CN104877158B - 一种表面酰肼功能化聚乙烯醇微球的制备 - Google Patents

一种表面酰肼功能化聚乙烯醇微球的制备 Download PDF

Info

Publication number
CN104877158B
CN104877158B CN201410069153.1A CN201410069153A CN104877158B CN 104877158 B CN104877158 B CN 104877158B CN 201410069153 A CN201410069153 A CN 201410069153A CN 104877158 B CN104877158 B CN 104877158B
Authority
CN
China
Prior art keywords
polyvinyl alcohol
microballoon
hydrazides
microparticles
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410069153.1A
Other languages
English (en)
Other versions
CN104877158A (zh
Inventor
倪才华
张猛
李旺
张亚南
王洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201410069153.1A priority Critical patent/CN104877158B/zh
Publication of CN104877158A publication Critical patent/CN104877158A/zh
Application granted granted Critical
Publication of CN104877158B publication Critical patent/CN104877158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

首先合成一种大分子交联剂(双醛基聚乙二醇),然后通过内源法将聚乙烯醇、大分子交联剂水溶液与石蜡油混合,高速搅拌制备成反相悬浮体系,再滴加盐酸溶液,通过氢质子向水相的扩散促使聚乙烯醇交联,制备直径分布在100微米到650微米的微球。再以二甲基氨基吡啶(DMAP)为催化剂,使聚乙烯醇微球(CPVA)表面的羟基与丁二酸酐(SA)反应,再经过羧基的酯化,以及与水合肼反应,制备了表面带有酰肼功能团的聚乙烯醇微球。该功能团化微球具有较好的强度和溶胀性,尺寸可调,对于阿霉素有较好的负载能力,可在酸刺激下缓慢释放。同时该微球生物相容性好,具有用作药物载体的前景。

Description

一种表面酰肼功能化聚乙烯醇微球的制备
技术领域
本发明涉及一种pH响应性共价负载阿霉素聚乙烯醇微球的制备,属于生物材料与缓释技术领域。
背景技术
直径在数百微米的微球可以作为治疗中晚期不能手术肝癌的一种药物剂型。通过选择性动脉插管,将微球输入靶组织,阻断肿瘤的供血动脉,从而达到治疗肝癌的目的。聚乙烯醇是一种水溶性高分子材料,动物实验表明,其完全无害,无毒性,无刺激性,并且有良好的生物相容性,可以作为药物缓释载体材料来制备靶向微球。
普通的栓塞微球在治疗癌症的过程中需要的周期较长,而普通的化疗药物又会带来较大的毒副作用。因此可以考虑在栓塞微球上载入抗癌药物,这样既可以增强栓塞微球对癌细胞的杀伤作用又可降低普通化疗药物的毒副作用。阿霉素分子中的羰基能与肼基反应生成腙,这是一种对酸敏感的连接键。因此,在普通栓塞微球中引入肼基并与阿霉素结合,制备出一种可以共价载药的栓塞微球便成为了可能。
传统方法制备聚乙烯醇微球是通过乳化法,用甲醛或戊二醛等小分子交联剂,然而所得到的微球硬度大,溶胀性小,弹性不佳;同时低级醛类做交联剂,如甲醛和戊二醛毒性大,在微球中有残留,用作生物材料具有一定程度的安全危险性。本发明解决此问题的方案是制备一种亲水性的大分子交联剂来制备聚乙烯醇微球。聚乙二醇无毒无害、亲水性好,将其末端羟基转变成醛基后可以对聚乙烯醇进行交联。该交联剂具有双重作用,一是保证聚乙烯醇有效交联,二是在微球中增加柔性和亲水性的-CH2CH2O-聚乙二醇链段后,使得微球亲水性、溶胀性及弹性增加,有利于用作栓塞微球的使用效果。然后对微球表面羟基进行改性引入肼基,并通过形成腙键与阿霉素结合,从而制备可共价载药的微球,且药物释放具有pH值响应性。预期该微球具有用作生物医用材料的前景。
发明内容
本发明提供一种酰肼功能化聚乙烯醇微球的制备方法。
(1)首先将亲水性大分子-聚乙二醇-末端羟基氧化转化为醛基,合成了一种大分子交联剂(双醛基聚乙二醇);
(2)通过内源法将聚乙烯醇、交联剂(双醛基聚乙二醇)水溶液与石蜡油混合,在稳定剂存在下,通过高速搅拌制备成反相悬浮体系,再滴加盐酸溶液,使氢质子向水相扩散促使聚乙烯醇交联,制备了直径分布在100到650微米之间的微球;
(3)再将此微球表面功能化,方法是以二甲基氨基吡啶(DMAP)为催化剂,使聚乙烯醇微球(CPVA)表面的羟基与丁二酸酐(SA)反应,再经过羧基的酯化,以及与水合肼反应,制备了表面带有酰肼功能团的聚乙烯醇微球。表面经酰肼功能化后微球可以通过共价键(腙键)负载阿霉素,在酸刺激下控制释放。
本发明的有益效果:
①改用亲水性大分子(双醛基聚乙二醇)做交联剂制备聚乙烯醇微球,使两种聚合物链段互穿在一起,增加了微球的亲水性、溶胀性和弹性,如果用作栓塞微球,可增强使用效果。
②通过内源法合成聚乙烯醇微球,交联速度平缓,两种聚合物链段分布均匀。
③利用共价键负载阿霉素的微球,其稳定性提高,减少了药物的泄露和突释,可以酸刺激控制释放。
④本发明避免使用毒性的低分子交联剂如甲醛和戊二醛等,环境友好,产物的生物相容性和安全性提高。
附图说明
图1聚乙烯醇微球表面酰肼功能化合成路线图。
图2聚乙烯醇微球的显微照片图。
图3不同微球的红外光谱分析图。图中(1)是聚乙烯醇微球的红外谱图;(2)是酰肼功能化改性后的聚乙烯醇微球的红外谱图;(3)是负载阿霉素后改性聚乙烯醇微球的红外谱图。
图4载药微球中的阿霉素在不同pH缓冲溶液中累积释放图。
具体实施方式:
实施例1:
双醛基聚乙二醇的合成:将PEG200(10克,50mmol)溶解到360毫升无水二甲基亚砜和40毫升氯仿的混合溶剂中,将乙酸酐(58ml,600mmol)加入到上述溶液中搅拌均匀,在室温(25℃)反应10小时。然后将混合物倾入1500毫升乙醚中沉淀。将该沉淀物用氯仿溶解和用乙醚重沉淀,反复操作两次,真空干燥后得到粘性液体,得到双醛基聚乙二醇,PEGCHO-200。
实施例2:
将PEG200分别改成PEG400,PEG1000,PEG2000,其余操作同实施例1。
实施例3:
聚乙烯醇微球的制备:将聚乙烯醇(牌号:1750)、交联剂(双醛基聚乙二醇PEGCHO-200)按照质量比分别为为10∶3,10∶5,10∶7,10∶9溶解在去离子水中,按照水/油比为1∶4将上述水溶液与石蜡油混合,添加3%span80,高速搅拌制备成反相悬浮体系。配制1∶1盐酸溶液,缓慢滴加到上述悬浮体系中,通过氢质子向水相的扩散促使聚乙烯醇交联。反应8小时结束后过滤,将微球用去离子水反复浸泡洗涤,真空干燥后得到制备直径分布在100微米到650微米之间的微球。
实施例4:
表面酰肼功能化聚乙烯醇微球的制备:合成路线见图1。
第一步:以权利要求3中所述聚乙烯醇微球为主体,以二甲基氨基吡啶(DMAP)为催化剂,按聚乙烯醇微球与丁二酸酐质量比在1∶1到1∶10之间混合后加入到丁二酸酐的吡啶溶液中(50mL),反应6小时后经过滤、干燥后得到接枝有丁二酸酐的微球。
第二步:在100mL三口烧瓶中加入上述微球和27.6g乙醇,磁力搅拌下依次加入25mL环己烷和一定量的一水合硫酸氢钠(质量范围在1.0g到5.0g之间)于70℃条件下反应6小时,停止反应后加入饱和碳酸氢钠溶液中和,过滤、乙醇洗涤并干燥即可得到相应酯化微球。
第三步:在250mL烧杯中加入乙酯化的上述微球和80mL乙醇和12g水合肼(80%),在40℃下反应5小时,经过滤干燥后即得连接酰肼基团的微球。
实施例5:
负载阿霉素聚乙烯醇微球的制备:首先配制50mL(浓度0.2mg/mL)的阿霉素溶液,调节pH值至中性后加入150mg连接酰肼基团的微球,常温下反应144小时,经过滤、干燥后即可得到载药微球。
实施例6:
在光学显微镜下观察聚乙烯醇微球的形貌(图2)。
实施例7:
用全反射傅里叶红外光谱仪进行结构测定。图3中(1)是聚乙烯醇微球(CPVA)的红外谱图;(2)是酰肼功能化改性后的聚乙烯醇微球(CPVA-SA)的红外谱图;(3)是负载阿霉素后改性聚乙烯醇微球(CPVA-SA-DOX)的红外谱图。对比CPVA和CPVA-SA谱图:CPVA-SA中1750cm-1处吸收峰的加强以及1611cm-1处出现的吸收峰是羧基中的羰基伸缩振动吸收峰,同时 3000cm-1和3300cm-1之间的毛峰是羧基中的羟基的特征吸收峰,由此可以说明SA已经成功的接枝到CPVA上;再对比CPVA-SA和CPVA-SA(DOX)谱图:CPVA-SA(DOX)中2960cm-1和3300cm-1处的尖峰是腙键和阿霉素中胺基的特征吸收峰,同时在1600cm-1和1750cm-1之间出现的多个毛峰是阿霉素中不同羰基的特征吸收峰,由此也证明了阿霉素的成功载入。
实施例8:
载药微球对阿霉素释放率的测定:配制等量但不同pH的PBS溶液,称取150mg载药微球分成等量的5份,分别放入pH值为4.0,5.0,6.0,7.0,7.4的上述PBS溶液中进行药物释放。在不同的时间点用紫外分光光度计测量溶液中阿霉素(DOX)的含量。图4为载药微球中的阿霉素在不同pH缓冲溶液中药物释放图。从图中可以看出载药微球中的阿霉素随着pH的降低释放速度越快,且累积释放量也越多。

Claims (5)

1.一种微米级聚乙烯醇微球的制备方法,其特征是制备过程经历了两步:
(1)将重10克、计50mmoL聚乙二醇PEG200溶解到360mL无水二甲亚砜和40mL氯仿的混合溶剂中,将体积58mL、计600mmoL乙酸酐加入到上述溶液中搅拌均匀,在25℃下反应10小时,然后将混合物倾入1500mL乙醚中沉淀,将该沉淀物用氯仿溶解和用乙醚重沉淀,反复操作两次,真空干燥后得到粘性液体,双醛基聚乙二醇,代号PEGCHO-200;
(2)通过内源法将聚乙烯醇与双醛基聚乙二醇PEGCHO-200按照质量比分别为10∶3、10∶5、10∶7或10∶9溶解在去离子水中,按照水/油比为1∶4将上述水溶液与石蜡油混合,添加3%span80,高速搅拌制备成反相悬浮体系,配制1∶1盐酸溶液,缓慢滴加到上述悬浮体系中,升温到45℃,通过氢质子向水相的扩散促使聚乙烯醇交联,反应8小时后结束,过滤微球,用去离子水反复浸泡洗涤,最后真空干燥后得到微球,微球直径可调,分布在100微米到650微米之间。
2.如权利要求1所述一种微米级聚乙烯醇微球的制备方法,其特征是聚乙二醇PEG200可用PEG400,PEG1000或PEG2000替代。
3.一种表面酰肼功能化聚乙烯醇微球,其特征是以权利要求1中的聚乙烯醇微球为主体,通过表面改性,形成酰肼功能化聚乙烯醇微球,其中酰肼基团的含量占聚乙烯醇微球重量的1%-5%。
4.一种表面酰肼功能化聚乙烯醇微球的制备方法,其特征是经过三步反应,将聚乙烯醇微球表面羟基转变为酰肼功能基团,三步反应分别为:
第一步:首先按权利要求1中所述方法制备微米级聚乙烯醇微球,以二甲基氨基吡啶为催化剂,按所述聚乙烯醇微球与丁二酸酐质量比在1∶1到1∶10之间混合后加入到丁二酸酐的吡啶溶液中,吡啶溶液体积为50mL,反应6小时后经过滤、干燥后得到接枝有丁二酸酐的微球;
第二步:在100mL三口烧瓶中加入上述微球和27.6g乙醇,磁力搅拌下依次加入25mL环己烷和一定量的一水合硫酸氢钠,其质量范围在1.0g到5.0g之间,于70℃条件下反应6小时,停止反应后加入饱和碳酸氢钠溶液中和,过滤、乙醇洗涤并干燥即可得到相应酯化微球;
第三步:在250mL烧杯中加入乙酯化的上述微球和80mL乙醇和12g水合肼,水合肼的浓度为80%,在40℃下反应5小时,经过滤干燥后即得表面酰肼功能化聚乙烯醇微球。
5.一种共价负载阿霉素栓塞微球的制备方法,其特征是按权利要求4所述方法制备任意一种表面酰肼功能化聚乙烯醇微球,然后配制50mL的阿霉素溶液,其浓度为0.2mg/mL,调节pH值至中性,加入150mg所述微球,常温下反应144小时,经过滤、干燥后即可得到载药微球。
CN201410069153.1A 2014-02-28 2014-02-28 一种表面酰肼功能化聚乙烯醇微球的制备 Active CN104877158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410069153.1A CN104877158B (zh) 2014-02-28 2014-02-28 一种表面酰肼功能化聚乙烯醇微球的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410069153.1A CN104877158B (zh) 2014-02-28 2014-02-28 一种表面酰肼功能化聚乙烯醇微球的制备

Publications (2)

Publication Number Publication Date
CN104877158A CN104877158A (zh) 2015-09-02
CN104877158B true CN104877158B (zh) 2018-05-08

Family

ID=53944855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410069153.1A Active CN104877158B (zh) 2014-02-28 2014-02-28 一种表面酰肼功能化聚乙烯醇微球的制备

Country Status (1)

Country Link
CN (1) CN104877158B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105921085B (zh) * 2016-05-10 2019-01-25 天津市双马香精香料新技术有限公司 复合型乳化剂原位交联壳聚糖季铵盐精油微胶囊的制备方法
CN110548173B (zh) * 2019-08-26 2021-10-26 苏州恒瑞迦俐生生物医药科技有限公司 一种具有微波增敏功效的化疗栓塞微球的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798138A (zh) * 2010-03-10 2010-08-11 大连理工大学 一种亲水抗生物污染的聚乙烯醇纳米微球制备方法
CN101918048A (zh) * 2008-01-11 2010-12-15 斯恩蒂斯有限公司 生物黏附水凝胶
CN102188717A (zh) * 2011-05-04 2011-09-21 浙江大学 一种自乳化阿霉素纳米药物及其制备方法
CN103357022A (zh) * 2013-06-08 2013-10-23 西安交通大学 一种双功能聚乙二醇-阿霉素偶联物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918048A (zh) * 2008-01-11 2010-12-15 斯恩蒂斯有限公司 生物黏附水凝胶
CN101798138A (zh) * 2010-03-10 2010-08-11 大连理工大学 一种亲水抗生物污染的聚乙烯醇纳米微球制备方法
CN102188717A (zh) * 2011-05-04 2011-09-21 浙江大学 一种自乳化阿霉素纳米药物及其制备方法
CN103357022A (zh) * 2013-06-08 2013-10-23 西安交通大学 一种双功能聚乙二醇-阿霉素偶联物及其制备方法

Also Published As

Publication number Publication date
CN104877158A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
Meng et al. Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery
Ganguly et al. Colon targeting of 5-fluorouracil using polyethylene glycol cross-linked chitosan microspheres enteric coated with cellulose acetate phthalate
Altin et al. Fabrication of “clickable” hydrogels via dendron− polymer conjugates
CN107550921B (zh) 一种纳米颗粒-高分子可注射复合水凝胶双载药体系及其制备方法
Karimi et al. Chitosan hydrogels cross-linked with tris (2-(2-formylphenoxy) ethyl) amine: Swelling and drug delivery
CN102634033B (zh) 葡聚糖基两亲性嵌段共聚物制备方法
CN102241790B (zh) 一种两亲性壳聚糖衍生物及其制备方法和应用
Zhang et al. Design of an “active defense” system as drug carriers for cancer therapy
Moyuan et al. A convenient scheme for synthesizing reduction‐sensitive chitosan‐based amphiphilic copolymers for drug delivery
CN104857525A (zh) 一种以聚乙二醇-b-聚ε-己内酯为载体的pH响应型抗肿瘤前药及其制备方法
Khoee et al. Ultrasound-assisted synthesis of pH-responsive nanovector based on PEG/chitosan coated magnetite nanoparticles for 5-FU delivery
Li et al. A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting
CN107854720A (zh) 具有造影功能的可载药多羟基聚合物栓塞微球及其制备方法
CN104001178A (zh) 一种聚乳酸-羟基乙酸共聚物纳米药物载体及其制备方法和应用
CN105131182B (zh) 普朗尼克‑聚(β‑氨基酯)聚合物及其合成和应用方法
Karimi et al. 1, 3, 5-Triazine-2, 4, 6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior
Kang et al. Modulation of cyclic topology toward enhanced drug delivery, from linear and tadpole-like to dumbbell-shaped copolymers
Che et al. Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery
CN104877158B (zh) 一种表面酰肼功能化聚乙烯醇微球的制备
CN103816054A (zh) 一种负载β-胡萝卜素的壳聚糖基自组装纳米胶束溶液及其制备方法
Pedro et al. Self‐aggregated nanoparticles of N‐dodecyl, N′‐glycidyl (chitosan) as pH‐responsive drug delivery systems for quercetin
Alfurhood et al. Poly (N-(2-hydroxypropyl) methacrylamide)–valproic acid conjugates as block copolymer nanocarriers
CN110354095A (zh) 靶向动脉粥样硬化的pH敏感透明质酸纳米载药颗粒及其制备方法
Tu et al. Fabrication of reduction‐sensitive amphiphilic cyclic brush copolymer for controlled drug release
CN104262600B (zh) 同一侧基上含有西弗碱和巯基的双重敏感型两亲性共聚物及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant