CN104851610A - 一种高导电秸秆基活性炭复合电极材料及其制备方法 - Google Patents

一种高导电秸秆基活性炭复合电极材料及其制备方法 Download PDF

Info

Publication number
CN104851610A
CN104851610A CN201510157618.3A CN201510157618A CN104851610A CN 104851610 A CN104851610 A CN 104851610A CN 201510157618 A CN201510157618 A CN 201510157618A CN 104851610 A CN104851610 A CN 104851610A
Authority
CN
China
Prior art keywords
parts
added
hour
electrode material
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510157618.3A
Other languages
English (en)
Inventor
孟官珍
江豪
安东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jiangwei Precision Manufacturing Co Ltd
Original Assignee
Anhui Jiangwei Precision Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jiangwei Precision Manufacturing Co Ltd filed Critical Anhui Jiangwei Precision Manufacturing Co Ltd
Priority to CN201510157618.3A priority Critical patent/CN104851610A/zh
Publication of CN104851610A publication Critical patent/CN104851610A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种高导电秸秆基活性炭复合电极材料,其特征在于,由下列重量份的原料制成:氯化钾1-2、聚吡咯2-3、正硅酸乙酯1-3、氯金酸0.5-1、锌合金3-5、二茂钴1-2、乙酰丙酮钯1-3、聚苯胺复合材料3-5、秸秆1000-1200、无水氢氧化钾3-5、去离子水5-10;本发明的聚苯胺复合材料具有价格便宜、电荷密度高等的优点,添加到电极材料中能够提高导电性和储电性能;添加的聚吡咯由于具有较好的导电性、光电性、热电性可在常温或低温下使用,较易沉积在各种基片上,并且成本较低、容易制备,在一定程度上提高了电容器的导电性能。

Description

一种高导电秸秆基活性炭复合电极材料及其制备方法
技术领域
本发明涉及化学能源材料领域,特别是一种高导电秸秆基活性炭复合电极材料及其制备方法。
背景技术
超级电容器兼有普通电容器功率密度大和二次电池能量密度高的优点,可以快速充放电而且寿命长,被认为是介于二次电池和电容器之间的一种储能器件。它的电容量大,漏电流小,电压记忆性好,充放电简单而且循环次数多。可用于微型计算机存储器的后备电源、汽车启动装置及太阳能、风能等洁净能源系统,成为近几年广为关注的研究热点。多孔炭材料以其低廉的价格、高的比表面积、可控的孔隙结构和良好的物理化学稳定性在超级电容器领域内倍受关注。由于我国是农业大国,农作物收割会产生许多的秸秆,大部分的秸秆采用焚烧的方法进行处理,不仅污染了空气,破坏了土壤的土质,并且对人们的身体健康有害。所以炭的来源广泛,需要经过特定的处理制备出具有一定比表面积和孔径分布的多孔炭,进而应用于超级电层电容器的电极材料。本发明添加的聚吡咯由于具有较好的导电性、光电性、热电性可在常温或低温下使用,可以方便地沉积在各种基片上,并且成本较低、容易制备,在一定程度上提高了电容器的导电性能。
聚苯胺具有良好的导电性和快速可逆的氧化还原特性,且原料廉价易得,近年来在能量存贮领域受到人们的广泛关注。聚苯胺本身是绝缘性,经掺杂后才具有导电性,而且它主要掺杂点是亚胺氮原子。质子携带的正电荷经分子链内部的电荷转移,沿分子链产生周期性的分布。且苯二胺和醌二亚胺必须同时存在才能保证有效的质子酸掺杂。质子掺杂是聚苯胺由绝缘态转变为金属态的关键。不同的合成方式对聚苯胺的导电性和稳定性影响很大,本发明在合成聚苯胺的同时掺杂二氧化硅和蒙脱土,增强了聚苯胺的稳定性、导电性,并且产物粒径均匀,而且都在纳米级别,从而使产物具有了纳米粒子的特性。
发明内容
本发明的目的是提供一种高导电秸秆基活性炭复合电极材料及其制备方法。
为了实现本发明的目的,本发明通过以下方案实施:
一种高导电秸秆基活性炭复合电极材料,由下列重量份的原料制成:氯化钾1-2、聚吡咯2-3、正硅酸乙酯1-3、氯金酸0.5-1、锌合金3-5、二茂钴1-2、乙酰丙酮钯1-3、聚苯胺复合材料3-5、秸秆1000-1200、无水氢氧化钾3-5、去离子水5-10;
所述聚苯胺复合材料是由下列重量份的原料制成:对甲苯磺酸4-6、盐酸6-8、纳米二氧化硅3-5、蒙脱土2-4、苯胺8-12、过硫酸铵0.4-0.7、去离子水30-50;制备方法是将对甲苯磺酸加到4-6mol/l的盐酸溶液中,搅拌均匀形成混合溶液,再将纳米二氧化硅、蒙脱土加到混合溶液中超声分散30-50分钟,再加入对甲苯磺酸质量0.5-2倍的苯胺单体,冰水浴下搅拌1-2小时形成均匀乳液,再将过硫酸铵缓慢滴加到乳液中,继续搅拌反应3-4小时,减压抽滤,固体沉淀依次用去离子水和对甲苯磺酸洗涤成中性,80-90°C下真空干燥8-12小时,即可得到聚苯胺复合材料。
本发明所述一种高导电秸秆基活性炭复合电极材料,由以下具体的步骤制成:
(1)将秸秆清洗干净后烘干,水分控制在20-25%左右,隔绝空气经过6-8小时常温物理炭化堆积得到生物质炭,再将该生物质炭粉碎成颗粒,加到沸腾炉中,通入预先预热至300-400°C的水蒸气和二氧化碳混合气体,在800-1000°C下进行氧化反应1-2小时,取出后加到熔融的无水氢氧化钾中,得到高比表面积活性炭备用;
(2)将正硅酸乙酯加到乙醇的水溶液中,搅拌溶解后加入步骤(1)的产物和除锌合金外的其他剩余成分,在80-100°C下加热搅拌,干燥后通入纯氨气,于500-600°C下保温50-100分钟,然后迅速冷却至室温粉碎至200-400目粉末备用;
(3)将锌合金加热至熔融状态与步骤(2)的产物混合均匀即可。
本发明的优点是:本发明的聚苯胺复合材料具有价格便宜、电荷密度高等的优点,添加到电极材料中能够提高导电性和储电性能;添加的聚吡咯由于具有较好的导电性、光电性、热电性可在常温或低温下使用,较易沉积在各种基片上,并且成本较低、容易制备,在一定程度上提高了电容器的导电性能。
具体实施方案
下面通过具体实例对本发明进行详细说明。
 一种高导电秸秆基活性炭复合电极材料,由下列重量份(公斤)的原料制成:氯化钾1、聚吡咯2、正硅酸乙酯2、氯金酸0.7、锌合金5、二茂钴1、乙酰丙酮钯2、聚苯胺复合材料4、秸秆1200、无水氢氧化钾4、去离子水10;
所述聚苯胺复合材料是由下列重量份(公斤)的原料制成:对甲苯磺酸5、盐酸7、纳米二氧化硅5、蒙脱土3、苯胺10、过硫酸铵0.4、去离子水35;制备方法是将对甲苯磺酸加到4-6mol/l的盐酸溶液中,搅拌均匀形成混合溶液,再将纳米二氧化硅、蒙脱土加到混合溶液中超声分散30-50分钟,再加入对甲苯磺酸质量0.5-2倍的苯胺单体,冰水浴下搅拌1-2小时形成均匀乳液,再将过硫酸铵缓慢滴加到乳液中,继续搅拌反应3-4小时,减压抽滤,固体沉淀依次用去离子水和对甲苯磺酸洗涤成中性,80-90°C下真空干燥8-12小时,即可得到聚苯胺复合材料。
本发明所述一种高导电秸秆基活性炭复合电极材料,由以下具体的步骤制成:
(1)将秸秆清洗干净后烘干,水分控制在20-25%左右,隔绝空气经过6-8小时常温物理炭化堆积得到生物质炭,再将该生物质炭粉碎成颗粒,加到沸腾炉中,通入预先预热至300-400°C的水蒸气和二氧化碳混合气体,在800-1000°C下进行氧化反应1-2小时,取出后加到熔融的无水氢氧化钾中,得到高比表面积活性炭备用;
(2)将正硅酸乙酯加到乙醇的水溶液中,搅拌溶解后加入步骤(1)的产物和除锌合金外的其他剩余成分,在80-100°C下加热搅拌,干燥后通入纯氨气,于500-600°C下保温50-100分钟,然后迅速冷却至室温粉碎至200-400目粉末备用;
(3)将锌合金加热至熔融状态与步骤(2)的产物混合均匀即可。
将电极材料和导电剂、粘结剂按照比例混合均匀,通过压辊机制成薄片,干燥后压在不锈钢网集流体上,制成超级电容器,其参比电极为Ag/AgCl电极,电解液为1mol/l的硫酸溶液,在-0.2V至0.8V的电压范围内进行恒流充放电测试,电流为0.2A/g时,比电容为273F/g,电流为10A/g时,比电容为171F/g。

Claims (2)

1.一种高导电秸秆基活性炭复合电极材料,其特征在于,由下列重量份的原料制成:氯化钾1-2、聚吡咯2-3、正硅酸乙酯1-3、氯金酸0.5-1、锌合金3-5、二茂钴1-2、乙酰丙酮钯1-3、聚苯胺复合材料3-5、秸秆1000-1200、无水氢氧化钾3-5、去离子水5-10;
所述聚苯胺复合材料是由下列重量份的原料制成:对甲苯磺酸4-6、盐酸6-8、纳米二氧化硅3-5、蒙脱土2-4、苯胺8-12、过硫酸铵0.4-0.7、去离子水30-50;制备方法是将对甲苯磺酸加到4-6mol/l的盐酸溶液中,搅拌均匀形成混合溶液,再将纳米二氧化硅、蒙脱土加到混合溶液中超声分散30-50分钟,再加入对甲苯磺酸质量0.5-2倍的苯胺单体,冰水浴下搅拌1-2小时形成均匀乳液,再将过硫酸铵缓慢滴加到乳液中,继续搅拌反应3-4小时,减压抽滤,固体沉淀依次用去离子水和对甲苯磺酸洗涤成中性,80-90°C下真空干燥8-12小时,即可得到聚苯胺复合材料。
2.根据权利要求1所述一种高导电秸秆基活性炭复合电极材料,其特征在于,由以下具体的步骤制成:
(1)将秸秆清洗干净后烘干,水分控制在20-25%左右,隔绝空气经过6-8小时常温物理炭化堆积得到生物质炭,再将该生物质炭粉碎成颗粒,加到沸腾炉中,通入预先预热至300-400°C的水蒸气和二氧化碳混合气体,在800-1000°C下进行氧化反应1-2小时,取出后加到熔融的无水氢氧化钾中,得到高比表面积活性炭备用;
(2)将正硅酸乙酯加到乙醇的水溶液中,搅拌溶解后加入步骤(1)的产物和除锌合金外的其他剩余成分,在80-100°C下加热搅拌,干燥后通入纯氨气,于500-600°C下保温50-100分钟,然后迅速冷却至室温粉碎至200-400目粉末备用;
(3)将锌合金加热至熔融状态与步骤(2)的产物混合均匀即可。
CN201510157618.3A 2015-04-03 2015-04-03 一种高导电秸秆基活性炭复合电极材料及其制备方法 Pending CN104851610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510157618.3A CN104851610A (zh) 2015-04-03 2015-04-03 一种高导电秸秆基活性炭复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510157618.3A CN104851610A (zh) 2015-04-03 2015-04-03 一种高导电秸秆基活性炭复合电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN104851610A true CN104851610A (zh) 2015-08-19

Family

ID=53851183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510157618.3A Pending CN104851610A (zh) 2015-04-03 2015-04-03 一种高导电秸秆基活性炭复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104851610A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259234A (zh) * 2015-11-06 2016-01-20 江西农业大学 基于晚松生物炭的传感电极制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381530A (zh) * 2002-03-25 2002-11-27 浙江大学 以粘土矿物为载体的聚苯胺复合材料及制备方法
CN101037200A (zh) * 2007-03-19 2007-09-19 合肥工业大学 一种以秸秆制作有机系超级电容器用活性炭材料的方法
CN101759181A (zh) * 2009-12-15 2010-06-30 李广朝 一种超级电容器用活性炭的生产方法
CN103771409A (zh) * 2012-10-23 2014-05-07 天津德为环保工程设备有限公司 一种以农作物秸秆为原料制备成型生物质活性炭的方法
US20140255776A1 (en) * 2013-03-08 2014-09-11 Korea Institute Of Science And Technology Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381530A (zh) * 2002-03-25 2002-11-27 浙江大学 以粘土矿物为载体的聚苯胺复合材料及制备方法
CN101037200A (zh) * 2007-03-19 2007-09-19 合肥工业大学 一种以秸秆制作有机系超级电容器用活性炭材料的方法
CN101759181A (zh) * 2009-12-15 2010-06-30 李广朝 一种超级电容器用活性炭的生产方法
CN103771409A (zh) * 2012-10-23 2014-05-07 天津德为环保工程设备有限公司 一种以农作物秸秆为原料制备成型生物质活性炭的方法
US20140255776A1 (en) * 2013-03-08 2014-09-11 Korea Institute Of Science And Technology Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259234A (zh) * 2015-11-06 2016-01-20 江西农业大学 基于晚松生物炭的传感电极制备方法

Similar Documents

Publication Publication Date Title
Yi et al. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage
CN103700808B (zh) 一种锂离子电池复合负极极片、制备方法及锂离子电池
CN103078087B (zh) 一种钛酸锂/碳纳米管复合负极材料的制备方法
CN107845802B (zh) 一种用于锂电池的导电聚合物包覆钴酸锂及其制备方法
CN101764219A (zh) 一种碳纳米管复合锂电池负极材料及其制备方法
CN109860526B (zh) 石墨类材料掺杂金属草酸盐锂电池复合负极材料的制备方法
CN110010876B (zh) 一种锂硫一次电池用纳米正极材料的可控制备方法
CN105098176A (zh) 一种铅酸蓄电池正极铅膏
CN109755498B (zh) 一种碱性二次电池铁基负极添加剂,制备方法和使用该添加剂的铁基负极板及其应用
CN112421017B (zh) 一种无粘结剂水系锌离子电池正极复合材料的制备方法
CN102637864A (zh) 一种掺杂镧的钛酸锂负极材料及其制备方法
CN106848256B (zh) 一种镍铁电池用核双壳结构负极纳米材料及其制备方法和应用
CN102795614A (zh) 一种纳米碳球的制备方法
Cao et al. A simple method to prepare NH4V3O8 nanorods as cathode material for Li-ion batteries
CN104779064A (zh) 一种提高超级电容器循环性能的电极材料及其制备方法
CN104851610A (zh) 一种高导电秸秆基活性炭复合电极材料及其制备方法
WO2019001047A1 (zh) 一种锂离子电池正极的制备方法
CN105261739B (zh) 聚苯胺磷钨酸复合材料的制备方法
CN104779073A (zh) 一种碳化钛包覆秸秆基活性炭复合电极材料及其制备方法
CN104821396A (zh) 一种多孔活性炭/三氧化二铝复合电极材料及其制备方法
CN110137451A (zh) 一种无粘合剂铁基电极及其制备方法与应用
CN104821239A (zh) 一种掺杂硅秸秆基炭复合电极材料及其制备方法
CN104779074A (zh) 一种高纯超细秸秆基活性炭复合电极材料及其制备方法
CN104821237A (zh) 一种金银合金包覆秸秆基活性炭复合电极材料及其制备方法
CN104779071A (zh) 一种氮化钛包覆秸秆基活性炭复合电极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150819