CN110518613A - 电池储能系统的荷电状态平衡与无功分配的分散控制方法 - Google Patents

电池储能系统的荷电状态平衡与无功分配的分散控制方法 Download PDF

Info

Publication number
CN110518613A
CN110518613A CN201910911953.6A CN201910911953A CN110518613A CN 110518613 A CN110518613 A CN 110518613A CN 201910911953 A CN201910911953 A CN 201910911953A CN 110518613 A CN110518613 A CN 110518613A
Authority
CN
China
Prior art keywords
state
charge
energy storage
storage system
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910911953.6A
Other languages
English (en)
Other versions
CN110518613B (zh
Inventor
陈飞雄
邓宏杰
邵振国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910911953.6A priority Critical patent/CN110518613B/zh
Publication of CN110518613A publication Critical patent/CN110518613A/zh
Application granted granted Critical
Publication of CN110518613B publication Critical patent/CN110518613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Abstract

本发明涉及一种电池储能系统的荷电状态平衡与无功分配的分散控制方法,包括以下步骤:步骤S1:通过过测量模块测得BESSs的输出电流和输出电压;步骤S2:根据得到的输出电流和输出电压,通过低通滤波器,得到相应的平均输出功率;步骤S3:将得到的平均输出功率,通过改进的p‑f下垂控制和改进后的Q‑V下垂控制,得到参考角频率与参考电压;步骤S4:将得到参考角频率与参考电压通过基准正弦信号发生器,得到合成电压;步骤S5:将合成电压传给PWM模块,通过PWM模块实现对BESSs的输出功率的控制。本发明实现了BESSs的荷电状态平衡、输出无功功率按比例分配以及即插即用的功能。

Description

电池储能系统的荷电状态平衡与无功分配的分散控制方法
技术领域
本发明涉及电池储能系统控制领域,具体涉及一种电池储能系统的荷电状态平衡与无功分配的分散控制方法。
背景技术
电池储能系统(Battery Energy Storage Systems,BESSs)作为微电网的重要组成部分,主要用于解决微电网中光伏与风机发电的间歇性所带来的电网功率不匹配问题。然而,由于其特性以及运行状态的多样性,BESSs在充放电的过程中可能引起荷电状态不平衡状况,进而造成个别电池储能系统提前退出运行,因此需要采用一种合理的控制方法,使得荷电状态平衡在运行中保持平衡。此外,由于微电网不同于以往线路阻抗,不呈感性而呈阻性,故BESSs在运行中还会存在无功功率输出不均的问题。当BESSs的输出功率不能按比例进行分配时,容易造成个别BESS的输出功率超出容许值,从而导致微电网控制策略的失效或者系统的崩溃。
现有的控制方法中主要分为集中控制、分布式控制和分散控制。
集中控制主要基于全局信息与中心控制器来进行控制,因此存在较大的缺陷,例如单点故障的脆弱性、有限的灵活性以及隐私问题等。
分布式控制仅需要当地的信息,因此能够弥补集中控制的不足,但是分布式通信网络的延迟和通信失败会导致分布式控制器的故障。
在分散控制中,主要采用下垂控制方法来对BESSs进控制,即p-f下垂控制方法和Q-V下垂控制方法。其中,传统的控制原理为
根据(1)式设计p-f与Q-V下垂控制,但由于BESSs的频率相等,而参考电压幅值不相等,即
将式(2)和(3)代入(1),可得
根据以上分析,可得传统的下垂控制方法能够实现BESSs的有功功率按比例分配,但不能实现无功功率的按比例分配,然而微网中无功功率的按比例分配又是十分重要的。此外,传统的下垂控制方法也未能兼顾荷电状态平衡,因此需要对传统的下垂控制方法进行改进。然而,目前改进下垂控制方法的数学建模大都比较复杂,增加了控制的复杂性,限制了使用范围,未能实现电池储能系统的即插即用,故现有方法无法保证系统运行的稳定性和灵活性。
综上,现有的控制方法中存在的不足有:1.集中控制在单点故障、灵活性以及隐私问题方面存在着明显的缺陷;2.分布式控制在通信网络方面存在着延迟和通信失败等问题;3.传统的下垂控制未能实现无功功率按比率分配以及兼顾荷电状态平衡;4.采用分散下垂控制方法的下垂控制数学模型较为复杂,且不具有即插即用的功能。
发明内容
有鉴于此,本发明的目的在于提供一种电池储能系统的荷电状态平衡与无功分配的分散控制方法,现了BESSs的荷电状态平衡、输出无功功率按比例分配以及即插即用的功能。
为实现上述目的,本发明采用如下技术方案:
一种电池储能系统的荷电状态平衡与无功分配的分散控制方法,包括以下步骤:
步骤S1:通过测量模块测得BESSs的输出电流Iabc和输出电压Vabc
步骤S2:根据得到的输出电流Iabc和输出电压Vabc,通过低通滤波器,得到相应的平均输出功率;
步骤S3:将得到的平均输出功率,通过改进的p-f下垂控制和改进的Q-V下垂控制,得到参考角频率与参考电压;
步骤S4:将得到参考角频率与参考电压通过基准正弦信号发生器,得到合成电压;
步骤S5:将合成电压传给PWM模块,通过PWM模块实现对BESSs的输出功率的控制。
进一步的,所述步骤S2具体为:
步骤S21:将测量模块测得的输出电流Iabc和输出电压Vabc,获得各个BESS的瞬时有功功率P和无功功率Q;
步骤S22:通过低通滤波器,得到相应的平均有功功率P和平均无功功率Q。
进一步的,所述改进的p-f下垂控制具体为:
fi ref=fmax-mi·Ci(B,i)
Ci(B,i)=ai·PB,i+bi(1-SoCi)
式中,fi ref,mi,Ci(B,i)分别为第i个电池储能系统的参考频率、
下垂系数和基于荷电状态的功率分配方程;fmax是空载频率;ai和bi为第i个电池储能系统的基于荷电状态的功率分配方程的系数;PB,i和SoCi分别为第i个电池储能系统的输出功率和荷电状态。
进一步的,所述改进的Q-V下垂控制具体为:
式中,V*为电池储能系统的额定电压值;Qi,Vi ref,ni分别为第i个BESS的输出无功功率,参考电压和下垂系数;Vmax是BESSs的空载电压。
进一步的,所述基于荷电状态的功率分配方程的系数的选择具体如下:
采用库伦定律测量各个BESS的荷电状态,计算表达式为
SoCi=SoC0-μ∫PB,idt
式中,SoCi,SoC0分别是该时刻的荷电状态、荷电状态初始值,即通过初始荷电状态与输出有功功率可以求得该时刻的荷电状态;
选择合适的基于荷电状态的功率分配方程的系数,基于荷电状态的功率分配方程的系数的选择标准如下
根据上面的不等式,求解符合要求的基于荷电状态的功率分配方程的系数ai和bi
进一步的,所述步骤S3具体为:
步骤S31:将p-f下垂控制系数与基于荷电状态的功率分配方程Ci(B,i)相乘,用空载频率fmax减去上述相乘之积,获得参考频率fi ref
步骤S32:将经过低通滤波器所得的平均无功功率Q与Q-V下垂控制系数ni相乘,用空载电压Vmax减去上述相乘之积,获得参考电压Vi ref
本发明与现有技术相比具有以下有益效果:
本发明相较于现有的集中控制和分布式控制方法,采用了完全分散的控制方法,解决了控制的不灵活与通信的延迟等问题;相较于传统的下垂控制方法,实现了输出无功功率按比例分配以及荷电状态一致;相较于现有的分散控制方法,具有更为简单的数学模型,以及实现了即插即用。因此本发明提出的方法更具有优越性。
附图说明
图1是本发明控制流程图;
图2是本发明一实施例中的控制原理图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图1,本发明提供一种电池储能系统的荷电状态平衡与无功分配的分散控制方法,包括以下步骤:
步骤S1:通过测量模块测得BESSs的输出电流Iabc和输出电压Vabc
步骤S2:将输出电流Iabc和输出电压Vabc相乘,获得各个BESS的瞬时有功功率P和无功功率Q,再通过低通滤波器,得到相应的平均有功功率P和平均无功功率Q;
步骤S3:将得到的平均有功功率P和平均无功功率Q,通过改进的p-f下垂控制和改进的Q-V下垂控制,得到参考角频率与参考电压;
所述步骤S3具体为:
步骤S31:将p-f下垂控制系数与基于荷电状态的功率分配方程Ci(B,i)相乘,用空载频率fmax减去上述相乘之积,获得参考频率fi ref
步骤S32:将经过低通滤波器所得的平均无功功率Q与Q-V下垂控制系数ni相乘,用空载电压Vmax减去上述相乘之积,获得参考电压Vi ref。将参考电压Vi ref与定电压幅值V*相比较,并通过PI控制环节使得各参考电压等于额定电压幅值V*
步骤S4:将得到参考角频率与参考电压通过基准正弦信号发生器,得到合成电压;
步骤S5:将合成电压传给PWM模块,通过PWM模块实现对BESSs的输出功率的控制。
在本实施例中,所述改进的p-f下垂控制具体为:
fi ref=fmax-mi·Ci(B,i)
Ci(B,i)=ai·PB,i+bi(1-SoCi)
式中,fi ref,mi,Ci(B,i)分别为第i个电池储能系统的参考频率、下垂系数和基于荷电状态的功率分配方程;fmax是空载频率;ai和bi为第i个电池储能系统的基于荷电状态的功率分配方程的系数;PB,i和SoCi分别为第i个电池储能系统的输出功率和荷电状态。
在本实施例中,所述改进的Q-V下垂控制具体为:
式中,V*为电池储能系统的额定电压值;Qi,Vi ref,ni分别为第i个BESS的输出无功功率,参考电压和下垂系数;Vmax是BESSs的空载电压。
本实施例中,所述基于荷电状态的功率分配方程的系数的选择具体如下:
采用库伦定律测量各个BESS的荷电状态,计算表达式为
SoCi=SoC0-μ∫PB,idt
式中,SoCi,SoC0分别是该时刻的荷电状态、荷电状态初始值,即通过初始荷电状态与输出有功功率可以求得该时刻的荷电状态;
选择合适的基于荷电状态的功率分配方程的系数,基于荷电状态的功率分配方程的系数的选择标准如下
根据上面的不等式,求解符合要求的基于荷电状态的功率分配方程的系数ai和bi
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种电池储能系统的荷电状态平衡与无功分配的分散控制方法,其特征在于,包括以下步骤:
步骤S1:通过测量模块测得BESSs的输出电流Iabc和输出电压Vabc
步骤S2:根据得到的输出电流Iabc和输出电压Vabc,通过低通滤波器,得到相应的平均输出功率;
步骤S3:将得到的平均输出功率,通过改进的p-f下垂控制和改进的Q-V下垂控制,得到参考角频率与参考电压;
步骤S4:将得到参考角频率与参考电压通过基准正弦信号发生器,得到合成电压;
步骤S5:将合成电压传给PWM模块,通过PWM模块实现对BESSs的输出功率的控制。
2.根据权利要求1所述的电池储能系统的荷电状态平衡与无功分配的分散控制方法,其特征在于,所述步骤S2具体为:
步骤S21:将测量模块测得的输出电流Iabc和输出电压Vabc,获得各个BESS的瞬时有功功率P和无功功率Q;
步骤S22:通过低通滤波器,得到相应的平均有功功率P和平均无功功率Q。
3.根据权利要求1所述的电池储能系统的荷电状态平衡与无功分配的分散控制方法,其特征在于,所述改进的p-f下垂控制具体为:
fi ref=fmax-mi·Ci(B,i)
Ci(B,i)=ai·PB,i+bi(1-SoCi)
式中,fi ref,mi,Ci(B,i)分别为第i个电池储能系统的参考频率、下垂系数和基于荷电状态的功率分配方程;fmax是空载频率;ai和bi为第i个电池储能系统的基于荷电状态的功率分配方程的系数;PB,i和SoCi分别为第i个电池储能系统的输出功率和荷电状态。
4.根据权利要求1所述的电池储能系统的荷电状态平衡与无功分配的分散控制方法,其特征在于,所述改进的Q-V下垂控制具体为:
式中,V*为电池储能系统的额定电压值;Qi,Vi ref,ni分别为第i个BESS的输出无功功率,参考电压和下垂系数;Vmax是BESSs的空载电压。
5.根据权利要求3所述的电池储能系统的荷电状态平衡与无功分配的分散控制方法,其特征在于,所述充放电成本系数的选择具体如下:
采用库伦定律测量各个BESS的荷电状态,计算表达式为
SoCi=SoC0-μ∫PB,idt
式中,SoCi,SoC0分别是该时刻的荷电状态、荷电状态初始值,即通过初始荷电状态与输出有功功率可以求得该时刻的荷电状态;
基于荷电状态的功率分配方程的系数的选择标准如下
根据上面的不等式,求解符合要求的基于荷电状态的功率分配方程的系数ai和bi
6.根据权利要求1所述的电池储能系统的荷电状态平衡与无功分配的分散控制方法,其特征在于,所述步骤S3具体为:
步骤S31:将p-f下垂控制系数与基于荷电状态的功率分配方程Ci(B,i)相乘,用空载频率fmax减去上述相乘之积,获得参考频率fi ref
步骤S32:将经过低通滤波器所得的平均无功功率Q与Q-V下垂控制系数ni相乘,用空载电压Vmax减去上述相乘之积,获得参考电压Vi ref
CN201910911953.6A 2019-09-25 2019-09-25 电池储能系统的荷电状态平衡与无功分配的分散控制方法 Active CN110518613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910911953.6A CN110518613B (zh) 2019-09-25 2019-09-25 电池储能系统的荷电状态平衡与无功分配的分散控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910911953.6A CN110518613B (zh) 2019-09-25 2019-09-25 电池储能系统的荷电状态平衡与无功分配的分散控制方法

Publications (2)

Publication Number Publication Date
CN110518613A true CN110518613A (zh) 2019-11-29
CN110518613B CN110518613B (zh) 2022-10-28

Family

ID=68632500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910911953.6A Active CN110518613B (zh) 2019-09-25 2019-09-25 电池储能系统的荷电状态平衡与无功分配的分散控制方法

Country Status (1)

Country Link
CN (1) CN110518613B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224416A (zh) * 2020-02-19 2020-06-02 燕山大学 基于soc均衡的级联型储能变换器并联控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214754A1 (en) * 2014-01-27 2015-07-30 Lsis Co., Ltd. Method of controlling charging and discharging of battery energy storage device and the battery energy storage device for the same
CN104901394A (zh) * 2015-06-26 2015-09-09 上海电力学院 基于soc的光储式充电站准pr下垂控制方法
CN105356514A (zh) * 2015-10-22 2016-02-24 成都鼎智汇科技有限公司 一种可自动实现电压平衡的风光一体发电系统的监控方法
CN105932663A (zh) * 2016-05-31 2016-09-07 西南交通大学 一种无需互联通信的分布式直流储能系统及其控制方法
CN106849164A (zh) * 2017-02-17 2017-06-13 中南大学 一种孤岛微电网统一SoC平衡控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214754A1 (en) * 2014-01-27 2015-07-30 Lsis Co., Ltd. Method of controlling charging and discharging of battery energy storage device and the battery energy storage device for the same
CN104901394A (zh) * 2015-06-26 2015-09-09 上海电力学院 基于soc的光储式充电站准pr下垂控制方法
CN105356514A (zh) * 2015-10-22 2016-02-24 成都鼎智汇科技有限公司 一种可自动实现电压平衡的风光一体发电系统的监控方法
CN105932663A (zh) * 2016-05-31 2016-09-07 西南交通大学 一种无需互联通信的分布式直流储能系统及其控制方法
CN106849164A (zh) * 2017-02-17 2017-06-13 中南大学 一种孤岛微电网统一SoC平衡控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224416A (zh) * 2020-02-19 2020-06-02 燕山大学 基于soc均衡的级联型储能变换器并联控制方法及系统
CN111224416B (zh) * 2020-02-19 2023-12-29 燕山大学 基于soc均衡的级联型储能变换器并联控制方法及系统

Also Published As

Publication number Publication date
CN110518613B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
Aktas et al. Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications
Khorsandi et al. A decentralized control method for a low-voltage DC microgrid
CN110137992B (zh) 一种孤岛直流微电网协调稳定运行控制方法
CN104868500A (zh) 一种适用于微电网逆变器并联运行控制方法
CN107017615B (zh) 一种基于一致性的直流电弹簧分布式控制方法及系统
CN110637403B (zh) 混合储能系统
CN110808599B (zh) 一种孤岛直流微电网并联多储能荷电状态均衡控制方法
CN107482659B (zh) 交流微电网离网状态下混合储能系统协调控制方法
Nagliero et al. Analysis of a universal inverter working in grid-connected, stand-alone and micro-grid
Palizban et al. Power sharing for distributed energy storage systems in AC microgrid: Based on state-of-charge
CN104810843A (zh) 基于电池荷电状态的mw级电池储能系统有功功率控制方法
CN112713605A (zh) 一种交流微电网非等容电池储能单元soc均衡方法
CN112310990A (zh) 一种基于荷电状态的直流微电网多储能系统均衡控制方法
CN105870963B (zh) 一种基于频率电压斜率控制的vsc换流站控制方法
Deshmukh et al. A control algorithm for energy management and transient mitigation in DC microgrid
CN110208700A (zh) 一种直流微网中储能系统虚拟电池开路电压的计算方法
KR101689017B1 (ko) 마이크로그리드 내 다수 bess의 퍼지 드룹 제어 시스템 및 방법
CN112865065A (zh) 含高渗透率光储的配电网协调控制方法和系统
CN103997042B (zh) 电压调节方法、逆变器及微电网系统
CN110518613A (zh) 电池储能系统的荷电状态平衡与无功分配的分散控制方法
Huu et al. Adaptive coordinated droop control for multi-battery storage
CN110277793A (zh) 一种两级式光伏逆变器主动功率平衡控制方法
CN116404671A (zh) 基于分层协同控制的直流微电网多储能荷电状态均衡策略
CN110112723A (zh) 一种直流微电网离网状态下的下垂控制方法
Männel et al. State of charge based characteristic diagram control for energy storage systems within industrial DC microgrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant