CN104909749B - 一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法 - Google Patents

一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法 Download PDF

Info

Publication number
CN104909749B
CN104909749B CN201510352978.9A CN201510352978A CN104909749B CN 104909749 B CN104909749 B CN 104909749B CN 201510352978 A CN201510352978 A CN 201510352978A CN 104909749 B CN104909749 B CN 104909749B
Authority
CN
China
Prior art keywords
thermal expansion
water absorption
negative thermal
low
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510352978.9A
Other languages
English (en)
Other versions
CN104909749A (zh
Inventor
刘献省
张伟风
王磊
杨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201510352978.9A priority Critical patent/CN104909749B/zh
Publication of CN104909749A publication Critical patent/CN104909749A/zh
Application granted granted Critical
Publication of CN104909749B publication Critical patent/CN104909749B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种新型低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法,属于无机非金属材料技术领域,该陶瓷以Y2O3、MoO3和尿素为原料,采用固相烧结合成方法制得。本发明的有益效果:1.本发明将尿素高温分解结合到Y2Mo3O12的烧结过程中,减少以致避免在降温过程中水分进入,减少甚至彻底消除吸水性,同时获得从室温开始的负热膨胀性能。2.本发明采用固相法烧结,工艺简单,低成本,适合于工业化生产。

Description

一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成 方法
技术领域
本发明属于无机非金属材料领域,特别涉及了一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法。
背景技术
不同材料热膨胀系数存在差异,并且同一材料由表面到内部的不同深度因存在热梯度导致热膨胀不同,在温度剧烈变化或变化较大的场合,不同材料之间或同一材料不同深度会产生热应力。这些热应力常常会引起材料或器件的性能指标变差,如热膨胀仪的系统误差、高温炉管由于温度变化大而出现裂缝或断开、冬季水管或水箱冻裂、高压输电线由于夏季温度升高而伸长并下垂从而增加辅助的线杆的拉力、空间望远镜焦距随温度变化引起成像质量下降、印刷电路板上的铜箔由于受热脱离、激光器因热透镜效应出射光束的发散、航天器隔热层脱落等。为了减少不同材料之间的热应力,必须探索热膨胀系数为零或接近零、或能够匹配的材料,然而零膨胀系数的材料不易寻找。目前制备近零热膨胀材料是通过对负热膨胀材料改性或将负热膨胀材料与正热膨胀材料复合来实现的。
Y2Mo3O12是一种负热膨胀系数大、温区宽的结构稳定的具有应用前景的负热膨胀材料。然而常规的方法(比如固相法、激光快速烧结法等)制备的负热膨胀材料Y2Mo3O12具有明显的吸水性,其负热膨胀性能只有在升高温度后完全释放水后才能表现出来,并且高温烧结的Y2Mo3O12陶瓷块体放在空气中,因为逐步吸水陶瓷块体会慢慢裂开甚至成粉体。为了消除Y2Mo3O12的吸水性,采用离子替代法研究较多:Fe3+ (Z.Y. Li, W.B. Song, E.J.Liang, J. Phys. Chem. C 115 (2011) 17806-17811), Ce3+ (X.S. Liu, Y.G. Cheng,E.J. Liang, M.J. Chao, Phys. Chem. Chem. Phys. 16 (2014) 12848-12857), La3+(H.F. Liu, X.C. Wang, Z.P. Zhang, X.B. Chen, Ceram. Int. 38 (2012) 6349-6352)和 (LiMg)3+ (Y.G. Cheng, X.S. Liu, W.B. Song, B.H. Yuan, X.L. Wang, M.J. Chao,E.J. Liang, Mater. Res. Bull. 65 (2015) 273-278)。然而,替代后的结果是,吸水性消除了,但是负热膨胀现象没有表现出来,表现出来的却是正热膨胀现象。这说明,Y2Mo3O12的吸水性消除并且表现出负热膨胀现象的问题解决仍然具有很大的挑战性。因此,研发一种没有明显吸水性的、成本较低的负热膨胀材料Y2Mo3O12具有重要的实际意义。
发明内容
本发明的目的是提供一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法。
基于上述目的,本发明采取了如下技术方案:
一种低/无吸水性负热膨胀陶瓷Y2Mo3O12,该陶瓷以Y2O3、MoO3和尿素为原料,采用固相烧结合成方法制得。
进一步地,原料Y2O3、MoO3摩尔比为1︰3,原料尿素的量为Y2Mo3O12物质的量的1~7mol%。
添加尿素的摩尔比达到Y2Mo3O12的5 mol%后,该负热膨胀陶瓷Y2Mo3O12负热膨胀温度区域扩展到室温;添加尿素的摩尔比达到Y2Mo3O12的7 mol%后,该负热膨胀陶瓷的吸水性彻底消除。
上述低/无吸水性负热膨胀陶瓷Y2Mo3O12的固相烧结合成方法,(1)按比例称取Y2O3、MoO3和尿素,将原料研磨混合均匀;(2)将步骤(1)中混合均匀的物料直接烧结或压片后烧结,自然冷却得目标产物,即低/无吸水性负热膨胀陶瓷Y2Mo3O12;其中,烧结条件为:温度为750~850℃,时间为3-5 h,压强为常压,气氛为空气。
本发明的有益效果:
1. 本发明将尿素高温分解结合到Y2Mo3O12的烧结过程中,减少以致避免在降温过程中水分进入,减少甚至彻底消除吸水性,同时获得负热膨胀性能,即:尿素分解得到C3N4,在高温烧结过程中,C3N4包裹着Y2Mo3O12,阻碍了水分在降温过程中进入Y2Mo3O12晶格,从而降低了吸水性,并且Y2Mo3O12负热膨胀温度区间向室温延伸。
2. 本发明采用固相法预处理原料,工艺简单,低成本,适合于工业化生产。
附图说明
图1为实施例1合成的Y2Mo3O12的XRD图谱(850℃, 3 h)。
图2为实施例2原料中掺入1 mol%尿素合成Y2Mo3O12的XRD图谱(800℃, 5 h)。
图3为实施例3原料中掺入3 mol%尿素合成Y2Mo3O12的XRD图谱(800℃, 5 h)。
图4为实施例4原料中掺入5 mol%尿素合成Y2Mo3O12的XRD图谱(750℃, 3 h)。
图5为实施例5原料中掺入7 mol%尿素合成Y2Mo3O12的XRD图谱(750℃, 3 h)。
图6为实施例1、2、3和4所制备的掺入尿素0 mol%、1 mol%、3 mol%、5 mol%、7 mol%陶瓷Y2Mo3O12的相对长度随温度的变化曲线。
具体实施方式
实施例1
将原料Y2O3和MoO3按化学计量摩尔比1:3称取,放到研钵内研磨2 h,用单轴方向压片机200 MPa的压强下压制成直径10 mm,高10 mm的圆柱体。将装有样品的刚玉坩埚放在高温炉中在850℃温度下常压空气中烧结3 h,在空气中自然冷却。产品对应的XRD图谱物相分析见图1,图1的XRD结果显示形成了纯的正交相Y2Mo3O12(XRD中没有杂质相和原料的峰)。
实施例2
与实施例1的不同之处在于:在原料中添加按目标产物Y2Mo3O12的 1 mol%的尿素,烧结温度为800℃,烧结时间是5 h。产品对应的XRD图谱物相分析见图2,图2的XRD结果显示形成了纯的正交相Y2Mo3O12(XRD中没有杂质相和原料的峰)。
实施例3
与实施例1的不同之处在于:在原料中添加按目标产物Y2Mo3O12的3 mol%的尿素,烧结温度为800℃,烧结时间为5 h。产品对应的XRD图谱物相分析见图3,图3的XRD结果显示形成了纯的正交相Y2Mo3O12(XRD中没有杂质相和原料的峰)。
实施例4
与实施例2的不同之处在于:在原料中添加按目标产物Y2Mo3O12的5 mol%的尿素,烧结温度为750℃,烧结时间是3 h。产品对应的XRD图谱物相分析见图4,图4的XRD结果显示形成了纯的正交相Y2Mo3O12(XRD中没有杂质相和原料的峰)。
实施例5
与实施例2的不同之处在于:在原料中添加按目标产物Y2Mo3O12的7 mol%的尿素,烧结温度为750℃,烧结时间是3 h。产品对应的XRD图谱物相分析见图5,图5的XRD结果显示形成了纯的正交相Y2Mo3O12(XRD中没有杂质相和原料的峰)。
膨胀系数测试:
图6是实施例1、2、3、4和5所制备的陶瓷Y2Mo3O12的相对长度随温度的变化曲线。可知: 0%尿素掺入量的Y2Mo3O12的长度随温度的增加先发生减小,再急剧增加然后减小,表明其有两类水分子失去过程,即先释放结合力小的水分子,再释放结合力大的水分子。随着尿素掺入量的增加,结晶水减少(1→3 mol%),其急剧膨胀的过程缩短并且对应的温度也降低,直到结晶水彻底消除 (7 mol%),只有负热膨胀过程。其负热膨胀系数及对应的温度范围分别是:0%:α =-9.51×10-6oC-1 (180-520 oC);1 mol%:α =-9.00×10-5oC-1 (138-520oC);3 mol%: α =-8.71×10-6oC-1 (125-520 oC);5 mol%: α =-6.76×10-6oC-1 (20-520oC);7 mol%: α =-8.24×10-6oC-1 (20-520 oC)。其负热膨胀开始温度依次降低:180 oC→138 oC →125 oC →20 oC,最终降低到室温范围,并且对应结晶水释放过程的热膨胀彻底消除,也就是结晶水彻底消除。

Claims (3)

1.一种低/无吸水性负热膨胀陶瓷Y2Mo3O12,其特征在于:该陶瓷以Y2O3、MoO3和尿素为原料,采用固相烧结合成方法制得,其中,原料Y2O3、MoO3摩尔比为1︰3,原料尿素的量为Y2Mo3O12物质的量的1~7 mol%。
2.如权利要求1所述的低/无吸水性负热膨胀陶瓷Y2Mo3O12,其特征在于:添加尿素的摩尔比达到Y2Mo3O12的5 mol%后,该负热膨胀陶瓷Y2Mo3O12负热膨胀温度区域扩展到室温。
3.如权利要求1或2所述的低/无吸水性负热膨胀陶瓷Y2Mo3O12的固相烧结合成方法,其特征在于:(1)按比例称取Y2O3、MoO3和尿素,将原料研磨混合均匀;(2)将步骤(1)中混合均匀的物料直接烧结或压片后烧结,自然冷却得目标产物,即低/无吸水性负热膨胀陶瓷Y2Mo3O12;其中,烧结条件为:温度为750~850℃,时间为3-5 h,压强为常压,气氛为空气。
CN201510352978.9A 2015-06-24 2015-06-24 一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法 Expired - Fee Related CN104909749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510352978.9A CN104909749B (zh) 2015-06-24 2015-06-24 一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510352978.9A CN104909749B (zh) 2015-06-24 2015-06-24 一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法

Publications (2)

Publication Number Publication Date
CN104909749A CN104909749A (zh) 2015-09-16
CN104909749B true CN104909749B (zh) 2017-01-18

Family

ID=54079259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510352978.9A Expired - Fee Related CN104909749B (zh) 2015-06-24 2015-06-24 一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法

Country Status (1)

Country Link
CN (1) CN104909749B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448717B (zh) * 2022-09-27 2023-06-13 厦门稀土材料研究所 一种稀土基钼酸盐高熵负热膨胀陶瓷材料及其制备方法
CN116120933B (zh) * 2022-11-25 2024-02-23 南京信息工程大学 一种中空核壳结构稀土掺杂钼酸钇荧光粉及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O12 and Related Materials;Bojan A.Marinkovic et al.,;《CHEMISTRY OF MATERIALS》;20090406;第21卷(第13期);2886-2894页 *
Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12;Lei Wang et al.,;《Materials Research Bulletin》;20130430;第48卷;2724-2729页 *
Negative thermal expansion in Y2Mo3O12;B.A.Marinkovic et al.,;《Solid State Sciences》;20051017(第7期);1377-1383页 *
Negative Thermal Expansion Materials and Their Applications:A Survey of Recent Patents;Er-Jun Liang;《Recent Patent on Materials Science》;20101231;第3卷(第2期);第106-128页 *
Theoretical study of hydration in Y2Mo3O12:Effects on structure and negative thermal expansion;Ming-Yi Wu et al.,;《AIP ADVANCES》;20150218;第5卷(第2期);027126-(1-9) *

Also Published As

Publication number Publication date
CN104909749A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
Cao et al. Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity
CN103922746B (zh) 一种水基流延成型制备致密氮化硅陶瓷材料及致密异形氮化硅陶瓷材料的方法
Wu et al. In-situ synthesis of a cordierite-andalusite composite for solar thermal storage
Wang et al. Phase-engineering strategy of ZrO2 for enhancing the mechanical properties of porous cordierite ceramics
CN104529421B (zh) 一种细晶莫来石陶瓷的制备方法
CN102433454A (zh) 一种热膨胀系数可控的金属基陶瓷材料Al-Zr2P2WO12的烧结合成方法
Xu et al. Effect of Sm2O3 on microstructure, thermal shock resistance and thermal conductivity of cordierite-mullite-corundum composite ceramics for solar heat transmission pipeline
CN103351164A (zh) 一种高纯度、高性能钛硅碳陶瓷块体材料及其制备方法
CN104909749B (zh) 一种低/无吸水性负热膨胀陶瓷Y2Mo3O12及其固相烧结合成方法
Zhou et al. A novel temperature stable microwave dielectric ceramic with low sintering temperature and high quality factor
Guo et al. Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al 2 O 3–ZrO 2 scaffolds prepared by freeze casting
Wang et al. MXene reconciles concurrent enhancement of thermal conductivity and mechanical robustness of SiC-based thermal energy storage composites
Xu et al. Preparation and characterization of corundum-based ceramics for thermal storage
Lao et al. Effect of rare-earth oxides on microstructure and thermal shock resistance of Al2O3-SiCw composite ceramics for solar thermal storage
CN103864419A (zh) 一种高致密锆酸钡陶瓷的制备方法
Wang et al. Sol–gel derived CaO–B 2 O 3–SiO 2 glass/CaSiO 3 ceramic composites: processing and electrical properties
Qin et al. Cordierite thermal insulation materials reinforced by aluminosilicate fiber/mullite whiskers hierarchical structure
CN107759240B (zh) 一种Si3N4/BAS复相陶瓷材料的制备方法
CN103922792B (zh) 一种利用赤泥高温熔融发泡生产轻质蜂窝材料的方法
CN109354501B (zh) 一种MgAlON透明陶瓷的制备方法
Wu et al. Vat photopolymerization of sepiolite fiber-toughened alumina: Effects of sepiolite fiber content on microstructures and physical, rheological, and mechanical properties
Abbas Bukhari et al. Expansionless oxidation-bonded SiC microfiltration membrane by controlling the oxidation of SiC particle mixtures
Shin et al. Low-temperature sintering of garnet-type Li7La3Zr2O12 solid electrolyte with Li3BO3 additive prepared by polymeric complex method
Ren et al. Self-reinforced and eco-friendly porous MgO-based ceramics from magnesite tailings: The effect of La2O3 and firing temperature
CN105272199B (zh) 一种新型负热膨胀陶瓷Zr2W2P2O15及其烧结合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118