CN104901394A - 基于soc的光储式充电站准pr下垂控制方法 - Google Patents

基于soc的光储式充电站准pr下垂控制方法 Download PDF

Info

Publication number
CN104901394A
CN104901394A CN201510362466.0A CN201510362466A CN104901394A CN 104901394 A CN104901394 A CN 104901394A CN 201510362466 A CN201510362466 A CN 201510362466A CN 104901394 A CN104901394 A CN 104901394A
Authority
CN
China
Prior art keywords
inverter
charging station
light storage
formula charging
storage formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510362466.0A
Other languages
English (en)
Other versions
CN104901394B (zh
Inventor
程启明
陈根
杨小龙
褚思远
张强
徐冠雄
刘懿稼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
University of Shanghai for Science and Technology
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201510362466.0A priority Critical patent/CN104901394B/zh
Publication of CN104901394A publication Critical patent/CN104901394A/zh
Application granted granted Critical
Publication of CN104901394B publication Critical patent/CN104901394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于SOC的光储式充电站准PR下垂控制方法,涉及微电网技术领域,所解决的是调节控制交流逆变器的技术问题。该方法利用一个准PR下垂控制公式计算交流逆变器的交流侧相角及电压的偏移量,并经过一个自PI环节分别附加到交流侧的额定电压及额定相角上,获得三相电压参考信号;再将三相电压参考信号转换为两相静止坐标系上的分量后与对应分量实际电压相减,并通过一个准PR控制器计算,获得两相静止坐标下的电流参考信号;再将两相静止坐标下的电流参考信号与对应分量实际电流相减,并经过比例P调节器获得输出电压的参考信号,从而实现对交流逆变器的调节控制。本发明提供的方法,适用于光储式充电站。

Description

基于SOC的光储式充电站准PR下垂控制方法
技术领域
本发明涉及微电网技术,特别是涉及一种基于SOC的光储式充电站准PR下垂控制方法的技术。
背景技术
电动汽车(Electric Vehicle,EV)可以有效缓解当前日益严峻的能源与环境问题,随着电动汽车全球性的广泛发展,充电基础设施的逐步建设和完善,未来改善电动汽车——电网互动(Vehicle to Grid,V2G)技术在环保、电力系统稳定和经济效益等多方面具有重要的意义。从当前发展情况来看,结合光伏发电、储能系统和电动汽车充放电系统的光储式电动汽车充电站,以微电网方式实现电动车汽车对太阳能发电的集成利用,以及与大电网的双向互动,将是实现低碳最直接的方式。
微电网孤岛运行时,分布式电源(Distributed Generation,DG)通常采用下垂控制,模拟电力系统中的发电机运行特点,按照预先设定的下垂特性曲线,实现系统的电压和频率或相角的调节。
2013年第1期《电力系统自动化》中《孤岛运行交流微电网中分布式储能系统改进下垂控制方法》一文提出根据各储能单元的剩余容量(State Of Charge,SOC)变化,实时调整下垂系数,使SOC较大的储能单元提供较多的有功功率。但是在低压系统实际工况中,线路的阻性成分和感性成分不可忽略,有功功率和无功功率对电压和频率的调节存在耦合关系。
2014年第3期文献《电力自动化设备》中《低压微电网三相逆变器功率耦合下垂控制策略》一文,基于通用下垂控制原理,提出了改进型PQ-fU功率耦合下垂控制方法,引入了比例复数积分(PCI)电压控制技术,但存在复数算法难以实现的问题。
发明内容
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种能有效改善充电站与其他DG(分布式电源)之间的功率分配,并能灵活有效的控制充电站向微网交流侧方向放电的基于SOC的光储式充电站准PR下垂控制方法。
为了解决上述技术问题,本发明所提供的一种基于SOC的光储式充电站准PR下垂控制方法,其特征在于,具体步骤如下:
步骤S1:定义光储式充电站的交流逆变器的准PR下垂控制公式为:
Δδ=δ-δn=kqQ
ΔU=U-Un=-kp(P-PnqSOC m)-rkqQ
k p = U n - U min P m a x - P n
k q = δ m a x - δ n Q m a x
r = X R
其中,Δδ为光储式充电站中的交流逆变器的交流侧相角偏移量,δ为光储式充电站中的交流逆变器的交流侧实际相角,δn为光储式充电站中的交流逆变器的交流侧额定相角,ΔU为光储式充电站中的交流逆变器的交流侧电压偏移量,U为光储式充电站中的交流逆变器的交流侧实际电压,Un为光储式充电站中的交流逆变器的交流侧额定电压,P为光储式充电站中的交流逆变器的交流侧有功功率,Q为光储式充电站中的交流逆变器的交流侧无功功率,Pn为光储式充电站中的交流逆变器的交流侧额定有功功率,Pmax为光储式充电站的光伏发电系统在电压下降时允许输出的最大有功功率,Umin为光储式充电站的光伏发电系统允许的最小电压幅值,δmax为光储式充电站的光伏发电系统允许的最大运行相角,Qmax为光储式充电站的光伏发电系统达到最大允许相角时输出的无功功率;
其中,kq为对应无功功率的下垂系数,kp为对应有功功率的下垂系数,qSOC为光储式充电站的储能蓄电池的目标剩余电量值,qSOC反映储能单元的电能供应能力,也能间接反映充电站直流母线向交流侧的供电能力,m为qSOC的幂指数,m的典型值为2,X为光储式充电站中的交流逆变器的线路等效电抗,R为光储式充电站中的交流逆变器的线路等效电阻;
步骤S2:定义准PR控制器的传递函数为:
G ( s ) = k m + 2 k r ω c s S 2 + 2 ω c s + ω 0 2
其中:km为准PR控制器的比例系数,kr为准PR控制器的积分系数,ω0为准PR控制器的谐振频率,ωc为准PR控制器的截止频率;
步骤S3:根据光储式充电站中的交流逆变器的交流侧三相电压、三相电流,计算光储式充电站中的交流逆变器的交流侧有功功率、无功功率,并将计算结果代入步骤S1的交流逆变器下垂控制公式,计算出光储式充电站中的交流逆变器的交流侧相角偏移量Δδ,及光储式充电站中的交流逆变器的交流侧电压偏移量ΔU;
步骤S4:将步骤S3得到的交流侧电压偏移量ΔU及交流侧相角偏移量Δδ,经过一个自PI环节,分别附加到光储式充电站中的交流逆变器的交流侧额定电压Un及交流侧额定相角δn上,获得交流逆变器的交流侧三相电压参考信号为:
u a = ( U n + Δ U ) s i n ( 100 π t + δ n + Δ δ ) u b = ( U n + Δ U ) sin ( 100 π t + δ n + Δ δ - 2 3 π ) u c = ( U n + Δ U ) sin ( 100 π t + δ n + Δ δ + 2 3 π )
其中,ua为交流逆变器的交流侧A相电压参考信号,ub为交流逆变器的交流侧B相电压参考信号,uc为交流逆变器的交流侧C相电压参考信号;
步骤S5:将步骤S4所获得的交流逆变器的交流侧三相电压参考信号经3s/2s变换,转换为两相静止坐标系上的α、β分量,即:
U α * U β * = T α β u a u b u c
T α β = 2 3 1 - 1 2 - 1 2 0 3 2 - 3 2
步骤S6:将步骤S5所得的两相静止坐标下的三相电压参考信号与对应分量实际电压相减,并通过步骤S2定义的准PR控制器的传递函数计算,获得两相静止坐标下的电流参考信号;
步骤S7:将步骤S6所获得的两相静止坐标下的电流参考信号与对应分量实际电流相减,并经过比例P调节器获得输出电压的参考信号,从而实现对交流逆变器的调节控制。
本发明提供的基于SOC的光储式充电站准PR下垂控制方法,通过基于SOC的改进型功率耦合下垂控制外环,使系统在孤岛运行时能根据充电站储能系统SOC的变化,改善充电站与其他DG之间的功率分配;通过基于准PR电压电流双环的下垂控制内环,实现对参考信号的快速跟踪和无差控制,能有效改善并联分布式电源之间的有功功率分配,并且使无功功率实现均匀分配,提升光储式充电站储能系统的性能,并实现充电站向微电网交流侧方向放电的灵活有效控制。
附图说明
图1是光储式充电站与分布式电源并联运行系统的结构框图;
图2是本发明实施例的基于SOC的光储式充电站准PR下垂控制方法的框图;
图3是交流逆变器的功率传输示意图;
图4是交流逆变器的原理图;
图5是三相交流逆变器的电压控制模型图;
图6是A相电压输出实际信号与输入参考信号在PI控制下的比较曲线,图6中的ua为A相电压输出实际信号,uaref为参考信号;
图7是A相电压输出实际信号与输入参考信号在准PR控制下的比较曲线,图7中的ua为A相电压输出实际信号,uaref为参考信号;
图8是本发明实施例的基于SOC的光储式充电站准PR下垂控制方法的仿真效果图,其中的图8A为交流逆变器输出的有功功率及无功功率的波形图,图8B为公共交流母线的A相输出电压波形图。
具体实施方式
以下结合附图说明对本发明的实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围,本发明中的顿号均表示和的关系。
如图2所示,本发明实施例所提供的一种基于SOC的光储式充电站准PR下垂控制方法,其特征在于,具体步骤如下:
步骤S1:定义光储式充电站的交流逆变器的准PR下垂控制公式为:
Δδ=δ-δn=kqQ
ΔU=U-Un=-kp(P-PnqSOC m)-rkqQ
k p = U n - U m i n P m a x - P n
k q = δ m a x - δ n Q m a x
r = X R
其中,Δδ为光储式充电站中的交流逆变器的交流侧相角偏移量,δ为光储式充电站中的交流逆变器的交流侧实际相角,δn为光储式充电站中的交流逆变器的交流侧额定相角,ΔU为光储式充电站中的交流逆变器的交流侧电压偏移量,U为光储式充电站中的交流逆变器的交流侧实际电压,Un为光储式充电站中的交流逆变器的交流侧额定电压,P为光储式充电站中的交流逆变器的交流侧有功功率,Q为光储式充电站中的交流逆变器的交流侧无功功率,Pn为光储式充电站中的交流逆变器的交流侧额定有功功率,Pmax为光储式充电站的光伏发电系统在电压下降时允许输出的最大有功功率,Umin为光储式充电站的光伏发电系统允许的最小电压幅值,δmax为光储式充电站的光伏发电系统允许的最大运行相角,Qmax为光储式充电站的光伏发电系统达到最大允许相角时输出的无功功率;
其中,kq为对应无功功率的下垂系数,kp为对应有功功率的下垂系数,qSOC为光储式充电站的储能蓄电池的目标剩余电量值,qSOC反映储能单元的电能供应能力,也能间接反映充电站直流母线向交流侧的供电能力,m为qSOC的幂指数,m的典型值为2,X为光储式充电站中的交流逆变器的线路等效电抗,R为光储式充电站中的交流逆变器的线路等效电阻;
光储式充电站的交流逆变器准PR下垂控制公式的设定原理参见图3,图3为交流逆变器的功率传输示意图,如图3所示,Z=R+jX为交流逆变器的线路阻抗,U∠δ为交流逆变器的输出电压,δ为交流逆变器的功角,E∠0°为交流母线电压,P为交流逆变器的交流侧有功功率,Q为交流逆变器的交流侧无功功率,则有:
P = U [ R ( U - E c o s δ ) + E X s i n δ ] R 2 + X 2
Q = U [ X ( U - E c o s δ ) - E R s i n δ ] R 2 + X 2
通常情况下,交流逆变器的功角δ很小,cosδ≈1,则可导出:
δ ≈ R U E ( X R P - Q )
U - E ≈ R U ( P + X R Q )
δ - δ n = - r k p ( P - P n ) + k q ( Q - Q n ) U - U n = - k p ( P - P n ) - r k q ( Q - Q n )
采用分布式控制方式,根据各储能单元的目标剩余电量值,实时调整下垂系数,可以使目标剩余电量值较大的储能单元提供较多的有功功率,而目标剩余电量值较小的储能单元提供较少的有功功率,即:
δ - δ n = k q Q U - U n = - k p q S O C m ( P - P n )
基于储能单元的目标剩余电量值对上式进行改进,即得到光储式充电站的交流逆变器的准PR下垂控制公式;
步骤S2:定义准PR控制器的传递函数为:
G ( s ) = k m + 2 k r ω c s s 2 + 2 ω c s + ω 0 2
其中:km为准PR控制器的比例系数,kr为准PR控制器的积分系数,ω0为准PR控制器的谐振频率,ωc为准PR控制器的截止频率;
准PR控制器的传递函数的设定原理参见图4、图5,图4为光储式充电站的微电网交流逆变器原理图,其相应的电压控制模型如图5所示;图5中,G(s)为电压控制器,Ur(s)为参考电压,Ig(s)为输出电流,Ug(s)为输出电压,R为电感L的等效串联电阻(其值较小,计算时可忽略),C为滤波电容;
根据图5可得输出电压传递函数为:
U g ( s ) = K G ( s ) LCs 2 + K G ( s ) + C R s + 1 U r ( s ) - L S + R LCs 2 + K G ( s ) + C R s + 1 I g ( s )
图5中的电压控制器G(s)可采用PI、PR等控制器;
PI控制器的传递函数为:
G P I ( s ) = k m + k i s
式中:km为PI控制器的比例系数,ki为PI控制器的积分系数;
PR控制器的传递函数为:
G P R ( s ) = k m + 2 k r s s 2 + ω 0 2 - - - ( 12 )
式中:km为PR控制器的比例系数,kr为PR控制器的积分系数,ω0为PR控制器的谐振频率;
对比PI控制器的传递函数及PR控制器的传递函数可知,PR控制器在基波频率ω0处的增益趋于无穷大,理论上这种控制在静止αβ坐标系下对正弦指令无差跟踪的积分环节效果与PI控制在dq坐标系下对直流信号的无差跟踪是相同的;然而,PI控制需要在dq坐标系下进行解耦,解耦的不精确对控制效果会造成影响;相比之下,PR控制结构简单,设计方便,提高了运算速率,又增强了运算的可靠性;由于PR控制器仅在ω0处有高增益,在其它频率点大幅衰减,存在高增益和频带过窄的缺点,这会导致系统对输入信号频率参量过于敏感,易引起系统波动;为了增大系统带宽,提高系统稳定性,且便于数字实现,本发明实施例采用的基于PR改进的准PR控制器;
步骤S3:根据光储式充电站中的交流逆变器的交流侧三相电压、三相电流,计算光储式充电站中的交流逆变器的交流侧有功功率、无功功率,并将计算结果代入步骤S1的交流逆变器下垂控制公式,计算出光储式充电站中的交流逆变器的交流侧相角偏移量Δδ,及光储式充电站中的交流逆变器的交流侧电压偏移量ΔU;
步骤S4:将步骤S3得到的交流侧电压偏移量ΔU及交流侧相角偏移量Δδ,经过一个自PI环节,分别附加到光储式充电站中的交流逆变器的交流侧额定电压Un及交流侧额定相角δn上,获得交流逆变器的交流侧三相电压参考信号为:
u a = ( U n + Δ U ) s i n ( 100 π t + δ n + Δ δ ) u b = ( U n + Δ U ) sin ( 100 π t + δ n + Δ δ - 2 3 π ) u c = ( U n + Δ U ) sin ( 100 π t + δ n + Δ δ + 2 3 π )
其中,ua为交流逆变器的交流侧A相电压参考信号,ub为交流逆变器的交流侧B相电压参考信号,uc为交流逆变器的交流侧C相电压参考信号;
步骤S5:将步骤S4所获得的交流逆变器的交流侧三相电压参考信号经3s/2s变换,转换为两相静止坐标系上的α、β分量,即:
U α * U β * = T α β u a u b u c
T α β = 2 3 1 - 1 2 - 1 2 0 3 2 - 3 2
步骤S6:将步骤S5所得的两相静止坐标下的三相电压参考信号与对应分量实际电压相减,并通过步骤S2定义的准PR控制器的传递函数计算,获得两相静止坐标下的电流参考信号;
步骤S7:将步骤S6所获得的两相静止坐标下的电流参考信号与对应分量实际电流相减,并经过比例P调节器获得输出电压的参考信号,从而实现对交流逆变器的调节控制。
本发明实施例的方法通过光储式充电站与分布式电源并联运行系统,基于MATLAB/Simulink搭建仿真模型进行了仿真对比实验;
图1为光储式充电站与分布式电源并联运行系统的结构框图,如图1所示,光储充电站中,交流逆变器向网侧的有效输出功率PN为:
PN=PB+PPV-PEV
式中:PB为充电站储能系统输出额定功率,PPV为充电站光伏阵列发电功率,PEV为充电站电动汽车充电功率,电动汽车向微电网放电时,功率为负;
光储式充电站DG1与分布式电源DG2并联运行系统的系统主要参数设置如下:分布式电源UDG1=UDG2=600V,f=50HZ,Pn=50kW,滤波器C1=C2=2mF,L1=L2=1.5mH,逆变器输出线路阻抗R1+jX1=R2+jX2=0.0642+j0.0083Ω,下垂系数kp=1e-4,kq=1e-5,幂指数m=2;准PR控制器km=5,kr=100,ωc=5;PI控制器km=10,ki=20;
具体实验效果为:
1)仅单一DG1孤岛运行,令qSOC=1,分别采用PI、准PR控制方式进行仿真对比,图6是A相电压输出实际信号与输入参考信号在PI控制下的比较曲线,图7是A相电压输出实际信号与输入参考信号在准PR控制下的比较曲线,图6及图7中的ua为A相电压输出实际信号,uaref为参考信号;由图6、图7可以看出,采用PI、PR控制时,系统均能在一个工频周期0.02s内实现稳定运行;相比之下,PR控制动态响应更快,稳态效果更好,在精确性与计算速度上均占优;
2)以光储式充电站作为一种分布式电源DG1与其他分布式电源DG2并联组成微电网运行为例,针对本文改进下垂控制方法,在系统带负荷为P=100kW、Q=10kvar情况下,对qSOC以固定斜率由0.9到0.4进行了仿真分析,其结果如图8所示,图8中,P1为DG1输出的有功功率,P2为DG2输出的有功功率,Q1为DG1输出的无功功率,Q2为DG2输出的无功功率,P3为qSOC=1时DG1和DG2输出均等的参考有功功率,Q3为qSOC=1时DG1和DG2输出均等的参考无功功率;由图8可知,采用本发明实施例的方法能随qSOC的变化,使输出有功功率得到明显的配置,输出无功功率均匀分配,并且系统输出电压相对稳定。

Claims (1)

1.一种基于SOC的光储式充电站准PR下垂控制方法,其特征在于,具体步骤如下:
步骤S1:定义光储式充电站的交流逆变器的准PR下垂控制公式为:
Δδ=δ-δn=kqQ
ΔU=U-Un=-kp(P-PnqSOC m)-rkqQ
k p = U n - U m i n P m a x - P n
k q = δ m a x - δ n Q m a x
r = X R
其中,Δδ为光储式充电站中的交流逆变器的交流侧相角偏移量,δ为光储式充电站中的交流逆变器的交流侧实际相角,δn为光储式充电站中的交流逆变器的交流侧额定相角,ΔU为光储式充电站中的交流逆变器的交流侧电压偏移量,U为光储式充电站中的交流逆变器的交流侧实际电压,Un为光储式充电站中的交流逆变器的交流侧额定电压,P为光储式充电站中的交流逆变器的交流侧有功功率,Q为光储式充电站中的交流逆变器的交流侧无功功率,Pn为光储式充电站中的交流逆变器的交流侧额定有功功率,Pmax为光储式充电站的光伏发电系统在电压下降时允许输出的最大有功功率,Umin为光储式充电站的光伏发电系统允许的最小电压幅值,δmax为光储式充电站的光伏发电系统允许的最大运行相角,Qmax为光储式充电站的光伏发电系统达到最大允许相角时输出的无功功率;
其中,kq为对应无功功率的下垂系数,kp为对应有功功率的下垂系数,qSOC为光储式充电站的储能蓄电池的目标剩余电量值,qSOC反映储能单元的电能供应能力,也能间接反映充电站直流母线向交流侧的供电能力,m为qSOC的幂指数,m的典型值为2,X为光储式充电站中的交流逆变器的线路等效电抗,R为光储式充电站中的交流逆变器的线路等效电阻;
步骤S2:定义准PR控制器的传递函数为:
G ( s ) = k m + 2 k r ω c s s 2 + 2 ω c s + ω 0 2
其中:km为准PR控制器的比例系数,kr为准PR控制器的积分系数,ω0为准PR控制器的谐振频率,ωc为准PR控制器的截止频率;
步骤S3:根据光储式充电站中的交流逆变器的交流侧三相电压、三相电流,计算光储式充电站中的交流逆变器的交流侧有功功率、无功功率,并将计算结果代入步骤S1的交流逆变器下垂控制公式,计算出光储式充电站中的交流逆变器的交流侧相角偏移量Δδ,及光储式充电站中的交流逆变器的交流侧电压偏移量ΔU;
步骤S4:将步骤S3得到的交流侧电压偏移量ΔU及交流侧相角偏移量Δδ,经过一个自PI环节,分别附加到光储式充电站中的交流逆变器的交流侧额定电压Un及交流侧额定相角δn上,获得交流逆变器的交流侧三相电压参考信号为:
u a = ( U n + Δ U ) s i n ( 100 π t + δ n + Δ δ ) u b = ( U n + Δ U ) sin ( 100 π t + δ n + Δ δ - 2 3 π ) u c = ( U n + Δ U ) sin ( 100 π t + δ n + Δ δ + 2 3 π )
其中,ua为交流逆变器的交流侧A相电压参考信号,ub为交流逆变器的交流侧B相电压参考信号,uc为交流逆变器的交流侧C相电压参考信号;
步骤S5:将步骤S4所获得的交流逆变器的交流侧三相电压参考信号经3s/2s变换,转换为两相静止坐标系上的α、β分量,即:
U α * U β * = T α β u a u b u c
T α β = 2 3 1 - 1 2 - 1 2 0 3 2 - 3 2
步骤S6:将步骤S5所得的两相静止坐标下的三相电压参考信号与对应分量实际电压相减,并通过步骤S2定义的准PR控制器的传递函数计算,获得两相静止坐标下的电流参考信号;
步骤S7:将步骤S6所获得的两相静止坐标下的电流参考信号与对应分量实际电流相减,并经过比例P调节器获得输出电压的参考信号,从而实现对交流逆变器的调节控制。
CN201510362466.0A 2015-06-26 2015-06-26 基于soc的光储式充电站准pr下垂控制方法 Active CN104901394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510362466.0A CN104901394B (zh) 2015-06-26 2015-06-26 基于soc的光储式充电站准pr下垂控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510362466.0A CN104901394B (zh) 2015-06-26 2015-06-26 基于soc的光储式充电站准pr下垂控制方法

Publications (2)

Publication Number Publication Date
CN104901394A true CN104901394A (zh) 2015-09-09
CN104901394B CN104901394B (zh) 2017-03-22

Family

ID=54033877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510362466.0A Active CN104901394B (zh) 2015-06-26 2015-06-26 基于soc的光储式充电站准pr下垂控制方法

Country Status (1)

Country Link
CN (1) CN104901394B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576718A (zh) * 2016-03-09 2016-05-11 国网江苏省电力公司电力科学研究院 一种分布式新能源高渗透率情形下交直流配网源荷优化分配控制方法
CN110518613A (zh) * 2019-09-25 2019-11-29 福州大学 电池储能系统的荷电状态平衡与无功分配的分散控制方法
CN111162556A (zh) * 2020-01-09 2020-05-15 中国科学院电工研究所 一种交直流配用电系统的分散式自主控制决策方法
CN112436548A (zh) * 2020-11-17 2021-03-02 青岛大学 一种光伏发电系统
CN112436550A (zh) * 2020-11-17 2021-03-02 青岛大学 一种中压光伏发电系统
CN112564115A (zh) * 2020-12-18 2021-03-26 中国电建集团贵阳勘测设计研究院有限公司 一种适用于均衡控制的多端sop自适应下垂控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803679B1 (en) * 2003-10-02 2004-10-12 Phoenixtec Power Co., Ltd. Parallel redundant power system and method for control of the power system
CN103956778A (zh) * 2014-04-16 2014-07-30 中国科学院广州能源研究所 一种基于相角下垂控制的微电网系统及组网方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803679B1 (en) * 2003-10-02 2004-10-12 Phoenixtec Power Co., Ltd. Parallel redundant power system and method for control of the power system
CN103956778A (zh) * 2014-04-16 2014-07-30 中国科学院广州能源研究所 一种基于相角下垂控制的微电网系统及组网方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郜登科等: "使用电压—相角下垂控制的微电网控制策略设计", 《电力系统自动化》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576718A (zh) * 2016-03-09 2016-05-11 国网江苏省电力公司电力科学研究院 一种分布式新能源高渗透率情形下交直流配网源荷优化分配控制方法
CN110518613A (zh) * 2019-09-25 2019-11-29 福州大学 电池储能系统的荷电状态平衡与无功分配的分散控制方法
CN110518613B (zh) * 2019-09-25 2022-10-28 福州大学 电池储能系统的荷电状态平衡与无功分配的分散控制方法
CN111162556A (zh) * 2020-01-09 2020-05-15 中国科学院电工研究所 一种交直流配用电系统的分散式自主控制决策方法
CN112436548A (zh) * 2020-11-17 2021-03-02 青岛大学 一种光伏发电系统
CN112436550A (zh) * 2020-11-17 2021-03-02 青岛大学 一种中压光伏发电系统
CN112436550B (zh) * 2020-11-17 2022-06-07 青岛大学 一种中压光伏发电系统
CN112436548B (zh) * 2020-11-17 2022-12-13 青岛大学 一种光伏发电系统
CN112564115A (zh) * 2020-12-18 2021-03-26 中国电建集团贵阳勘测设计研究院有限公司 一种适用于均衡控制的多端sop自适应下垂控制方法

Also Published As

Publication number Publication date
CN104901394B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN104901394A (zh) 基于soc的光储式充电站准pr下垂控制方法
Falahati et al. A new smart charging method for EVs for frequency control of smart grid
EP2529462B1 (en) Method for emulation of synchronous machine
Xia et al. Direct nonlinear primal–dual interior-point method for transient stability constrained optimal power flow
CN106300399A (zh) 一种基于svg的三相不平衡电流补偿方法
Neukirchner et al. Voltage unbalance reduction in the domestic distribution area using asymmetric inverters
CN105720594B (zh) 纯有功三相不平衡负荷补偿容量的补偿方法
CN103500998B (zh) 自适应前馈补偿的微电网控制方法和微电网孤岛运行微电压源控制器
US10574057B2 (en) Battery control methods and circuits, and energy storage to grid connection systems
CN105576644A (zh) 一种直流微电网功率变换器并联运行控制方法
CN103840695B (zh) 一种光伏并网逆变器控制参数的辨识方法
CN107154621A (zh) 直流微电网储能单元dc‑dc换流器的虚拟同步发电机控制方法
CN104201679B (zh) 抑制微网中电流谐波与三相不平衡的电流型逆变控制策略
CN110752762B (zh) 一种并网换流器并联虚拟电容的控制方法
CN108649560B (zh) 高渗透率分布式光伏发电集群实时仿真建模方法
CN104810843A (zh) 基于电池荷电状态的mw级电池储能系统有功功率控制方法
CN108646096A (zh) 适用于直流微电网的线路电感检测方法
Yang et al. A control method for converter-interfaced sources to improve operation of directional protection elements
Yixin et al. Fuzzy logic damping controller for FACTS devices in interconnected power systems
Guo et al. Single‐Phase Reactive Power Compensation Control for STATCOMs via Unknown System Dynamics Estimation
Wei et al. Frequency control in distribution feeders based on bidirectional V2G converter for EV
CN104600692A (zh) 天然气电站直流微电网混合cpu多重双向dc端口装置及其实现方法
Suul et al. A single-phase virtual synchronous machine for providing vehicle-to-grid services from electric vehicle battery chargers
CN104600746A (zh) 区域光伏储能系统并网变流器无源非线性控制方法
Deng et al. An improved additional control method for extending stable operating region of multi-terminal LVDC system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant