CN104812557A - 在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法 - Google Patents

在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法 Download PDF

Info

Publication number
CN104812557A
CN104812557A CN201380050161.5A CN201380050161A CN104812557A CN 104812557 A CN104812557 A CN 104812557A CN 201380050161 A CN201380050161 A CN 201380050161A CN 104812557 A CN104812557 A CN 104812557A
Authority
CN
China
Prior art keywords
radome fairing
spar cap
spar
compound
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380050161.5A
Other languages
English (en)
Other versions
CN104812557B (zh
Inventor
P·T·海登
H·贝默
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power UK Ltd
Original Assignee
Blade Dynamics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blade Dynamics Ltd filed Critical Blade Dynamics Ltd
Publication of CN104812557A publication Critical patent/CN104812557A/zh
Application granted granted Critical
Publication of CN104812557B publication Critical patent/CN104812557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1027Pressing using at least one press band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/77Uncured, e.g. green
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Wind Motors (AREA)
  • Details Of Aerials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

一种在翼梁帽盖(14)与空气动力整流罩(12)之间形成结构连接的方法。将包括未熟化的基体和可压缩的固体的复合物施加到翼梁帽盖与所述整流罩之间,然后压缩和熟化,以将整流罩粘合到翼梁帽盖上。熟化基体复合物具有至少20%的空穴体积。高空穴体积意味着,随着整流罩被压缩就位,并且压缩复合物,它具有能够在其中变形的空隙,从而不将过度的应力置于整流罩上,并且产生重量轻的连接。

Description

在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法
技术领域
本发明涉及的是一种在翼梁与空气动力整流罩之间形成结构连接的方法,具体地说,本发明涉及的是一种在用于风轮机叶片的翼梁和空气动力整流罩之间形成结构连接的方法。
背景技术
现代的风轮机叶片典型地通过分离地制造结构梁或翼梁(该结构梁或翼梁沿叶片的长度延伸)和两个半部壳体或空气动力整流罩(这两个半部壳体或空气动力整流罩连结到翼梁上,以限定叶片的空气动力轮廓)而制成。
在图1A-1C中示出了一种将整流罩连结到翼梁上的典型方法。在这种方法中,将粘合剂2涂敷到翼梁4的上表面和下表面上,并且将整流罩6放置在粘合剂2上,以包围翼梁4,如图1B所示。典型地,将在翼梁4的上表面和下表面与整流罩6之间存在的是具有在5mm与50mm之间的厚度的空腔,并且粘合剂2填充这个空腔。整流罩6然后抵靠着翼梁4被夹持,以挤压粘合剂2和将整流罩6粘合到翼梁4上。由于挤压粘合剂2所需的力很大,所以整流罩6典型地保持在一些工具中,这些工具为了将每个整流罩6粘结到翼梁4上的步骤而形成。
然而,由于整流罩6靠着翼梁4而受压,所以粘合剂将压力施加到整流罩6的内表面上。这会导致整流罩6以及用于在其中保持整流罩6的工具(未示出)的扭曲,导致扭曲的空气动力表面8,如图1C所示。因而,工具必须具有足够的结构刚度,以防止这样的扭曲。
尽管以上工艺对于较小叶片是可接受的,但以上工艺当用来粘结较大叶片(如长度为45米或更长的那些叶片)时,将会是极为昂贵的。这归因于建造工具的成本,该工具需要大得足以容纳整流罩,需要刚硬得足以不扭曲,并且该工具需要能够被准确地提升和封闭。
US 2009/0226702涉及一种粘合剂接合,这种粘合剂接合用来接合各种风轮机元件。这个文件认识到关于在这些接合中使用的过多粘合剂的问题。具体地说,不可能的是,在封闭结构中除去这种过多粘合剂。这样的过多粘合剂在使用中可能脱落,并且引起问题,如堵塞排水孔并且引起损坏冲击力。为了克服这个问题,这个文件提出提供一种多孔层,这种多孔层超越粘合剂接合处延伸。一旦在多孔部件周围的接合区中的空隙充分地填充有粘合剂,过多粘合剂就将挤压到在接合处外面的多孔层的部分中。它然后在使用期间保持在这个多孔层内,并且解决松散粘合剂堆的问题。该文件没有解决整流罩和工具的有保证的扭曲,这种有保证的扭曲由本发明解决。
发明内容
根据本发明的第一方面,提供一种在用于风轮机叶片的翼梁帽盖和空气动力整流罩之间形成结构连接的方法,这种方法包括如下步骤:将复合物施加到翼梁帽盖与整流罩之间,复合物包括未熟化的基体和可压缩的固体;压缩可变形固体,从而使复合物基本占据在翼梁帽盖与整流罩之间的空隙;使基体熟化,以将可压缩的固体保持在其压缩状态下,使复合物具有至少30%的空穴体积;以及随着基体被熟化,将整流罩粘合到翼梁帽盖上。
借助于这种布置,复合物将压力施加到整流罩的内表面以及翼梁帽盖上,该压力足以保证粘结表面被良好地连接,但该压力足够低以防止整流罩在组装期间的扭曲。由复合物施加的比较低的压力基本上是显著空穴体积的因素。这不仅意味着基体必须具有比较低密度,而且容易地允许基体被压缩,因为有足够空隙,可变形材料可被压入到该足够空隙中,而不对整流罩产生不适当的阻力。空穴体积也帮助减小接合的重量。
至少20%的空穴体积允许以上提出的低压力优点。然而,实际上,空穴体积可以显著地更高,只要能够保持接合的结构完整性即可。较低空穴体积提供另外的重量优点。因而,空穴体积可以优选地大于30%,优选地大于40%,优选地大于50%,优选地大于60%,优选地大于70%。
并且,在整流罩、翼梁或复合物中的不均匀性可以由可压缩的固体消除,因为它在翼梁帽盖与整流罩之间的空隙中变形。例如,在介于整流罩与翼梁帽盖之间的空隙被局部地减小的场合中,可压缩的固体将被压缩得更多,而不可压缩的传统粘合剂可能会使整流罩扭曲。因而,可以形成完好的结构连接,而不会在整流罩上诱导出巨大的或不均匀的压力。
另外,通过使基体熟化以将可压缩的固体保持在其可变形状态下,复合物可以提供在整流罩与翼梁帽盖之间的结构连接,该结构连接阻止整流罩的纵向弯曲(buckling)。
整流罩对于翼梁帽盖的粘合可以由基体实现。基体可以包括环氧树脂和/或结构粘合剂。
可选择地,可以提供另外的粘合剂,其中,整流罩对于翼梁帽盖的粘合至少部分地由另外的粘合剂实现。这将增强在整流罩、复合物及翼梁帽盖之间的粘合。
在一个优选实施例中,基体是不起泡沫的。这防止复合物的过大膨胀,这种过大膨胀可能导致整流罩扭曲。
可变形固体当在非压缩状态下时,优选地比空腔的最宽部分厚出近似20%。
可以使用任何适当可压缩的固体,尽管优选地可压缩的固体包括第一多孔层和第二多孔层,该第一多孔层面对整流罩,该第二多孔层面对翼梁帽盖,第一多孔层和第二多孔层由第三层分离,该第三层具有比第一和第二层更大的厚度和更低的密度。
因而,这个低密度层形成可压缩的固体的显著比例,并且其较低密度允许空穴体积。第一和第二层(它们是多孔的)的比较高的密度,意味着,来自第三层的树脂或粘合剂可通过第一和第二层,进入分别与整流罩和翼梁帽盖的接触中,提供分别与整流罩和翼梁帽盖粘结的巨大表面面积。
第一和第二层可以是任何材料的,如模制塑料丝网,该材料提供比较大的表面面积,并且允许粘合剂通过。然而,它们优选地是纤维结构,该纤维结构可以是非织物类型的毡状结构,但优选地是织物类型的。
第三层可以是任何可压缩材料,该可压缩材料能够在上层和下层的非压缩状态下支承所述上层和下层,并且该可压缩材料本身具有足够大的空穴空隙,从而在基体被涂敷,并且复合物被压缩和熟化时,它能够提供所需的空穴体积。第三层在其非压缩状态下并且在基体的涂敷之前优选地具有的空穴体积是至少30%,更优选地是40%,最优选地是50%。第三层可以例如是开孔泡沫,但优选地由纤维形成,这些纤维可被编织或缝合在第一和第二层之间。对于这样一种结构,第三层的纤维大致垂直于第一和第二层,从而在使用中,它们将桥接在翼梁与整流帽盖之间的间隙,由此一旦基体已经熟化,就提供对于翼梁的良好支承。
在三维织物已经放置在整流罩与翼梁帽盖之间之后,可以通过添加基体而形成复合物。在一个优选实施例中,在将复合物施加到翼梁帽盖与整流罩之间的步骤之前,用基体浸渍三维织物。这简化组装过程。施加基体的一种方式是使可压缩的固体通过浴槽(该浴槽包含基体)。经浸渍的复合物然后通过一对滚轮,在这对滚轮之间的空隙可被调整,以将复合物挤压到较大或较小程度,由此根据需要而不同程度地除去基体,以在完成产品中实现所需的空穴体积。
该方法适于生产任何长度的风轮机叶片。在一个优选实施例中,叶片的长度是至少45米。
根据本发明的第二方面,提供一种风轮机叶片,这种风轮机叶片包括翼梁、整流罩以及复合物,该翼梁具有至少一个翼梁帽盖,该整流罩定位在翼梁帽盖上方,该复合物基本填充在翼梁帽盖与整流罩之间的空隙,其中,复合物包括经熟化的基体、受压缩的固体以及至少20%的空穴体积。
复合物可以布置成用以将翼梁帽盖粘合到整流罩上。这减少所需的组装步骤。可选择地,叶片还包括另外的粘合剂,该另外的粘合剂布置成,至少部分地将翼梁帽盖粘合到整流罩上。这补充由复合物提供的任何粘合,或者在那些复合物基本上不提供粘合的情况下,提供粘合。
附图说明
现在参照附图,以仅为示例的方式描述本发明的优选实施例,在这些附图中:
图1A至1C是使用常规方法连接的风轮机叶片的整流罩和翼梁的示意图;
图2是根据本发明的风轮机叶片的立体图;
图3是通过图2的线3-3的示意部分截面图,示出了在整流罩与翼梁之间的结构连接;
图4是供图2的叶片使用的可变形固体的示意立体图;而
图5是在整流罩与翼梁之间的第一可选择结构连接的示意部分截面图,示出了在变形状态下的可变形固体。
具体实施方式
参照图2,风轮机叶片10具有空气动力整流罩12,该空气动力整流罩12包围结构翼梁14并且连结到其上,该结构翼梁14沿叶片10的长度延伸。空气动力整流罩12是半刚性结构,如GFRP,该GFRP包括:玻璃纤维,例如PPG2002;和环氧树脂的支承基体,例如Dow780。
如图3所示,整流罩12定位在翼梁14上方,从而空腔16限定在整流罩12与翼梁帽盖18之间、在翼梁14的上表面处。复合物20布置在整流罩12与翼梁帽盖18之间,并且基本填充空腔16。复合物20包括:三维编织玻璃纤维织物,如PG18;和环氧树脂的已熟化支承基体,如Dow780,该环氧树脂的已熟化支承基体既粘结到整流罩12上又粘结到翼梁帽盖18上,以在整流罩12与翼梁14之间形成结构连接。“结构连接”意味着,复合物20所形成的连接具有足够的抗剪强度、抗压强度、粘合和压缩刚度,从而整流罩12在使用期间保持连结到翼梁14上,并且在使用期间不会由在叶片10上形成的力而引起纵向弯曲。
参照图4,三维织物22包括大致相平行的两个纤维表面薄片24,一些弹性连接纤维26在这两个纤维表面薄片24之间延伸,这些弹性连接纤维26编织到各表面薄片24中。纤维26布置成,在第一和第二薄片之间提供非常高的空穴空隙(在这种情况下,94-97%)。所述空穴空隙的值,是由在各薄片24之间的空气所占据的在各薄片24之间的总体积,以百分比表示的量值。空隙被纤维完全地填充时,表示空穴体积为0%,而没有任何纤维时,表示空穴体积为100%。后者是在施加树脂之前,在未压缩的织物中的空穴空隙的量值。
为了形成结构连接,用未熟化的环氧树脂23对三维织物22的层(该层比空腔16厚)进行预浸渍。这通过使得织物通过未熟化树脂的浴槽和然后使经涂敷的织物通过一对滚轮而完成。这允许调整在各滚轮之间的间隙,以实现为给出在完工物品中的所需空穴空隙所期望的所需树脂量。树脂将粘着到纤维上(如图4所示,图4仅示出了三根这样的已涂敷纤维-剩余的那些纤维将在实际中被涂敷),但没有填充在各薄片24之间的空隙。各薄片24的密度被设计成使得:在各薄片24中在各纤维之间的空隙的大部分(如果不是全部的话)由树脂填充,以便保证对于翼梁14和整流罩12两者的良好接触表面。
将复合物放置在翼梁14的翼梁帽盖18上。在这个例子中,织物22的层比空腔16的最宽点厚出近似20%。然后将整流罩12放置在复合物20上方,以形成空腔16,并且由组装夹具(未示出)保持就位,直到树脂已经熟化而形成结构连接。
由于织物22的连接纤维26是可变形的,所以未熟化复合物20的作用像床垫一样,并且可以比作弹性基础。因而,复合物20在整流罩12与翼梁帽盖18之间被压缩,从而它具有空腔16的形状。当被压缩时,复合物20的织物22将均匀的压力施加到整流罩12的内侧,该均匀的压力足以保证粘结表面被良好地连接,但不会过于大而使得整流罩12的空气动力表面被扭曲。以这种方式,形成结构连接,而不需要施加巨大外部力而挤压粘合剂,也不需要冒损坏工具和整流罩12的危险。
一旦树脂已经熟化,硬化的复合物20就将会在翼梁14与整流罩12之间形成足够的结构连接。换句话说,织物22和树脂的结构性质应该选择成,对于给定安装而言,经熟化的复合物20具有足够的抗剪强度、抗压强度以及压缩刚度特性。以这种方式,整流罩12将保持连结到翼梁帽盖18上,并且可以抵抗纵向弯曲,该纵向弯曲否则可能在叶片10的使用期间生成。
为了在完工物品中提供所需的可变形性和抗压强度,复合物在其压缩和熟化状态下应该具有至少30%的空穴体积。在这个例子中,空穴空隙是80%。经熟化、压缩的材料优选地具有160-300km/m3的密度。这使得有充分的空隙用于使织物在受压缩时变形,如上文述及的那样。应该注意,空穴体积是复合材料的空穴体积。只包含纤维而不包含基体材料的材料的任何区是单相材料,而不是复合物。因而,当确定空穴体积时,排除任何这样的区。因而,例如,US 2009/0226702具有:某些区,这些区具有0%的空穴体积,在该处存在粘合剂;以及其它区,在这些其它区只存在有多孔层,这些其它区不代表复合物的部分。
为了允许整流罩12连接到结构翼梁14上而没有任何显著变形,在整流罩12的刚度与复合物20在其未熟化状态下的刚度之间的关系应该在如下区中:
K s K f ≤ 1.25 - 10
其中:
Ks是复合物20在其未熟化状态下的基础刚度,在这种情况下与织物22的刚度相对应,作为每单位厚度的弹性模量(Pa/M)而测量,并且定义为基础材料的弹性模量与基础材料的总厚度的商;并且
Kf是整流罩12的弯曲刚度,按压力单位(Pa)而测量,并且定义为整流罩12的构成元素的弹性模量与面积惯性矩的乘积。弯曲刚度也可被视为是在施加负载下结构对于弯曲的抵抗力。
参照图5,可以将传统结构粘合剂28(如常规地填充的环氧树脂粘合剂)施加到三维织物22上,以帮助整流罩12对于翼梁14的粘结。
尽管翼梁已经描述成包括翼梁帽盖,但它可以是简单的梁,例如箱形截面梁。
作为由上部和下部壳体形成这种方式的取代,空气动力整流罩可以由任何数量的壳体形成。
尽管可变形固体在第一实施例中已经描述成三维织物,但可以使用任何适当的弹性的并且可压缩的材料。
另外,尽管复合物已经描述成具有树脂基体的三维织物,但基体可以是结构粘合剂。
三维织物的未压缩厚度,依据织物的可压缩特性,可以比在整流罩与翼梁之间的空腔的厚度厚大于或小于20%。
尽管三维织物已经描述成预浸渍有树脂,但可以在现场将树脂添加到织物中,例如在整流罩和翼梁由组装夹具保持就位的同时,通过注入到在整流罩与翼梁之间的空腔中。
可在将整流罩放置在翼梁帽盖上之前,将复合物放置在翼梁上,而不是放置在翼梁帽盖上。

Claims (23)

1.一种在用于风轮机叶片的翼梁帽盖和空气动力整流罩之间形成结构连接的方法,该方法包括如下步骤:
将复合物施加到所述翼梁帽盖与所述整流罩之间,所述复合物包括未熟化的基体和可压缩的固体;
压缩所述可压缩的固体,从而所述复合物基本占据在所述翼梁帽盖与所述整流罩之间的空隙;
使所述基体熟化,以将所述可压缩的固体保持在其压缩状态下,所述复合物具有至少20%的空穴体积;以及
随着所述基体被熟化,将所述整流罩粘合到所述翼梁帽盖上。
2.如权利要求1所述的方法,其中,所述空穴体积是至少30%,优选地是至少40%,优选地是至少50%,优选地是至少60%,优选地是至少70%。
3.如权利要求1或权利要求2所述的方法,其中,所述整流罩对于所述翼梁帽盖的粘合由所述基体实现。
4.如上述权利要求中的任一项所述的方法,其中,所述基体包括环氧树脂。
5.如权利要求1至4中的任一项所述的方法,其中,所述基体包括结构粘合剂。
6.如上述权利要求中的任一项所述的方法,还包括提供另外的粘合剂,其中,所述整流罩对于所述翼梁帽盖的粘合至少部分地由所述另外的粘合剂实现。
7.如上述权利要求中的任一项所述的方法,其中,所述基体是不起泡沫的。
8.如上述权利要求中的任一项所述的方法,其中,所述可压缩的固体通过压缩而变形。
9.如权利要求8所述的方法,其中,当所述可压缩的固体在非压缩状态下时,所述可压缩的固体比在所述翼梁帽盖与所述整流罩之间的空隙厚出近似20%。
10.如权利要求8或9所述的方法,其中,所述可压缩的固体包括第一多孔层和第二多孔层,该第一多孔层面对所述整流罩,该第二多孔层面对所述翼梁帽盖,所述第一多孔层和第二多孔层由第三层分离,该第三层具有比第一和第二层更大的厚度和更低的密度。
11.如权利要求10所述的方法,其中,所述第一和第二层是编织纤维层。
12.如权利要求10或权利要求11所述的方法,其中,所述第三层由一些纤维形成,这些纤维编织或缝合在第一和第二层之间。
13.如权利要求10所述的方法,其中,在将复合物施加到所述翼梁帽盖与所述整流罩之间的步骤之前,用基体浸渍所述固体。
14.如上述权利要求中的任一项所述的方法,其中,经浸渍的复合物在一对滚轮之间通过,以除去基体的一部分。
15.如上述权利要求中的任一项所述的方法,其中,所述叶片的长度是至少45米。
16.一种风轮机叶片,其包括:
翼梁,其具有至少一个翼梁帽盖;
整流罩,其定位在所述翼梁帽盖上方;以及
复合物,其基本填充在所述翼梁帽盖与所述整流罩之间的空隙,
其中,所述复合物包括经熟化的基体、受压缩的固体以及至少20%的空穴体积。
17.如权利要求16所述的风轮机叶片,其中,所述空穴体积是至少30%,更优选地是至少40%。
18.如权利要求16或权利要求17所述的风轮机叶片,其中,所述可压缩的固体包括第一多孔层和第二多孔层,该第一多孔层面对所述整流罩,该第二多孔层面对所述翼梁帽盖,所述第一多孔层和第二多孔层由第三层分离,该第三层具有比第一和第二层更大的厚度和更低的密度。
19.如权利要求18所述的风轮机叶片,其中,第一和第二层是编织纤维层。
20.如权利要求18或权利要求19所述的风轮机叶片,其中,所述第三层由一些纤维形成,这些纤维编织或缝合在第一和第二层之间。
21.如权利要求16至20中的任一项所述的风轮机叶片,其中,所述复合物布置成将所述翼梁帽盖粘合到所述整流罩上。
22.如权利要求16至21中的任一项所述的风轮机叶片,还包括另外的粘合剂,该另外的粘合剂布置成至少部分地将所述翼梁帽盖粘合到所述整流罩上。
23.一种风轮机,其包括根据权利要求16至22中的任一项所述的风轮机叶片。
CN201380050161.5A 2012-09-26 2013-09-26 在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法 Active CN104812557B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1217210.2 2012-09-26
GBGB1217210.2A GB201217210D0 (en) 2012-09-26 2012-09-26 A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
PCT/GB2013/052508 WO2014049354A1 (en) 2012-09-26 2013-09-26 A method of forming a structural connection between a spar cap and a fairing for a wind turbine blade

Publications (2)

Publication Number Publication Date
CN104812557A true CN104812557A (zh) 2015-07-29
CN104812557B CN104812557B (zh) 2017-09-12

Family

ID=47190663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380050161.5A Active CN104812557B (zh) 2012-09-26 2013-09-26 在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法

Country Status (7)

Country Link
US (1) US9863258B2 (zh)
EP (1) EP2900456B1 (zh)
CN (1) CN104812557B (zh)
BR (1) BR112015006385B8 (zh)
GB (1) GB201217210D0 (zh)
IN (1) IN2015DN02281A (zh)
WO (1) WO2014049354A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401865A (zh) * 2015-07-30 2017-02-15 通用电气公司 具有用于平板翼梁缘条的内部支架的转子叶片

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022254B (zh) * 2009-09-23 2014-12-17 固瑞特模具(太仓)有限公司 风轮机叶片及其生产方法
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
EP2927481B1 (en) * 2014-03-31 2021-09-22 Siemens Gamesa Renewable Energy A/S Rotor blade for a wind turbine
GB2529186A (en) * 2014-08-12 2016-02-17 Vestas Wind Sys As Improvements relating to wind turbine blade manufacture
GB2535697A (en) * 2015-02-17 2016-08-31 Vestas Wind Sys As Improvements relating to wind turbine blade manufacture
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness
US11572861B2 (en) 2017-01-31 2023-02-07 General Electric Company Method for forming a rotor blade for a wind turbine
WO2023247584A1 (en) 2022-06-24 2023-12-28 Zephyros, Inc. Thermal runaway fumes management

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767461A (en) 1951-03-27 1956-10-23 Lockheed Aircraft Corp Method of making propeller or rotor blade
US3487518A (en) 1965-08-12 1970-01-06 Henry Hopfeld Method for making a reinforced structural member
US3531901A (en) 1966-05-18 1970-10-06 Owens Corning Fiberglass Corp Heat insulating structural member
GB1229595A (zh) 1968-04-26 1971-04-28
US3980894A (en) 1974-07-02 1976-09-14 Philip Vary Flow tubes for producing electric energy
US4120998A (en) 1977-02-03 1978-10-17 Northrop Corporation Composite structure
DE2944359A1 (de) 1979-02-14 1980-08-21 Composite Tech Corp Verbundkoerper
DE3113079C2 (de) 1981-04-01 1985-11-21 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Aerodynamischer Groß-Flügel und Verfahren zu dessen Herstellung
US4662587A (en) 1981-09-30 1987-05-05 The Boeing Company Composite for aircraft wing and method of making
US4557666A (en) 1983-09-29 1985-12-10 The Boeing Company Wind turbine rotor
US4580380A (en) 1983-11-07 1986-04-08 Ballard Derryl R Composite filled interior structural box beams
US5273819A (en) 1986-10-15 1993-12-28 Jex Edward R Fiber reinforced resin composites, method of manufacture and improved composite products
US4752513A (en) 1987-04-09 1988-06-21 Ppg Industries, Inc. Reinforcements for pultruding resin reinforced products and novel pultruded products
DE3811427A1 (de) 1988-04-05 1989-10-26 Audi Ag Verbindungsanordnung von karosserieteilen
US4976587A (en) 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
US5096384A (en) 1990-07-27 1992-03-17 The Marley Cooling Tower Company Plastic fan blade for industrial cooling towers and method of making same
US5145320A (en) 1990-08-28 1992-09-08 The United States Of America As Represented By The Secretary Of The Navy Mass loaded composite rotor for vibro-acoustic application
US5281454A (en) 1991-08-16 1994-01-25 Kaiser Aerospace & Electronics Corporation Closed composite sections with bonded scarf joints
FR2710871B1 (fr) 1993-10-07 1995-12-01 France Etat Armement Procédé d'assemblage d'éléments en matériau composite et éléments assemblages entre eux.
CA2161040A1 (en) 1994-10-21 1996-04-22 Delbert D. Derees Vehicle assembly method
DE19529476C2 (de) 1995-08-11 2000-08-10 Deutsch Zentr Luft & Raumfahrt Flügel mit schubsteifen Flügelschalen aus Faserverbundwerkstoffen für Luftfahrzeuge
EP0883380B1 (en) 1996-02-22 2001-08-29 Depuy Orthopaedics, Inc. External fixation device with composite rings
US6341467B1 (en) 1996-05-10 2002-01-29 Henkel Corporation Internal reinforcement for hollow structural elements
JPH1054204A (ja) 1996-05-20 1998-02-24 General Electric Co <Ge> ガスタービン用の多構成部翼
US5980665A (en) * 1996-05-31 1999-11-09 The Boeing Company Z-pin reinforced bonds for connecting composite structures
NL1005423C2 (nl) 1997-03-03 1998-09-18 Polva Pipelife Bv Lijmmofverbinding, alsmede lijmmof daarvoor.
US6096403A (en) 1997-07-21 2000-08-01 Henkel Corporation Reinforced structural members
DE19737966A1 (de) 1997-08-30 1998-08-06 Daimler Benz Ag Klebverbindung zwischen zwei Bauteilen
US6295779B1 (en) 1997-11-26 2001-10-02 Fred C. Canfield Composite frame member and method of making the same
JP2000120524A (ja) 1998-10-16 2000-04-25 Mitsubishi Heavy Ind Ltd 風車翼
US6332301B1 (en) 1999-12-02 2001-12-25 Jacob Goldzak Metal beam structure and building construction including same
DE19962989B4 (de) 1999-12-24 2006-04-13 Wobben, Aloys, Dipl.-Ing. Rotorblatt für Windenergieanlagen
GB2372784A (en) 2000-11-24 2002-09-04 Eclectic Energy Ltd Air Turbine Interlocking Blade Root and Hub Assembly
DE10126912A1 (de) 2001-06-01 2002-12-19 Oevermann Gmbh & Co Kg Hoch Un Turmbauwerk aus Spannbeton
FR2831479B1 (fr) 2001-10-26 2004-01-02 Coriolis Composites Procede de fabrication de profils presentant un etat de surface specifique en resines synthetiques renforcees par des fibres et machine pour mettre en oeuvre le procede
PL205310B1 (pl) 2002-01-11 2010-04-30 Fiberline As Sposób wytwarzania elementu konstrukcyjnego wzmocnionego włóknami oraz sposób wytwarzania zespołu zamocowania śrubowego, zespołu śrubowego lub zespołu łącznikowego do stosowania we wzmocnionym włóknami elemencie konstrukcyjnym
NL1019953C2 (nl) 2002-02-12 2002-12-19 Mecal Applied Mechanics B V Geprefabriceerde toren of mast, alsmede een methode voor het samenvoegen en/of naspannen van segmenten die één constructie moeten vormen, alsmede een werkwijze voor het opbouwen van een toren of mast bestaande uit segmenten.
DE20206942U1 (de) 2002-05-02 2002-08-08 Repower Systems Ag Rotorblatt für Windenergieanlagen
US6945727B2 (en) 2002-07-19 2005-09-20 The Boeing Company Apparatuses and methods for joining structural members, such as composite structural members
GB2391270B (en) 2002-07-26 2006-03-08 Rolls Royce Plc Turbomachine blade
DE10235496B4 (de) * 2002-08-02 2015-07-30 General Electric Co. Verfahren zum Herstellen eines Rotorblattes, Rotorblatt und Windenergieanlage
US20040023581A1 (en) * 2002-08-05 2004-02-05 Bersuch Larry R. Z-pin closeout joint and method of assembly
FR2843967B1 (fr) 2002-08-30 2004-11-26 Hexcel Composites Nouveaux produits composites et articles moules obtenus a partir desdits produits
GB0222466D0 (en) 2002-09-27 2002-11-06 Marine Current Turbines Ltd Improvements in rotor blades and/or hydrofoils
US20070036659A1 (en) 2003-02-28 2007-02-15 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover
GB0306408D0 (en) 2003-03-20 2003-04-23 Holloway Wynn P A composite beam
WO2004088130A1 (en) 2003-03-31 2004-10-14 Forskningscenter Risø Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control
DE10336461A1 (de) 2003-08-05 2005-03-03 Aloys Wobben Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage
FR2863321A1 (fr) 2003-12-09 2005-06-10 Ocea Sa Pale d'aerogenerateur integrant des moyens de liaison ameliores entre la racine de la pale et le moyeu de l'aerogenerateur, bride, procede de fabrication et aerogenerateur correspondant
CN1977108B (zh) 2004-06-30 2011-09-14 维斯塔斯风力系统有限公司 由两个分离的部分制成的风轮机叶片以及装配方法
US7634891B2 (en) 2004-09-09 2009-12-22 Kazak Composites, Inc. Hybrid beam and stanchion incorporating hybrid beam
US7413623B2 (en) * 2005-02-04 2008-08-19 Rse Industries, Inc. Apparatus for resin-impregnation of fibers for filament winding
JP4556046B2 (ja) 2005-03-14 2010-10-06 独立行政法人 宇宙航空研究開発機構 飛行体用翼及びフラップ並びに翼の形状制御方法
JP2006336555A (ja) 2005-06-02 2006-12-14 Shinko Electric Co Ltd 風力発電設備用の円筒部材
US7438524B2 (en) 2005-07-20 2008-10-21 United Technologies Corporation Winged structural joint and articles employing the joint
DK176367B1 (da) * 2005-09-19 2007-10-01 Lm Glasfiber As Materialelag til optagelse af overskydende lim
DE102005062347A1 (de) 2005-12-23 2007-06-28 Eurocopter Deutschland Gmbh Hochdehnbares Energie- und/oder Signalübertragungskabel sowie Rotorblatt mit einem derartigen Kabel
DK176321B1 (da) 2005-12-28 2007-08-06 Lm Glasfiber As Planering af rodbösninger på vinger til vindenergianlæg
JP5007051B2 (ja) 2006-02-10 2012-08-22 富士重工業株式会社 接着方法
US7427189B2 (en) 2006-02-13 2008-09-23 General Electric Company Wind turbine rotor blade
EP2044324A1 (en) 2006-07-07 2009-04-08 Danmarks Tekniske Universitet Variable trailing edge section geometry for wind turbine blade
EP1880833A1 (en) 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction
US7824592B2 (en) 2006-09-22 2010-11-02 General Electric Company Bond line forming method
US7810757B2 (en) 2006-11-02 2010-10-12 The Boeing Company Mounting device for an aircraft
EP1925436B1 (en) 2006-11-23 2012-08-29 Siemens Aktiengesellschaft Method for manufacturing of a fibre reinforced laminate, use of this laminate, wind turbine blade and wind turbine comprising this laminate
WO2008131800A1 (en) 2007-04-30 2008-11-06 Vestas Wind Systems A/S A wind turbine blade
BRPI0721559A2 (pt) 2007-05-07 2011-05-03 Ericsson Telefon Ab L M estrutura de torre de antena alongada, segmento de torre de antena alongado e método de montar uma estrutura alongada
FR2919819B1 (fr) 2007-08-10 2009-12-18 Eads Europ Aeronautic Defence Procede de fabrication d'une structure complexe en materiau composite par assemblage d'elements rigides
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
CN101440207B (zh) 2007-09-19 2012-08-08 住化拜耳氨酯株式会社 表皮整体成形品、表皮整体成形品以及带表皮的层叠体的制造方法
US7740453B2 (en) 2007-12-19 2010-06-22 General Electric Company Multi-segment wind turbine blade and method for assembling the same
US8171633B2 (en) 2007-12-19 2012-05-08 General Electric Company Method for assembling a multi-segment wind turbine blade
DE102007061318B3 (de) 2007-12-19 2009-05-14 Mathias Hofmann Verfahren zum Herstellen einer Längsverbindung für tragende Holzbauteile sowie tragendes Holzbauteil
US8167569B2 (en) 2007-12-21 2012-05-01 General Electric Company Structure and method for self-aligning rotor blade joints
US20090211173A1 (en) * 2008-02-27 2009-08-27 General Electric Company Composite wind turbine tower
ES2364258B1 (es) 2008-03-05 2012-06-01 Manuel Torres Martinez Sistema de union de tramos de palas de aerogenerador
US7846228B1 (en) 2008-03-10 2010-12-07 Research International, Inc. Liquid particulate extraction device
GB2458685B (en) 2008-03-28 2010-05-12 Rolls Royce Plc An article formed from a composite material
US8801386B2 (en) 2008-04-14 2014-08-12 Atlantis Resources Corporation Pte Limited Blade for a water turbine
GB0807515D0 (en) 2008-04-24 2008-06-04 Blade Dynamics Ltd A wind turbine blade
US8192572B2 (en) 2008-04-25 2012-06-05 General Electric Company Composite wind turbine tower and a method for fabricating same
DK2334932T4 (da) 2008-08-25 2024-05-27 Vestas Wind Sys As Anordning og fremgangsmåde til fremstilling af en anordning
GB0818466D0 (en) 2008-10-08 2008-11-12 Blade Dynamics Ltd A wind turbine rotor
GB0818467D0 (en) 2008-10-08 2008-11-12 Blade Dynamics Ltd An insert for forming an end connection in a uni-axial composite material
CA2741479A1 (en) 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
ES2341074B1 (es) 2008-10-28 2011-05-20 GAMESA INNOVATION &amp; TECHNOLOGY, S.L Una pala de aerogenerador multi-panel con la raiz integrada.
US20100116938A1 (en) 2008-11-13 2010-05-13 Kline William T Method and apparatus for joining composite structural members and structural members made thereby
CA2745652C (en) * 2008-12-05 2017-10-10 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8092187B2 (en) 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades
MX2011008024A (es) 2009-02-16 2011-08-17 Vestas Wind Sys As Una helice para una turbina eolica y un metodo para hacer la misma.
US8303882B2 (en) * 2009-02-23 2012-11-06 General Electric Company Apparatus and method of making composite material articles
US8096750B2 (en) 2009-03-30 2012-01-17 Ocean Renewable Power Company, Llc High efficiency turbine and method of generating power
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
CN101560945B (zh) * 2009-05-25 2011-07-20 常州伯龙三维复合材料有限公司 风发电力机组三维层连夹芯结构复合外罩
US7998303B2 (en) 2009-05-28 2011-08-16 General Electric Company Method for assembling jointed wind turbine blade
DE102009031947A1 (de) * 2009-07-07 2011-01-13 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage und Verfahren zu dessen Herstellung
GB2473448A (en) 2009-09-09 2011-03-16 Vestas Wind Sys As Wind Turbine Rotor Blade With Undulating Flap Hinge Panel
GB0920749D0 (en) 2009-11-26 2010-01-13 Blade Dynamics Ltd An aerodynamic fairing for a wind turbine and a method of connecting adjacent parts of such a fairing
ES2536290T3 (es) 2009-12-02 2015-05-22 Vestas Wind Systems A/S Pala de turbina eólica en secciones
JP5308323B2 (ja) 2009-12-22 2013-10-09 三菱重工業株式会社 風車翼及びそれを用いた風力発電装置
US20110175365A1 (en) 2010-01-15 2011-07-21 Douglas Hines Wind-driven electric generator structure vibration-deadening apparatus and methods
GB201001527D0 (en) 2010-01-29 2010-03-17 Blade Dynamics Ltd A blade for a turbine operating in water
WO2011106733A2 (en) 2010-02-25 2011-09-01 The Regents Of The University Of California Advanced aerodynamic and structural blade and wing design
GB201007336D0 (en) 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
EP2400147A1 (en) 2010-06-25 2011-12-28 Siemens Aktiengesellschaft Root of the blade of a wind turbine
GB201011539D0 (en) 2010-07-08 2010-08-25 Blade Dynamics Ltd A wind turbine blade
US8307593B2 (en) 2010-08-18 2012-11-13 General Electric Company Tower with adapter section
US7976275B2 (en) 2010-08-30 2011-07-12 General Electric Company Wind turbine rotor blade assembly having an access window and related methods
JP5950923B2 (ja) 2010-11-04 2016-07-13 ユニバーシティー オブ メイン システム ボード オブ トラスティーズ 風力タービンプラットフォーム
KR101825247B1 (ko) * 2010-11-08 2018-02-02 도레이 카부시키가이샤 섬유 강화 복합 재료용의 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
KR101222041B1 (ko) 2010-12-30 2013-01-15 재단법인 포항산업과학연구원 하이브리드 타워 구조체
GB201109412D0 (en) 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
US8262362B2 (en) 2011-06-08 2012-09-11 General Electric Company Wind turbine blade shear web with spring flanges
US8235671B2 (en) * 2011-07-19 2012-08-07 General Electric Company Wind turbine blade shear web connection assembly
US8360733B2 (en) 2011-09-09 2013-01-29 General Electric Company Rotor blade for a wind turbine and methods of manufacturing the same
GB201118419D0 (en) 2011-10-25 2011-12-07 Blade Dynamics Ltd A method of making a root end joint of a wind turbine blade and a root segment for such a joint
GB201215004D0 (en) 2012-08-23 2012-10-10 Blade Dynamics Ltd Wind turbine tower
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401865A (zh) * 2015-07-30 2017-02-15 通用电气公司 具有用于平板翼梁缘条的内部支架的转子叶片

Also Published As

Publication number Publication date
BR112015006385B1 (pt) 2021-02-23
CN104812557B (zh) 2017-09-12
US9863258B2 (en) 2018-01-09
GB201217210D0 (en) 2012-11-07
EP2900456A1 (en) 2015-08-05
BR112015006385A2 (pt) 2017-07-04
BR112015006385B8 (pt) 2021-07-13
WO2014049354A1 (en) 2014-04-03
US20150198051A1 (en) 2015-07-16
IN2015DN02281A (zh) 2015-08-21
EP2900456B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
CN104812557A (zh) 在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法
CN1975152B (zh) 风力涡轮机叶片
KR101642066B1 (ko) 풍력 발전기 블레이드
US5814386A (en) Composite shell formed as a body of rotation, and method and mandrel for making same
US8075275B2 (en) Wind turbine spars with jointed shear webs
CN1331658C (zh) 三维针织间隔织物夹层复合材料
EP3288750A1 (en) Reinforcing structure for a wind turbine blade
AU2002354986A1 (en) Wind turbine blade
EP3475068A1 (en) Manufacture of a wind turbine blade
US11760041B2 (en) Wind turbine blade manufacture
US11761422B2 (en) Relating to wind turbine blade manufacture
CN209907116U (zh) 一种竹基纤维复合轨枕
CN106585955B (zh) 无人机机翼一体复合梁结构及其制造方法
CN113711813A (zh) 一种太阳能蔬菜大棚保温设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant