CN104892964A - 一种聚丙烯/镀镍玻璃纤维复合材料的制备方法 - Google Patents

一种聚丙烯/镀镍玻璃纤维复合材料的制备方法 Download PDF

Info

Publication number
CN104892964A
CN104892964A CN201510294635.1A CN201510294635A CN104892964A CN 104892964 A CN104892964 A CN 104892964A CN 201510294635 A CN201510294635 A CN 201510294635A CN 104892964 A CN104892964 A CN 104892964A
Authority
CN
China
Prior art keywords
polypropylene
coated glass
glass fibres
nickel coated
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510294635.1A
Other languages
English (en)
Other versions
CN104892964B (zh
Inventor
杨雅琦
董春雨
刘亚青
段宏基
赵贵哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201510294635.1A priority Critical patent/CN104892964B/zh
Publication of CN104892964A publication Critical patent/CN104892964A/zh
Application granted granted Critical
Publication of CN104892964B publication Critical patent/CN104892964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种提高聚丙烯(PP)/镀镍玻璃纤维(NCGF)复合材料导电性能和力学性能的制备方法,将聚丙烯、成核剂、镀镍玻璃纤维通过熔融共混的方法加工成型,制备得到具有良好导电性能和力学性能的聚丙烯/镀镍玻璃纤维复合材料。本方法通过加入成核剂提高聚丙烯的结晶度,增加晶区占有体积,通过晶区的体积排除效应,使导电玻璃纤维均匀地分布在非晶区,提高其在非晶区的有效浓度,促进导电网络的形成,使复合材料电导率显著提高。同时,成核剂的加入使聚丙烯结晶度提高、晶粒均匀细化,有利于复合材料强度的增加。本方法操作过程简单,易于实现工业化生产,制备的复合材料导电性及稳定性好,可用于电磁屏蔽、电子电器、抗静电等领域。

Description

一种聚丙烯/镀镍玻璃纤维复合材料的制备方法
技术领域
本发明涉及一种导电高分子复合材料的制备方法,具体为一种具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料的制备方法。
背景技术
导电高分子复合材料通常是指以高分子材料为基体,导电物质为填料,按照一定比例复合制备而成的具有一定导电功能的复合材料。该类复合材料由于具有加工性能好、电阻可调范围大、成本低、可设计性强等优点,逐渐成为导电高分子材料研究领域的热点。经过多年的研究与发展,导电高分子材料已经逐步进入了实际应用阶段。由于较好的综合性能,具有不同电导率和特殊功能的导电高分子复合材料可作为抗静电材料、半导体材料、导电材料、电热材料以及电磁屏蔽材料等在电子电气、电子封装、军事通讯、能源、热控等多个行业得到广泛应用。
聚丙烯是目前世界上应用最广泛的高分子材料之一,由于其原料来源丰富,价格低廉,综合性能优良,被广泛应用于日用家电、汽车工业、医药卫生等领域。改性后的聚丙烯可以作为工程塑料应用于部分工程领域,因此其发展将继续处于领先地位。随着现代科技的飞速发展,聚丙烯的导电功能化成为聚丙烯改性的重要方向之一。具有不同电导率的聚丙烯复合材料可作为抗静电材料、电磁屏蔽材料、导电功能材料应用于微电子、军事通讯、太阳能电池、航空航天等高精尖领域。
在保证良好导电性能的同时降低导电逾渗值是目前导电高分子复合材料的重点研究方向之一。实现导电填料的选择性分布是提高导电复合材料电导率,降低逾渗值的重要手段。导电填料的选择性分布是指在两种(相)或多种(相)不相容聚合物共混体系中,通过控制组分配比或制备工艺,使导电填料选择性分布在某一连续相或连续的不相容组分界面处,以提高导电填料在所分布区域的有效浓度,实现导电填料在基体中的连续性分布和导电网络的高效构建。Jinrui Huang等人[Huang J, et al. Carbon. 2014, 73: 267-274]以不相容的聚乳酸(PLA)和聚己内酯(PCL)为基体(二者质量比为1:1),多壁碳纳米管(MWCNT)为导电填料,按PLA-MWCNT-PCL的加料顺序,通过熔融共混实现MWCNT在二组分之间的界面分布,所制备的导电复合材料的逾渗值仅为0.025 wt%。
此外,开发新型的导电填料和特殊的制备方法实现导电网络的高效构建是两种提高电导率、控制成本的有效方法。
采用化学镀技术制备的镀金属玻璃纤维是一种性能优异的复合型导电填料。由于在玻璃纤维表面沉积了一层均匀、致密的金属镀层,从而其具有良好的导电性,同时还可保持玻璃纤维强度高、抗蠕变性和热稳定性好的优良性能。本课题组[Guo C, et al. Materials Letters. 2014, 143: 124-127]采用镀镍玻璃纤维作为导电填料,聚丙烯为基体,利用玻璃纤维作为骨架材料,使包覆在玻璃纤维上的金属镍分布在聚丙烯与玻璃纤维的界面处,同时利用玻璃纤维具有较大长径比的特点,实现镀镍玻璃纤维在基体中的高效连接,制备的复合材料的逾渗值仅为0.46 vol%,当复合体系中镍的含量增加到1.17 vol%时,复合材料的电导率可达到8.7 S/cm。
AboutalebAmeli等人 [Ameli A, et al. ACS applied materials & interfaces.2014, 6(14): 11091-11100.] 以聚丙烯为基体,不锈钢纤维为导电填料,CO2为增塑剂和润滑剂制备的泡孔材料,利用材料中气孔的体积排除效应使不锈钢纤维分布在聚丙烯中,同时在加工过程中CO2可降低聚丙烯粘度,促进不锈钢纤维在不同方向上的分布,进而降低导电逾渗值。当孔隙率为35%时,材料的逾渗值降低至0.21 vol%,电导率由10-13增至10-3 S/cm,提高了10个数量级。
但是,上述方法在降低复合材料导电逾渗值的同时往往也会降低材料的机械性能,从而限制了其在工程领域的应用。因此,探寻一种兼顾导电性能和机械性能的导电高分子复合材料的制备方法仍是今后研究的重点与难点之一。
发明内容
本发明为了解决上述问题,提供一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,该方法制备的聚丙烯/镀镍玻璃纤维复合材料具有低逾渗值和高导电性同时兼具良好机械性能。
本发明是采用如下的技术方案实现的:一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,包括以下步骤:
将转矩流变仪升温至180~210 ℃,向其中加入聚丙烯,密炼5~10 min,转速为30~60 rpm,使聚丙烯充分熔融;
向转矩流变仪中加入质量为聚丙烯质量0.2~0.5%的成核剂,混炼5~8 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使熔融状态的聚丙烯与镀镍玻璃纤维的体积比为73:27 ~ 92:8,混炼8~10 min,得到分散均匀的混合物;
将得到的混合物在190~210 ℃、10 ~ 15 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
本发明以聚丙烯为基体,镀镍玻璃纤维为导电填料,通过熔融共混-热压成型工艺制备导电复合材料。以玻璃纤维作为骨架材料,使包覆在其表面的金属镍选择性分布在玻璃纤维与聚丙烯界面处,同时利用玻璃纤维易于搭接的特点,实现导电网络的高效构建。本方法创造性地在制备方法中加入成核剂,提高聚丙烯的结晶度,增加晶区占有体积,通过晶区的体积排除效应,使导电玻璃纤维均匀地分布在非晶区,提高其在非晶区的有效浓度,促进导电网络的完善,使电导率提高。同时,结晶度的提高和晶粒的均匀细化使分子间的作用力增加,有利于复合材料强度的提高。当聚丙烯与镀镍玻璃纤维的体积比为73.27:26.73,并向其中加入质量为聚丙烯质量0.2%的成核剂DBS,所制备的复合材料的电导率可达10.4 S/cm,与纯聚丙烯相比,其电导率提高了18个数量级,同时拉伸强度可保持28~30 MPa。
上述的一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,所述聚丙烯为均聚聚丙烯,其熔融指数为2~4 g/10min,电导率为10-16~10-18 S/cm。均聚聚丙烯由单一丙烯单体聚合而成,具有较高的结晶度、刚性和耐热性。
上述的一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,所述镀镍玻璃纤维的直径为11~17 μm,长径比为15~20,电导率为102~103 S/cm,镀层厚度为0.1~0.2 μm,镀层均匀包覆在玻璃纤维表面。作为一种具有核壳结构的新型金属-无机复合导电填料,镀镍玻璃纤维既具有金属镍良好的导电性能,又兼有玻璃纤维良好的刚性。同时由于玻璃纤维较大的长径比,易于在聚丙烯中相互搭接形成导电通路,有利于导电逾渗值的降低。
上述的一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,所述成核剂为山梨醇类成核剂DBS,粒径<3 μm,熔点>240℃。该类成核剂(DBS)对PP制品的透明性、表面光泽度、刚性及其他热性能和力学性能均有显著的改善效果,而且与PP有较好的相容性。
本发明的优点在于所制备的聚丙烯/镀镍玻璃纤维复合材料具有优异的导电性能和良好的机械性能。与未加成核剂的体系相比,加入成核剂后,由于聚丙烯晶区的体积排除效应和金属镍的连续界面分布,复合材料的导电逾渗值降低,电导率提高。同时由于聚丙烯结晶度的增大,使复合材料的拉伸性能提高,拓宽了聚丙烯导电复合材料的应用领域。本方法操作过程和工艺较为简单,对原料无需特殊处理,可有效降低成本,易于实现聚丙烯/镀镍玻璃纤维导电复合材料的工业化生产。
附图说明
图1为复合材料的电导率随金属镍含量变化的曲线图。图中实线和虚线分别为PP/NCGF/DBS和PP/NCGF复合材料的电导率随金属镍含量变化的曲线。可以看出,当镍含量相同时,加入成核剂后,复合材料的电导率明显提高。图中右下角所示为根据理论公式σ=σ0(φ-φc)t计算得到的导电逾渗值线性拟合曲线,计算得到复合材料的导电逾渗值为φc=0.35vol%,比未加成核剂的PP/NCGF的逾渗值(0.46 vol%)降低了23.9%。
图2为复合材料的拉伸强度随镀镍玻璃纤维含量变化的曲线图。图中所示实线和虚线分别为PP/NCGF/DBS和PP/NCGF复合材料的拉伸强度随NCGF含量变化的曲线,可以看出,加入成核剂后,复合材料的拉伸强度明显提高。
具体实施方式
实施例一:
将转矩流变仪升温至200 ℃,向其中加入30 g均聚聚丙烯,密炼5 min,转速为60 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.06 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.2%,混炼5 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为91.64:8.36,混炼8 min,得到分散均匀的混合物;
将混合物在190 ℃、10 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例二:
将转矩流变仪升温至200 ℃,向其中加入50 g均聚聚丙烯,密炼6 min,转速为60 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.1 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.2%,混炼8 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为89.16:10.84,混炼10 min,得到分散均匀的混合物;
将混合物在190 ℃、15 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例三:
将转矩流变仪升温至200 ℃,向其中加入40 g均聚聚丙烯,密炼7 min,转速为60 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.08 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.2%,混炼5 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为87.77:12.23,混炼10 min,得到分散均匀的混合物;
将得到的混合物在190 ℃、12 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例四:
将转矩流变仪升温至200 ℃,向其中加入30 g均聚聚丙烯,密炼5 min,转速为60 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.06 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.2%,混炼7 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为86.49: 13.51,混炼10 min,得到分散均匀的混合物;
将得到的混合物在190 ℃、14 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例五:
将转矩流变仪升温至200 ℃,向其中加入30 g均聚聚丙烯,密炼8 min,转速为60 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.06 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.2%,混炼6 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为73.27: 26.73,混炼8 min,得到分散均匀的混合物;
将得到的混合物在200 ℃、15 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
下表为实施例一到实施例五所制得复合材料的电导率和拉伸强度
实施例六:
将转矩流变仪升温至180 ℃,向其中加入40 g均聚聚丙烯,密炼5 min,转速为30 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.08 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.2%,混炼5 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为73: 27,混炼8 min,得到分散均匀的混合物;
将得到的混合物在190 ℃、10 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例七:
将转矩流变仪升温至190 ℃,向其中加入40 g均聚聚丙烯,密炼6 min,转速为40 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.1 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.25%,混炼6 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为77: 23,混炼9 min,得到分散均匀的混合物;
将得到的混合物在200 ℃、15MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例八:
将转矩流变仪升温至200 ℃,向其中加入40 g均聚聚丙烯,密炼7 min,转速为50 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.12 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.3%,混炼7min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为81:19,混炼10 min,得到分散均匀的混合物;
将得到的混合物在210 ℃、14MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例九:
将转矩流变仪升温至210 ℃,向其中加入40 g均聚聚丙烯,密炼8 min,转速为60 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.14 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.35%,混炼8min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为85:15,混炼9 min,得到分散均匀的混合物;
将得到的混合物在200 ℃、13MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例十:
将转矩流变仪升温至190 ℃,向其中加入40 g均聚聚丙烯,密炼9min,转速为35 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.16 g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.4%,混炼7min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为89: 11,混炼8min,得到分散均匀的混合物;
将得到的混合物在190 ℃、12MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
实施例十一:
将转矩流变仪升温至200 ℃,向其中加入40 g均聚聚丙烯,密炼10min,转速为45 rpm,使均聚聚丙烯充分熔融;
向转矩流变仪中加入0.2g山梨醇类成核剂DBS,山梨醇类成核剂DBS的质量为均聚聚丙烯质量的0.5%,混炼6min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为92: 8,混炼10min,得到分散均匀的混合物;
将得到的混合物在210 ℃、11MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。

Claims (4)

1.一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,其特征在于包括以下步骤:
将转矩流变仪升温至180~210 ℃,向其中加入聚丙烯,密炼5~10 min,转速为30~60 rpm,使聚丙烯充分熔融;
向转矩流变仪中加入质量为聚丙烯质量0.2~0.5%的成核剂,混炼5~8 min,使二者均匀混合;
再向其中加入镀镍玻璃纤维,使聚丙烯与镀镍玻璃纤维的体积比为73:27 ~ 92:8,混炼8~10 min,得到分散均匀的混合物;
将得到的混合物在190~210 ℃、10 ~ 15 MPa的条件下热压成型,得到具有高电导率和强度的聚丙烯/镀镍玻璃纤维复合材料。
2.根据权利要求1所述的一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,其特征在于所述聚丙烯为均聚聚丙烯,其熔融指数为2~4 g/10min,电导率为10-16~10-18 S/cm。
3.根据权利要求1或2所述的一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,其特征在于所述镀镍玻璃纤维的直径为11~17 μm,长径比为15~20,电导率为102~103 S/cm,镀层厚度为0.1~0.2 μm,镀层均匀包覆在玻璃纤维表面。
4.根据权利要求1或2所述的一种聚丙烯/镀镍玻璃纤维复合材料的制备方法,其特征在于所述成核剂为山梨醇类成核剂DBS,粒径<3 μm,熔点>240℃。
CN201510294635.1A 2015-06-02 2015-06-02 一种聚丙烯/镀镍玻璃纤维复合材料的制备方法 Active CN104892964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510294635.1A CN104892964B (zh) 2015-06-02 2015-06-02 一种聚丙烯/镀镍玻璃纤维复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510294635.1A CN104892964B (zh) 2015-06-02 2015-06-02 一种聚丙烯/镀镍玻璃纤维复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104892964A true CN104892964A (zh) 2015-09-09
CN104892964B CN104892964B (zh) 2017-08-25

Family

ID=54025960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510294635.1A Active CN104892964B (zh) 2015-06-02 2015-06-02 一种聚丙烯/镀镍玻璃纤维复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104892964B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255011A (zh) * 2015-11-17 2016-01-20 中北大学 聚丙烯/镀镍玻璃纤维/二氧化钛复合材料及其制备方法
CN105295178A (zh) * 2015-12-01 2016-02-03 中北大学 一种超高分子量聚乙烯/镍导电复合材料的制备方法
CN106009517A (zh) * 2016-06-22 2016-10-12 中北大学 一种环氧树脂/镀镍碳纤维复合导电泡沫及其制备方法
CN106280371A (zh) * 2016-08-24 2017-01-04 五行科技股份有限公司 一种包含导电玻璃纤维的抗静电模塑组合物及其制备方法
CN109705533A (zh) * 2019-01-22 2019-05-03 重庆纤维研究设计院股份有限公司 一种树脂/镀铜玻璃纤维复合材料的制备方法及其产品和应用
CN114030170A (zh) * 2021-10-09 2022-02-11 万华化学(宁波)有限公司 一种多层结构高屏蔽效能增强聚丙烯复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174228A (zh) * 2011-03-15 2011-09-07 中北大学 一种聚丙烯成核剂及其制备方法
CN104231439A (zh) * 2014-09-25 2014-12-24 中北大学 一种聚丙烯/镀镍玻璃纤维导电复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174228A (zh) * 2011-03-15 2011-09-07 中北大学 一种聚丙烯成核剂及其制备方法
CN104231439A (zh) * 2014-09-25 2014-12-24 中北大学 一种聚丙烯/镀镍玻璃纤维导电复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭静: "《高分子材料改性》", 31 January 2009 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255011A (zh) * 2015-11-17 2016-01-20 中北大学 聚丙烯/镀镍玻璃纤维/二氧化钛复合材料及其制备方法
CN105295178A (zh) * 2015-12-01 2016-02-03 中北大学 一种超高分子量聚乙烯/镍导电复合材料的制备方法
CN106009517A (zh) * 2016-06-22 2016-10-12 中北大学 一种环氧树脂/镀镍碳纤维复合导电泡沫及其制备方法
CN106009517B (zh) * 2016-06-22 2018-04-24 中北大学 一种环氧树脂/镀镍碳纤维复合导电泡沫及其制备方法
CN106280371A (zh) * 2016-08-24 2017-01-04 五行科技股份有限公司 一种包含导电玻璃纤维的抗静电模塑组合物及其制备方法
CN109705533A (zh) * 2019-01-22 2019-05-03 重庆纤维研究设计院股份有限公司 一种树脂/镀铜玻璃纤维复合材料的制备方法及其产品和应用
CN114030170A (zh) * 2021-10-09 2022-02-11 万华化学(宁波)有限公司 一种多层结构高屏蔽效能增强聚丙烯复合材料的制备方法
CN114030170B (zh) * 2021-10-09 2024-02-27 万华化学(宁波)有限公司 一种多层结构高屏蔽效能增强聚丙烯复合材料的制备方法

Also Published As

Publication number Publication date
CN104892964B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN104892964A (zh) 一种聚丙烯/镀镍玻璃纤维复合材料的制备方法
CN102585348B (zh) 一种增韧导电材料及其制备方法
CN103642155B (zh) 一种以石墨烯为导电剂的复合导电薄膜及其制备方法
CN103275448B (zh) 一种改性填料离子增强型聚四氟乙烯复合材料的制备方法
CN100430441C (zh) 聚酰胺/石墨纳米导电复合材料及其制备方法
CN104231439B (zh) 一种聚丙烯/镀镍玻璃纤维导电复合材料及其制备方法
CN101875779A (zh) 聚酰胺/纳米膨胀石墨/碳纤维高强导电复合材料及其制备方法
CN102191001B (zh) 一种环氧导电胶组合物
CN101717543A (zh) 含沥青基碳纤维导电塑料的制备
Song et al. Elevated conductivity and electromagnetic interference shielding effectiveness of PVDF/PETG/carbon fiber composites through incorporating carbon black
CN103113732A (zh) 一种导电高分子复合材料及其制备方法
CN104098893A (zh) 一种导电、抗菌的聚酰胺6/聚丙烯复合材料及其制备方法
CN102675893A (zh) 一种熔融共混制备聚合物基导电复合材料的方法
CN101875774A (zh) 聚芳醚/纳米膨胀石墨/碳纤维高强导电复合材料及其制备方法
CN104672828A (zh) Pc耐磨擦伤母粒
CN100434458C (zh) 聚酯/石墨纳米导电复合材料的制备方法
CN101955645A (zh) 一种耐腐蚀导电的工程塑料及其制备方法
CN104448872B (zh) 一种导电/抗静电木塑复合材料及其制备方法
CN100516136C (zh) 聚酯/石墨纳米导电复合材料及其制备方法
CN105255011B (zh) 聚丙烯/镀镍玻璃纤维/二氧化钛复合材料及其制备方法
CN104327777A (zh) 一种用镀银玻璃纤维制备导电胶的方法
CN103589045B (zh) 一种高导热耐高压电力电缆套管
CN106381115A (zh) 一种石墨基环氧树脂导电胶及其制备方法
CN109705533A (zh) 一种树脂/镀铜玻璃纤维复合材料的制备方法及其产品和应用
CN108682474B (zh) 一种高流动载带用pc/pe合金导电塑料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Duan Hongji

Inventor after: Yang Yaqi

Inventor after: Liu Yaqing

Inventor after: Dong Chunyu

Inventor after: Zhao Guizhe

Inventor before: Yang Yaqi

Inventor before: Dong Chunyu

Inventor before: Liu Yaqing

Inventor before: Duan Hongji

Inventor before: Zhao Guizhe

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant