectronics Corp Manufacturing method of alignment film and manufacturing method of liquid crystal display panel
KR20150047398A (ko) * 2013-10-24 2015-05-04 삼성디스플레이 주식회사 표시 장치 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818763A (zh) * 2005-02-07 2006-08-16 Lg.菲利浦Lcd株式会社 液晶显示器定向层的形成方法和形成装置
CN101359128A (zh) * 2007-08-03 2009-02-04 群康科技(深圳)有限公司 液晶面板、液晶面板的配向膜及其制造方法
CN103966608A (zh) * 2013-12-13 2014-08-06 陶克(苏州)机械设备有限公司 一种气体循环装置及装置内气体循环方法

Also Published As

Publication number Publication date
CN104914626A (zh) 2015-09-16
WO2016192137A1 (zh) 2016-12-08
US20170102572A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Wang et al. Formation of a mesh-like electrodeposit induced by electroconvection
Su et al. Double layer of Au (100)/ionic liquid interface and its stability in imidazolium‐based ionic liquids
Trchová et al. Evolution of polyaniline nanotubes: the oxidation of aniline in water
CN104914626B (zh) 液晶配向方法
Kumar et al. Frustration-induced insulating chiral spin state in itinerant triangular-lattice magnets
CN104152897A (zh) 一种sers基底单层膜的制备方法及该sers基底单层膜
Bagheri et al. Magnetic and electric field assisted electrospun polyamide nanofibers for on-line μ-solid phase extraction and HPLC
Dao et al. Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat
He et al. Magnetochromatic thin-film microplates.
Sitek et al. Multi-domain electromagnetic absorption of triangular quantum rings
Lin et al. Surface modification of polydimethylsiloxane microfluidic chips by polyamidoamine dendrimers for amino acid separation
Hu et al. Length dependence of rectification in organic co-oligomer spin rectifiers
CN102489255A (zh) 贵金属纳米材料-离子液体复合功能涂层金属丝固相微萃取纤维的制备方法
Lacitignola et al. Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves
Shaik et al. The Impact of Electric Fields on Chemical Structure and Reactivity
CN110146480A (zh) 基于表面辅助法DNA晶格和AuNPs晶格的一步法组装方法及应用
Dini et al. EQCM analysis of the process of electrochemical insertion in regioregular alkyl-susbtituted polyterthiophene during n-doping
Huang et al. Electrodeposition of periodically nanostructured straight cobalt filament arrays
CN101383305A (zh) 一种利用稀磁半导体测量多量子阱耦合的方法
Sowa et al. Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields
Li et al. Manipulation of the magnetoresistance effect in a double-helix DNA
CN207839265U (zh) 一种立体式卡托加工治具
CN102838078A (zh) 一种悬空圆盘阵列微结构及其制备方法
GGGGaLL electrodeposit induced by electroconvection
Yao Relaxation of geometrical frustration in three typical ways indicated by density of states

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant