CN104852772A - 激光跳频水下致声数字通信系统与方法 - Google Patents

激光跳频水下致声数字通信系统与方法 Download PDF

Info

Publication number
CN104852772A
CN104852772A CN201510214601.7A CN201510214601A CN104852772A CN 104852772 A CN104852772 A CN 104852772A CN 201510214601 A CN201510214601 A CN 201510214601A CN 104852772 A CN104852772 A CN 104852772A
Authority
CN
China
Prior art keywords
laser
frequency hopping
signal
output
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510214601.7A
Other languages
English (en)
Inventor
何宁
吕杏利
蒋红艳
钟坤
廖欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201510214601.7A priority Critical patent/CN104852772A/zh
Publication of CN104852772A publication Critical patent/CN104852772A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明公开一种激光跳频水下致声数字通信系统与方法,其针对通信环境的信道特点,并保障通信双方在信息传输的可靠性和安全性,本发明将大气光通信与水下声通信相结合,利用激光跳频技术,通过信息加载于不同重频帧组成的编码来控制激光器进行激光发射,经大气传输使激光能量到达水面后以汽化或击穿方式与水介质发生互作用,从而把光波能量转化为声波能量在水下各异方向传播,通过水下一定范围内任何位置放置的水声采集器接收,可完成空中到水下的非视距数据通信,只要通信双方按照约定的激光跳频通信协议,通信双方的信息安全和保密性即可得到一定的保障,使开放信道环境下的通信方法更具实用价值。

Description

激光跳频水下致声数字通信系统与方法
技术领域
本发明涉及光通信领域和水声学领域,具体涉及一种激光跳频水下致声数字通信系统与方法。
背景技术
随着人们海洋活动的日益频繁,水声通信已不再局限于军事领域,而是广泛扩展到民用领域,如海底形貌测绘、水下目标控制等,通信的海洋应用拓展使水下通信的需求大为增加,同时也对通信技术有着越来越高的要求。在浩瀚的海域中,光波和电磁波在其中的传播衰减都非常大,传输距离十分有限,远不能满足人类日益活跃的海洋活动对通信的需要;利用蓝绿激光实现的海洋通信要求通信双方在视距下进行,同时传输光路复杂,接收对准技术要求高;利用电磁波实现的海洋通信要求水下目标定期浮到天线露出水面的深度,导致其通信目标的隐蔽性降低,因而也限制了这类海洋通信的发展。
发明内容
本发明所要解决的技术问题是传统海洋通信安全性差和对通信链路要求高等问题,提供一种激光跳频水下致声数字通信系统与方法。
为解决上述问题,本发明是通过以下技术方案实现的:
激光跳频水下致声数字通信系统,主要由信号发送计算机、数字调制模块、激光器、水声采集器、水声放大模块、数字解调模块和信号接收计算机组成;其中信号发送模块、数字调制模块和激光器位于水面上方;水声采集器、水声放大模块、数字解调模块和信号接收计算机位于水下;信号发送计算机的输出端经数字调制模块与激光器的输入端相连,激光器的输出端依次通过大气信道和水声信道后无线连接水声采集器,水声采集器的输出端经水声放大模块连接数字解调模块的输入端,数字解调模块的输出端与信号接收计算机相连。
上述方案中,所述数字调制模块包括单片机控制电路和驱动电路;单片机控制电路的输入端连接信号发送计算机,单片机控制电路的输出端与驱动电路的输入端相连,驱动电路的输出端连接激光器的输入端。
上述方案中,所述数字解调模块包括FPGA解码电路、信号输出电路和缓冲电路;FPGA解码电路的输入端经由缓冲电路与水声采集器的输出端相连,FPGA解码电路的输出端经由信号输出电路连接信号接收计算机。
上述方案中,信号采集放大模块包括前置放大电路、主放大电路和整形电路;前置放大电路的输入端与水声采集器的输出端相连,前置放大电路的输出端经主放大电路与整形电路的输入端连接,整形电路的输出端连接数字解调模块的输入端。
上述方案中,所述激光器为调Q脉冲固体激光器。
上述方案中,所述水声采集器为压电水听器。
上述系统所实现的激光跳频水下致声数字通信方法,包括如下步骤:
步骤1,信号发送计算机将待传数据信息送入数字调制模块;
步骤2,数字调制模块采用基频可调的ASK导频码对待传数据进行数字调制编码,通过每帧设定的导频码及可变间隔,使每帧长度依据重频和数据要求进行变化;
步骤3,数字调制模块输出的可变长数据帧编码经驱动后加载于激光器,并控制激光器输出间隔不同的激光,以获得激光跳频输出光信号;
步骤4,激光器输出的激光经由大气信道传输到水面下一定深度,与水介质直接发生光声效应,将激光能量信号转换为水下声波信号;
步骤5,声波信号经水声信道传输,由水声采集器接收转为电信号,电信号经过放大整形后输出到数字解调模块;
步骤6,数字解调模块通过检测每帧的导频码间隔确定重频频率和码元宽度,从而获得每帧码元信息,完成通信的数据解码;
步骤7,数字解调模块将解码后的数据送入接收计算机。
步骤2中,所述ASK导频码为帧长可变的ASK导频码。
步骤2的过程具体为:
步骤2.1,根据激光跳频频率和传送数据信息,计算对应码元间隔时间;
步骤2.2,定时产生占空比为50%的ASK码元,由此形成导频码;
步骤2.3,由导频码和待传数据组成的串行通信数据帧;
步骤2.4,采用串行通信数据帧的上升沿去激励激光器按照每帧码元间隔发射光脉冲信号。
步骤3中,激光器发出的光脉冲宽度<10ns,以利于提高光声互作用的瞬时转换效率。
步骤3中,激光器输出间隔不同的,并由ASK码元控制的1.06μm波长的激光。
针对通信环境的信道特点,并保障通信双方在信息传输的可靠性和安全性,本发明将大气光通信与水下声通信相结合,利用激光跳频技术,通过信息加载于不同重频帧组成的编码来控制激光器进行激光发射,经大气传输使激光能量到达水面后以汽化或击穿方式与水介质发生互作用,从而把光波能量转化为声波能量在水下各异方向传播,通过水下一定范围内任何位置放置的水声采集器接收,可完成空中到水下的非视距数据通信,只要通信双方按照约定的激光跳频通信协议,通信双方的信息安全和保密性即可得到一定的保障,使开放信道环境下的通信方法更具实用价值。
与现有技术相比,本发明具有如下特点:
1.激光跳频编解码采用基频可调的ASK帧结构,在发射端控制激光器发射;在接收端按照采集码元特征完成解码。通信中采用帧长可变的基频可调ASK通信帧,这种帧结构是一种非定长的帧格式,即信号传输的帧长在通信过程中实时变化,设定每帧开始2~5位为高电平的导频码,可确保通信码元识别的准确性,传送信息码元为8~16位,其码元脉冲间隔代表控制激光器的重复基频,依据脉冲间隔确定码元宽度和每帧的“0”和“1”代码,当基频不同所构成的数据帧长度也不同。通过可变帧长的激光跳频方法使激光发射输出频率按照一定规律变化,降低截获概率,有利于保密通信。
2.采用适合大气传输窗口的1.06μm波长激光,该激光为红外波段,通信中肉眼视觉无法识别,有利于信号的保密传输;同时该波长具有较好的激光致声转换效率,同时选择ASK码元前沿触发控制窄脉冲输出的激光器可提高瞬时功率,有利于获取较大的水下声信号声源级。
3.大气信道和水声信道为无线信道,激光脉冲信号直接与水进行互作用后转化为声波送达水声采集器,而无需经过中继换能器;在开放信道环境下,通信系统的搭建不需要进行复杂的光路设计、水下中继和水中电缆铺设,通信终端位置安装灵活方便,从光到声的转换实现非视距通信。
附图说明
图1为激光跳频水下致声数字通信系统的系统框图。
图2为图1中数字调制模块的原理框图。
图3为图1中数字解调模块的原理框图。
具体实施方式
一种激光跳频水下致声数字通信系统,如图1所示,主要由信号发送计算机、数字调制模块、激光器、水声采集器、水声放大模块、数字解调模块和信号接收计算机组成。其中信号发送模块、数字调制模块和激光器位于水面上方。水声采集器、水声放大模块、数字解调模块和信号接收计算机位于水下。信号发送计算机的输出端经数字调制模块与激光器的输入端相连,激光器的输出端依次通过大气信道和水声信道后无线连接水声采集器,水声采集器的输出端经水声放大模块连接数字解调模块的输入端,数字解调模块的输出端与信号接收计算机相连。调制模块将待传数字信号调制编码成基频可调ASK通信帧,控制调Q激光器输出激光;激光输出到水面激光入射点之间为系统信号传输大气信道,而水面激光入射点附近到水声检测设备之间为系统信号传输水声信道。水声采集器用以接收信号,数字解调模块用于还原待传数字信号。在本发明中,通信用激光器为适合于大气传输1.06μm波长的调Q脉冲固体激光器,输出脉冲能量大小可调节。所述水声采集器为压电水听器,完成对发射激光信号转换为水声信号的采集,并转换为后端处理的电信号。
所述数字调制模块,如图2所示,包括单片机控制电路和驱动电路。单片机控制电路的输入端连接信号发送计算机,单片机控制电路的输出端与驱动电路的输入端相连,驱动电路的输出端连接激光器的输入端。数字调制模块采用基频可调ASK编码的信号编码方式,提供激光跳频通信所需的控制激光器的帧长可变重频脉冲信息码元。通过单片机软件算法由时间定时方式产生基频可调ASK编码信号,获得一非定长的串行帧结构,通过驱动电路控制激光器实现光跳频信号发射;单片机以串行方式接收PC机送出的跳频频率和需传送信息,基频点数和频率根据通信要求可实时设置。单片机的输入输出端口可独立于信息发送计算机作为小系统,设置相应基频信号和码元信息,通过单片机编码后输出控制激光器进行调试,发射频率和码元信息采用液晶显示监测。
所述数字解调模块,如图3所示,包括FPGA解码电路、信号输出电路和缓冲电路。FPGA解码电路的输入端经由缓冲电路与水声采集器的输出端相连,FPGA解码电路的输出端经由信号输出电路连接信号接收计算机。信号采集放大模块包括前置放大电路、主放大电路和整形电路。前置放大电路的输入端与水声采集器的输出端相连,前置放大电路的输出端经主放大电路与整形电路的输入端连接,整形电路的输出端连接数字解调模块的输入端。数字解调模块对数字信号进行帧同步、码元识别,解调后的信号送输出电路显示并上传。FPGA解码电路经由水听器采集并经缓冲电路放大整形的水声信号,根据发射帧导频码结构进行解码得到对应的跳频频率和编码信息。FPGA以串行方式送PC机监测发射端发送信息。FPGA解码电路的输入输出端口可独立于信号接收计算机机作为小系统,采用液晶对FPGA的解码信息进行监测。
上述系统所实现的激光跳频水下致声数字通信方法,包括如下步骤:
步骤1,信号发送计算机将待传数据信息送入数字调制模块。
步骤2,数字调制模块采用基频可调的ASK导频码(帧长可变)对待传数据进行数字调制编码,通过每帧设定的导频码及可变间隔,使每帧长度依据重频和数据要求进行变化。即:
步骤2.1,根据激光跳频频率和传送数据信息,计算对应码元间隔时间;
步骤2.2,定时产生占空比为50%的ASK码元,由此形成导频码;
步骤2.3,由导频码和待传数据组成的串行通信数据帧;
步骤2.4,采用串行通信数据帧的上升沿去激励激光器按照每帧码元间隔发射光脉冲信号。
步骤3,数字调制模块输出的可变长数据帧编码经驱动后加载于激光器,并控制激光器输出间隔不同的、并由ASK码元控制的1.06μm波长的激光,激光器光脉冲宽度为设计激光器的脉冲宽度(<10ns),以获得激光跳频输出光信号。
步骤4,激光器输出的激光经由大气信道传输到水面下一定深度,与水介质直接发生光声效应,将激光能量信号转换为水下声波信号。
步骤5,声波信号经水声信道传输,由水声采集器接收转为电信号,电信号经过放大整形后输出到数字解调模块。
步骤6,数字解调模块通过检测每帧的导频码间隔确定重频频率和码元宽度,从而获得每帧码元信息,完成通信的数据解码。
步骤7,数字解调模块将解码后的数据送入接收计算机。

Claims (10)

1.激光跳频水下致声数字通信系统,其特征在于:主要由信号发送计算机、数字调制模块、激光器、水声采集器、水声放大模块、数字解调模块和信号接收计算机组成;其中信号发送模块、数字调制模块和激光器位于水面上方;水声采集器、水声放大模块、数字解调模块和信号接收计算机位于水下;信号发送计算机的输出端经数字调制模块与激光器的输入端相连,激光器的输出端依次通过大气信道和水声信道后无线连接水声采集器,水声采集器的输出端经水声放大模块连接数字解调模块的输入端,数字解调模块的输出端与信号接收计算机相连。
2.根据权利要求1所述的激光跳频水下致声数字通信系统,其特征在于:所述数字调制模块包括单片机控制电路和驱动电路;单片机控制电路的输入端连接信号发送计算机,单片机控制电路的输出端与驱动电路的输入端相连,驱动电路的输出端连接激光器的输入端。
3.根据权利要求1所述的激光跳频水下致声数字通信系统,其特征在于:所述数字解调模块包括FPGA解码电路、信号输出电路和缓冲电路;FPGA解码电路的输入端经由缓冲电路与水声采集器的输出端相连,FPGA解码电路的输出端经由信号输出电路连接信号接收计算机。
4.根据权利要求1所述的激光跳频水下致声数字通信系统,其特征在于:信号采集放大模块包括前置放大电路、主放大电路和整形电路;前置放大电路的输入端与水声采集器的输出端相连,前置放大电路的输出端经主放大电路与整形电路的输入端连接,整形电路的输出端连接数字解调模块的输入端。
5.根据权利要求1所述的激光跳频水下致声数字通信系统,其特征在于:所述激光器为调Q脉冲固体激光器。
6.根据权利要求1所述的激光跳频水下致声数字通信系统,其特征在于:所述水声采集器为压电水听器。
7.基于权利要求1所述激光跳频水下致声数字通信系统所实现的激光跳频水下致声数字通信方法,其特征是,包括如下步骤:
步骤1,信号发送计算机将待传数据信息送入数字调制模块;
步骤2,数字调制模块采用基频可调的ASK导频码对待传数据进行数字调制编码,通过每帧设定的导频码及可变间隔,使每帧长度依据重频和数据要求进行变化;
步骤3,数字调制模块输出的可变长数据帧编码经驱动后加载于激光器,并控制激光器输出间隔不同的激光,以获得激光跳频输出光信号;
步骤4,激光器输出的激光经由大气信道传输到水面下一定深度,与水介质直接发生光声效应,将激光能量信号转换为水下声波信号;
步骤5,声波信号经水声信道传输,由水声采集器接收转为电信号,电信号经过放大整形后输出到数字解调模块;
步骤6,数字解调模块通过检测每帧的导频码间隔确定重频频率和码元宽度,从而获得每帧码元信息,完成通信的数据解码;
步骤7,数字解调模块将解码后的数据送入接收计算机。
8.根据权利要求7所述的激光跳频水下致声数字通信系统所实现的激光跳频水下致声数字通信方法,其特征是,步骤2中,所述ASK导频码为帧长可变的ASK导频码。
9.根据权利要求7所述的激光跳频水下致声数字通信系统所实现的激光跳频水下致声数字通信方法,其特征是,步骤2的过程具体为:
步骤2.1,根据激光跳频频率和传送数据信息,计算对应码元间隔时间;
步骤2.2,定时产生占空比为50%的ASK码元,由此形成导频码;
步骤2.3,由导频码和待传数据组成的串行通信数据帧;
步骤2.4,采用串行通信数据帧的上升沿去激励激光器按照每帧码元间隔发射光脉冲信号。
10.根据权利要求7所述的激光跳频水下致声数字通信系统所实现的激光跳频水下致声数字通信方法,其特征是,激光器输出间隔不同的,并由ASK码元控制的激光。
CN201510214601.7A 2015-04-29 2015-04-29 激光跳频水下致声数字通信系统与方法 Pending CN104852772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510214601.7A CN104852772A (zh) 2015-04-29 2015-04-29 激光跳频水下致声数字通信系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510214601.7A CN104852772A (zh) 2015-04-29 2015-04-29 激光跳频水下致声数字通信系统与方法

Publications (1)

Publication Number Publication Date
CN104852772A true CN104852772A (zh) 2015-08-19

Family

ID=53852150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510214601.7A Pending CN104852772A (zh) 2015-04-29 2015-04-29 激光跳频水下致声数字通信系统与方法

Country Status (1)

Country Link
CN (1) CN104852772A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040315A (zh) * 2017-04-10 2017-08-11 北京华夏光谷光电科技有限公司 激光水下致声器
CN108283521A (zh) * 2017-11-29 2018-07-17 北京华夏光谷光电科技有限公司 一种激光体表致声/激光腹内融脂复合型减肥装置
CN108462538A (zh) * 2018-03-07 2018-08-28 桂林电子科技大学 一种跳时隙的激光水下致声数字通信系统与方法
CN108495246A (zh) * 2018-04-28 2018-09-04 苏州静声泰环保科技有限公司 一种点声源发声装置及发声方法
CN108833022A (zh) * 2018-04-24 2018-11-16 长春理工大学 通信测距共用光学系统的海浪高度自适应水下通信系统
CN113556177A (zh) * 2020-09-25 2021-10-26 哈尔滨工业大学(威海) 跨介质的空中至水下激光致声通信方法及装置
CN113556178A (zh) * 2020-12-10 2021-10-26 哈尔滨工业大学(威海) 提高光声转换效率的空中与水下激光致声通信装置及其应用
CN114050987A (zh) * 2021-11-03 2022-02-15 猫岐智能科技(上海)有限公司 物联网设备无接触调试系统及方法
CN114614896A (zh) * 2020-12-08 2022-06-10 军事科学院系统工程研究院网络信息研究所 水下机固平台光声效能增强双向通信方法
CN114629566A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 水面和水下机动平台光声互联双向通信方法
CN114629567A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 空中和水下机动平台光声互联双向通信方法
CN114629565A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 水下机动平台光声互联效能增强双向通信方法
CN114629558A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 岸基固定平台和水下机动平台光声效能增强双向通信方法
CN114726428A (zh) * 2022-03-03 2022-07-08 大连海事大学 一种空海跨介质直接双向通信方法
CN114826434A (zh) * 2022-04-26 2022-07-29 桂林电子科技大学 一种基于时间分集的光声异构物理场水下通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613074B1 (en) * 2006-01-03 2009-11-03 The United States Of America As Represented By The Secretary Of The Navy Non-linear optoacoustic narrowband communications technique
CN204559587U (zh) * 2015-04-29 2015-08-12 桂林电子科技大学 激光跳频水下致声数字通信系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613074B1 (en) * 2006-01-03 2009-11-03 The United States Of America As Represented By The Secretary Of The Navy Non-linear optoacoustic narrowband communications technique
CN204559587U (zh) * 2015-04-29 2015-08-12 桂林电子科技大学 激光跳频水下致声数字通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何宁,冯太琴,黄灵鹭: "基频可调激光声水下通信信号传输研究", 《光电子技术》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040315A (zh) * 2017-04-10 2017-08-11 北京华夏光谷光电科技有限公司 激光水下致声器
CN107040315B (zh) * 2017-04-10 2020-10-30 北京华夏光谷光电科技有限公司 激光水下致声器
CN108283521A (zh) * 2017-11-29 2018-07-17 北京华夏光谷光电科技有限公司 一种激光体表致声/激光腹内融脂复合型减肥装置
CN108462538A (zh) * 2018-03-07 2018-08-28 桂林电子科技大学 一种跳时隙的激光水下致声数字通信系统与方法
CN108462538B (zh) * 2018-03-07 2021-02-12 桂林电子科技大学 一种跳时隙的激光水下致声数字通信系统与方法
CN108833022A (zh) * 2018-04-24 2018-11-16 长春理工大学 通信测距共用光学系统的海浪高度自适应水下通信系统
CN108833022B (zh) * 2018-04-24 2020-01-03 长春理工大学 通信测距共用光学系统的海浪高度自适应水下通信系统
CN108495246A (zh) * 2018-04-28 2018-09-04 苏州静声泰环保科技有限公司 一种点声源发声装置及发声方法
CN113556177A (zh) * 2020-09-25 2021-10-26 哈尔滨工业大学(威海) 跨介质的空中至水下激光致声通信方法及装置
CN113556177B (zh) * 2020-09-25 2023-07-04 哈尔滨工业大学(威海) 跨介质的空中至水下激光致声通信方法及装置
CN114629558A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 岸基固定平台和水下机动平台光声效能增强双向通信方法
CN114614896A (zh) * 2020-12-08 2022-06-10 军事科学院系统工程研究院网络信息研究所 水下机固平台光声效能增强双向通信方法
CN114629566A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 水面和水下机动平台光声互联双向通信方法
CN114629567A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 空中和水下机动平台光声互联双向通信方法
CN114629565A (zh) * 2020-12-08 2022-06-14 军事科学院系统工程研究院网络信息研究所 水下机动平台光声互联效能增强双向通信方法
CN113556178B (zh) * 2020-12-10 2023-06-23 哈尔滨工业大学(威海) 提高光声转换效率的空中与水下激光致声通信装置及其应用
CN113556178A (zh) * 2020-12-10 2021-10-26 哈尔滨工业大学(威海) 提高光声转换效率的空中与水下激光致声通信装置及其应用
CN114050987A (zh) * 2021-11-03 2022-02-15 猫岐智能科技(上海)有限公司 物联网设备无接触调试系统及方法
CN114050987B (zh) * 2021-11-03 2023-08-22 猫岐智能科技(上海)有限公司 物联网设备无接触调试系统及方法
CN114726428A (zh) * 2022-03-03 2022-07-08 大连海事大学 一种空海跨介质直接双向通信方法
CN114826434A (zh) * 2022-04-26 2022-07-29 桂林电子科技大学 一种基于时间分集的光声异构物理场水下通信方法
CN114826434B (zh) * 2022-04-26 2023-10-27 桂林电子科技大学 一种基于时间分集的光声异构物理场水下通信方法

Similar Documents

Publication Publication Date Title
CN104852772A (zh) 激光跳频水下致声数字通信系统与方法
CN108462538B (zh) 一种跳时隙的激光水下致声数字通信系统与方法
CN204559587U (zh) 激光跳频水下致声数字通信系统
Kaushal et al. Underwater optical wireless communication
CN104038292A (zh) 水下短距离高速无线光信息透明传输装置
CN109150515B (zh) 基于连续变量量子密钥分发的对潜通信系统及其实现方法
CN113556177B (zh) 跨介质的空中至水下激光致声通信方法及装置
CN102098112A (zh) Led光源水下短距离数据通信的方法及系统
CN107508649A (zh) 一种基于北斗的水下激光授时系统及方法
CN113556178B (zh) 提高光声转换效率的空中与水下激光致声通信装置及其应用
CN114844575B (zh) 一种水空跨介质无线双向通信方法
CN104467984A (zh) 一种分布式光纤声波通信方法及装置
Adnan et al. Investigating the performance of underwater wireless optical communication with intensity modulation direct detection technique
CN109861762A (zh) 一种基于声-光的跨介质隐蔽通信系统和方法
CN112422190A (zh) 偏振-ppm联合调制的水下光通信方法、系统、终端
CN102355440A (zh) 基于甚小线性调频键控调制的水声通信方法
Mahmud et al. Vapor cloud delayed-DPPM modulation technique for nonlinear optoacoustic communication
CN204362059U (zh) 利用鲸声的伪装隐蔽水下通信装置
Joe et al. Digital underwater communication using electric current method
Islam et al. An adaptive DPPM for efficient and robust visible light communication across the air-water interface
CN106788761B (zh) 一种混合光编码方法及装置
Dey et al. Point to point and multipoint to point acoustic modem for ultrasonic data communication
CN216721338U (zh) 一种基于超声聚焦方式的数据传输系统
CN112235049A (zh) 用于潜水的通信系统、方法、船载通信器及潜水通信器
Tasnim et al. Optoacoustic signal-based underwater node localization technique: Overcoming gps limitations without auv requirements

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150819

RJ01 Rejection of invention patent application after publication