CN104803342B - 碗状金属纳米结构的制备方法 - Google Patents

碗状金属纳米结构的制备方法 Download PDF

Info

Publication number
CN104803342B
CN104803342B CN201410031509.2A CN201410031509A CN104803342B CN 104803342 B CN104803342 B CN 104803342B CN 201410031509 A CN201410031509 A CN 201410031509A CN 104803342 B CN104803342 B CN 104803342B
Authority
CN
China
Prior art keywords
bowl
nano structure
metal nano
projection
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410031509.2A
Other languages
English (en)
Other versions
CN104803342A (zh
Inventor
朱振东
李群庆
白本锋
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201410031509.2A priority Critical patent/CN104803342B/zh
Priority to TW103104491A priority patent/TWI546247B/zh
Priority to US14/252,079 priority patent/US9099407B1/en
Publication of CN104803342A publication Critical patent/CN104803342A/zh
Application granted granted Critical
Publication of CN104803342B publication Critical patent/CN104803342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0369Static structures characterized by their profile
    • B81B2203/0376Static structures characterized by their profile rounded profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)

Abstract

本发明涉及一种碗状金属纳米结构阵列的制备方法,其包括以下步骤:提供一基底;在所述基底的表面设置一金属层;在所述金属层远离基底的表面设置一图形化的掩模层,该图形化的掩模层包括多个间隔设置的凸块,相邻的凸块之间的金属层被暴露;对上述结构进行退火处理,使每个凸块的顶面形成多个裂纹;以及采用物理性刻蚀气体和反应性刻蚀气体同时刻蚀,对应在每个凸块的位置形成一碗状金属纳米结构。本发明还涉及一种利用上述制备方法所制备的碗状金属纳米结构阵列以及一种利用该碗状金属纳米结构阵列的检测系统。

Description

碗状金属纳米结构的制备方法
技术领域
本发明涉及一种碗状金属纳米结构的制备方法。
背景技术
金、银等金属光栅在很多领域具有重要的应用,比如纳米光学、生化传感器、超高分辨成像的精密光学仪器、表面等离子学和表面等离子激元光刻等。
现有金属光栅多是通过剥离(Lift-off)工艺或电化学或干法刻蚀等方法制备的,然而,这些方法或因为引入化学试剂导致金属光栅的结构及性质不理想,或很难实现特定形貌及非常小的纳米结构,或容易引起金、银等金属发生物理性质不稳定。因此,利用上述方法制备具有一定微结构的金、银等金属光栅具有很大的挑战性。
碗状金属纳米结构是一种特殊形貌的金属纳米结构,该金属纳米结构具有广阔的应用领域,如基于表面等离子激元的单分子检测、生化传感器、折射率传感器、亚波长光束整形及纳米聚焦(nanofocusing)等。然而,现有的碗状金属纳米结构的制备方法复杂,工艺步骤较多,无法实现工业化生产。另外,目前尚未有报道能够制备一体成型的球-碗(particle-in-bowl)结构。
发明内容
有鉴于此,确有必要提供一种碗状金属纳米结构的制备方法,利用该方法可制备出一体成型的凸块结构,且该方法简单易操作。
一种碗状金属纳米结构的制备方法,其包括以下步骤:
提供一基底;
在所述基底的表面设置一金属层;
在所述金属层远离基底的表面设置一图形化的掩模层,该图形化的掩模层包括多个间隔设置的凸块,相邻的凸块之间的金属层被暴露;
对上述结构进行退火处理,使每个凸块的顶面形成多个裂纹;以及
采用物理性刻蚀气体和反应性刻蚀气体同时刻蚀,对应在每个凸块的位置形成一碗状金属纳米结构。
与现有技术相比,本发明所提供的碗状金属纳米结构的制备方法简单,易于实现工业化生产,且利用该方法可制备一体成型的凸块结构,该凸块结构由同种金属材料组成。
附图说明
图1为本发明提供的制备碗状金属纳米结构的工艺流程图。
图2为图1中裂纹形成时的立体结构示意图。
图3为图1中刻蚀过程的工艺流程图。
图4为本发明提供的碗状金属纳米结构的立体结构示意图。
图5为图4的剖面结构示意图。
图6为本发明提供的碗状金属纳米结构的扫描电镜照片。
图7为本发明提供的另一碗状金属纳米结构的立体结构示意图。
图8为图7的剖面结构示意图。
图9为本发明提供的应用一碗状金属纳米结构的检测系统的结构示意图。
主要元件符号说明
基底 10
金属层 20
第一表面 202
掩模层 30
凸块 32
裂纹 34
碗状金属纳米结构 100,200
凸块结构 22
碗状凹陷部 222
第一侧表面 2221
第二侧表面 2223
上部表面 2225
内表面 2227
凸起结构 224
连接部 226
检测系统 40
发射模块 300
接收模块 400
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的碗状金属纳米结构及其制备方法,以及利用所述碗状金属纳米结构的检测系统作进一步的详细说明。
请一并参见图1和图2,本发明提供一种碗状金属纳米结构阵列的制备方法,其包括以下步骤:
步骤S1,提供一基底10;
步骤S2,在所述基底10的表面设置一金属层20,该金属层20具有一第一表面202,该第一表面202远离所述基底10;
步骤S3,在所述金属层20的第一表面202设置一图形化的掩模层30,该图形化的掩模层30覆盖所述金属层20第一表面202的部分区域,并暴露所述金属层20第一表面202的其余区域;
步骤S4,对上述结构进行退火处理,使所述图形化的掩模层30形成多个裂纹34;以及
步骤S5,用物理性刻蚀气体和反应性刻蚀气体同时刻蚀上述结构,形成一碗状金属纳米结构阵列100。
在步骤S1中,所述基底10为一具有光滑表面的绝缘基底10或半导体基底10。具体地,所述基底10的材料可以为氮化镓、砷化镓、蓝宝石、氧化铝、氧化镁、硅、二氧化硅、氮化硅、石英或玻璃等。进一步地,所述基底10的材料也可以为掺杂的半导体材料,如P型氮化镓、N型氮化镓等。所述基底10的大小、厚度和形状不限,可以根据实际需要进行选择。
进一步地,在保证所述基底10的表面粗糙度及后续步骤要求的情况下,可对该基底10进行亲水处理,以改善所述基底10表面的亲水性。当所述基底10的材料为氮化镓时,所述亲水处理的方法包括以下步骤:首先,清洗所述基底10,清洗时采用超净间标准工艺清洗。然后,采用微波等离子体处理上述基底10。具体地,可将所述基底10放置于微波等离子体系统中,该微波等离子体系统的一感应功率源可产生氧等离子体、氯等离子体或氩等离子体。等离子体以较低的离子能量从产生区域扩散并漂移至所述基底10的表面,进而改善该基底10的亲水性。
本实施例中,所述基底10的材料为二氧化硅,所述亲水处理包括以下步骤:首先,清洗所述基底10,清洗时采用超净间标准工艺清洗。然后,在温度为30℃~100℃,体积比为NH3(H2O:H2O2:H2O=x:y:z的溶液中温浴30分钟~60分钟,进行亲水处理,之后用去离子水冲洗2次~3次。其中,x的取值为0.2~2,y的取值为0.2~2,z的取值为1~20。最后,用氮气吹干。
在步骤S2中,所述金属层20可通过电子束蒸发、离子束溅射等方法沉积在所述基底10的表面。所述金属层20的材料为金、银、铂、钯等贵金属以及钛、铜、铝等。所述金属层20的厚度可根据所需求的碗状金属纳米结构阵列100的尺寸进行选择。优选地,所述金属层20的厚度为100纳米~200纳米。本实施例中,所述金属层20为一金膜,该金膜的厚度为150纳米。
在步骤S3中,所述图形化的掩模层30选用易于被反应性刻蚀气体刻蚀的光刻胶,如:ZEP520、Polymethylmethacrylate(PMMA)、Polystyrene(PS)、SAL601或ARZ720等。所述图形化的掩模层30的厚度在200纳米~400纳米之间。优选地,所述图形化的掩模层30的厚度与所述金属层20的厚度比为2~2.5:1。本实施例中,所述图形化的掩模层30选用PMMA材料,其厚度为375纳米。
所述图形化的掩模层30包括多个间隔设置的凸块32,该多个凸块32在所述金属层20的第一表面202形成一阵列形式。该多个凸块32的形状不限,如可以为正方体形、长方体形或圆柱体形等。本实施例中,所述多个凸块32为一正方体形凸块32。所述图形化的掩模层30中图案的周期为100纳米~400纳米,具体地,所述多个凸块32的宽度在80纳米~300纳米之间,所述多个凸块32之间的间隙在20纳米~100纳米之间。所述金属层20的部分第一表面202通过多个凸块32之间的间隙暴露出来,所述金属层20的部分第一表面202被所述多个凸块32覆盖。
所述图形化的掩模层30可通过刻蚀(光学刻蚀、等离子体刻蚀、电子束刻蚀、聚焦离子束刻蚀等)的方式制备获得,也可通过热压印、纳米压印等方式制备获得。优选地,本实施例中,所述图形化的掩模层30通过纳米压印的方式获得。
在步骤S4中,对上述结构进行退火处理,使所述图形化的掩模层30形成多个裂纹34的具体过程为:
步骤S41:将上述结构整体放入一退火炉中;
步骤S42:通入氮气或氩气等惰性气体;
步骤S43:将退火炉升温至130摄氏度~180摄氏度之间并保温5分钟~90分钟;以及
步骤S44:待退火炉冷却至室温后将上述结构移出。
在步骤S4中,由于退火处理,在所述图形化的掩模层30中的每个凸块32中,靠近凸块32上表面的区域的物理性质有别于靠近凸块32中心的区域的物理性质,导致靠近凸块32上表面的区域发生局部应力集中的现象,因此,在退火冷却过程中,靠近凸块32上表面的区域优先被撕裂,从而产生裂纹34,请参见图2。即,每个凸块32的顶面形成多个裂纹34。
在步骤S5中,将经过步骤S4处理后得到的结构放入一刻蚀系统中,所述刻蚀系统中的刻蚀气体为物理性刻蚀气体和反应性刻蚀气体的混合气体。所述物理性刻蚀气体为氩气或氦气等,所述反应性刻蚀气体为氧气、氯气、三氯化硼、四氟化碳等。所述物理性刻蚀气体和反应性刻蚀气体可根据所述金属层20和掩模层30的材料进行选择。优选地,所述物理性刻蚀气体为氩气,所述反应性刻蚀气体为氧气。
请参见图3,所述反应性刻蚀气体和物理性刻蚀气体同时刻蚀经过步骤S4处理后得到的结构的具体过程为:
在刻蚀系统中通入所述反应性刻蚀气体和物理性刻蚀气体时,一方面,所述图形化的掩模层30中凸块32的上表面被反应性刻蚀气体逐步刻蚀,同时,所述凸块32中的裂纹34被反应性刻蚀气体逐步刻蚀而扩大直至将金属层20暴露出来。另一方面,通过多个凸块32之间的间隙暴露出来的金属层20被物理性刻蚀气体逐步刻蚀,同时,通过所述凸块32中的裂纹34暴露出来的金属层20也被物理性刻蚀气体逐步刻蚀。
最后,所述图形化的掩模层30被所述反应性刻蚀气体完全刻蚀除去,通过多个凸块32之间的间隙暴露的金属层20被完全刻蚀除去或仅被部分刻蚀,而通过所述裂纹34暴露的金属层20也被部分刻蚀,从而形成一碗状凹陷部222,且在该碗状凹陷部222底部中心有一凸起结构224,该凸起结构224与所述碗状凹陷部222相连并一体成型。即,对应在每个凸块32的位置形成一碗状金属纳米结构。
所述刻蚀系统的参数为:所述物理性刻蚀气体的体积流量为25sccm(标况毫升每分)~150sccm,所述反应性离子刻蚀气体的体积流量为5sccm(标况毫升每分)~15sccm,所述刻蚀系统内的压强为10帕~30帕,所述刻蚀系统的功率为40瓦~100瓦,刻蚀时间可为11分钟~21分钟。具体地,当刻蚀时间为16分钟~21分钟时,通过多个凸块32之间的间隙暴露的金属层20被完全刻蚀除去,所形成的碗状金属纳米结构阵列100如图4-6所示。当刻蚀时间为11分钟~15分钟时,通过多个凸块32之间的间隙暴露的金属层20仅被部分刻蚀,所形成的碗状金属纳米结构阵列200如图7-8所示。
利用光刻胶作为掩模层30刻蚀所述金属层20时,刻蚀是有方向性的,原因为反应离子刻蚀(RIE)是等离子体(plasma)气氛,而等离子体是带电的有方向性的流体,该流体的方向在一亚波长沟道中会受到沟道壁的影响,调节该流体的方向,会得到所述金属纳米结构的微结构。
请一并参见图4-8,在步骤5完成后,获得一碗状金属纳米结构阵列100。所述碗状金属纳米结构阵列100包括一基底10以及位于基底10上的多个凸块结构22。每个凸块结构22包括一碗状凹陷部222以及一位于所述碗状凹陷部222底部中心的凸起结构224。所述凸起结构224与所述碗状凹陷部222一体成型且由同种金属材料组成。所述凸起结构224的形状不限,例如球形、方形、柱形或不规则形状等。本实施例中,所述金属材料为金,所述凸起结构224的形状为球形,所述凸块结构22为球-碗(particle-in-bowl)结构。
请参见图5,所述碗状凹陷部222包括一第一侧表面2221、一第二侧表面2223、两个上部表面2225和一内表面2227,所述第一侧表面2221和第二侧表面2223相对设置。所述凸起结构224位于碗状凹陷部222的内表面2227的中心,且与碗状凹陷部222一体成型。
所述碗状凹陷部222的深度、高度及宽度、碗口的直径、球形凸起结构224的直径、凸块结构22的周期以及相邻凸块结构22之间的间隙等参数均可根据需要进行调节。所述碗状凹陷部222的深度是指上部表面2225与内表面2227的最低点之间的距离。所述碗状凹陷部222的高度是指上部表面2225与基底10上设置有凸块结构22的表面之间的距离。所述碗状凹陷部222的宽度是指第一侧表面2221与第二侧表面2223之间的距离。所述碗状凹陷部222碗口的直径是指所述内表面2227的最大宽度。所述凸块结构22的周期是指相邻两个碗状凹陷部222的第一侧表面2221之间的距离。
优选地,所述碗状凹陷部222的深度为20纳米~200纳米,高度为40纳米~300纳米,宽度为100纳米~850纳米,所述碗口的直径为40纳米~600纳米,球形凸起结构224的直径为2纳米~60纳米,凸块结构22的周期为200纳米~1微米,相邻凸块结构22之间的间隙为100纳米~150纳米。本实施例中,所述碗状凹陷部222的深度为30纳米,高度为50纳米,宽度为200纳米,所述碗口的直径为150纳米,球形凸起结构224的直径为10纳米,凸块结构22的周期为300纳米,相邻凸块结构22之间的间隙为100纳米。
所述多个凸块结构22在所述基底10上相互间隔设置,形成一阵列形式,如图4-6所示。即,所述多个凸块结构22共用一基底10。
所述多个凸块结构22也可通过所述碗状凹陷部222的底部连接在一起,即,所述多个凸块结构22通过碗状凹陷部222的底部一体成型,如图7-8所示。即,所述碗状金属纳米结构阵列200包括一基底10以及一金属层20设置在该基底10表面,该金属层20远离基底10的表面具有多个凸块结构22。所述多个凸块结构22通过所述碗状凹陷部222的底部连接在一起时,相邻两个凸块结构22的底部连接处形成一连接部226,如图8所示。所述连接部226的厚度为5纳米~80纳米。即,相邻两个凸块结构22之间的金属层的厚度为5纳米~80纳米。本实施例中,所述连接部226的厚度为10纳米。
所述碗状金属纳米结构阵列100,200可用于表面增强拉曼散射基底、垂直表面激光发射器及生物荧光检测等。
请参见图9,本发明提供一应用所述碗状金属纳米结构阵列100的检测系统40。该检测系统40包括一发射模块300、一碗状金属纳米结构阵列100及一接收模块400。
所述碗状金属纳米结构阵列100用于承载一待测样品。所述待测样品可以为固态样品(如样品粉末、吸附有样品的固体颗粒等)及液态样品(如内溶样品成分的液滴、熔融态样品等)。在检测时,所述待测样品与该碗状金属纳米结构阵列100的多个凸块结构22直接接触。优选地,所述待测样品与多个凸块结构22中的凸起结构224直接接触。本实施例中,所述待测样品为2.5×10-3摩尔每升的吡啶水溶液。
所述发射模块300用于向所述碗状金属纳米结构阵列100的多个凸块结构22发射一光束,以便在所述多个凸块结构22上形成散射光。所述光束照射在多个凸块结构22表面的光斑面积小于2平方微米。所述光束为频宽较小且具有固定频率的强光源,如氩离子激光。优选地,所述光束的波长在450.0纳米~514.5纳米之间。本实施例中,所述光束的波长为514.5纳米的绿光,514.5纳米的绿光相对其它波长的光在相同功率下具有较大的散射光强。
所述碗状金属纳米结构阵列100在承载所述待测样品的同时,并将所述发射模块300发射过来的光束进行散射,形成具有待测样品分子结构信息的散射光。当所述光发射在碗状金属纳米结构阵列100时,该光束将照射到被该碗状金属纳米结构阵列100吸附的待测样品分子,该光束中的光子与待测样品分子碰撞。光子与待测样品分子碰撞,发生动量改变,从而改变光子的方向,向四方散射;部分光子在碰撞时还与待测样品分子发生能量交换,改变光子的能量或频率,使该光子具有待测样品分子结构信息。即所述光束与吸附在该碗状金属纳米结构阵列100的待测样品分子发生碰撞后,将形成具有该待测样品分子结构信息的散射光。
具体地,所述碗状金属纳米结构阵列100接收到所述发射模块300发射过来的光束时,该碗状金属纳米结构阵列100的每个凸块结构22中凸起结构224与内表面2227形成一漫反射面,对所述光束进行漫反射。当所述凸起结构224或凸块结构22的内表面2227吸附有待测样品时,照射在所述凸起结构224或凸块结构22的内表面2227的光束与待测样品中的分子或官能团发生弹性碰撞或非弹性碰撞。发生非弹性碰撞的光子能量发生改变,并具有该待测分子的结构信息,形成频率变化的散射光。具体地,该结构信息为每个分子或官能团的振动模式,该振动模式为该分子的独特特征。
所述接收模块400用于收集从所述碗状金属纳米结构阵列100散射的散射光,形成一拉曼光谱特征图。具体地,该接收模块400可以为多通道光子检测器如电子耦合器件,也可以为单通道光子检测器如光电倍增管。从该拉曼光谱特性图可以读出所述待测样品分子或官能团的振动模式及其对应的分子或官能团。
可以理解,在外界入射光电磁场激发下,所述多个凸块结构22中的凸起结构224表面等离子发生共振吸收,使得多个碗状凹陷结构内表面2227中凸起结构224的周围电磁场增强,从而导致分子的拉曼信号增强从而提高所述检测系统40的灵敏度。
可以理解,所述检测系统40可用来表征各种分子的结构信息。优选地,所述检测系统40可检测浓度大于1×10-9摩尔每升的溶液样品。
可以理解,所述检测系统40中的碗状金属纳米结构阵列100也可以为所述碗状金属纳米结构阵列200。
相较于现有技术,本发明提供的碗状金属纳米结构的制备方法具有以下优点:第一、可制备一体成型的凸块结构,该凸块结构由同种金属材料组成,扩大了其应用范围;第二、制备方法简单,成本低,易于工业化生产。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种碗状金属纳米结构阵列的制备方法,其包括以下步骤:
提供一基底;
在所述基底的表面设置一金属层;
在所述金属层远离基底的表面设置一图形化的掩模层,该图形化的掩模层包括多个间隔设置的凸块,相邻的凸块之间的金属层被暴露;
对上述结构进行退火处理,使每个凸块的顶面形成多个裂纹;以及
采用物理性刻蚀气体和反应性刻蚀气体同时刻蚀,对应在每个凸块的位置形成一碗状金属纳米结构。
2.如权利要求1所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述物理性刻蚀气体为氩气或氦气,所述反应性刻蚀气体为氧气、氯气、三氯化硼或四氟化碳。
3.如权利要求1所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述金属层的材料为贵金属以及钛、铜、铝中的一种。
4.如权利要求3所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述贵金属为金、银、铂、钯中的一种。
5.如权利要求1所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述退火处理具体包括:在氮气或氩气环境中,加热至130摄氏度~180摄氏度之间并保温5分钟~90分钟,以及冷却至室温。
6.如权利要求1所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述刻蚀的步骤在一刻蚀系统中进行,所述物理性刻蚀气体的体积流量为25sccm~150sccm,所述反应性刻蚀气体的体积流量为5sccm~15sccm。
7.如权利要求1所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述凸块顶面的裂纹被反应性刻蚀气体刻蚀而扩大直至将金属层暴露出来。
8.如权利要求7所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述掩模层被反应性刻蚀气体完全刻蚀除去,通过裂纹扩大而暴露的金属层被物理性刻蚀气体刻蚀形成一碗状凹陷部,且在该碗状凹陷部中心有一凸起结构,相邻的凸块之间暴露的金属层被物理性刻蚀气体完全刻蚀或部分刻蚀。
9.如权利要求8所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述相邻的凸块之间暴露的金属层是否被完全刻蚀与所述金属层的厚度及刻蚀时间有关。
10.如权利要求9所述的碗状金属纳米结构阵列的制备方法,其特征在于,所述金属层的厚度为100纳米~200纳米。
CN201410031509.2A 2014-01-23 2014-01-23 碗状金属纳米结构的制备方法 Active CN104803342B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410031509.2A CN104803342B (zh) 2014-01-23 2014-01-23 碗状金属纳米结构的制备方法
TW103104491A TWI546247B (zh) 2014-01-23 2014-02-11 碗狀金屬奈米結構陣列的製備方法
US14/252,079 US9099407B1 (en) 2014-01-23 2014-04-14 Method for making bowl shaped metal nanostructure array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410031509.2A CN104803342B (zh) 2014-01-23 2014-01-23 碗状金属纳米结构的制备方法

Publications (2)

Publication Number Publication Date
CN104803342A CN104803342A (zh) 2015-07-29
CN104803342B true CN104803342B (zh) 2016-08-17

Family

ID=53545437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410031509.2A Active CN104803342B (zh) 2014-01-23 2014-01-23 碗状金属纳米结构的制备方法

Country Status (3)

Country Link
US (1) US9099407B1 (zh)
CN (1) CN104803342B (zh)
TW (1) TWI546247B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107716919B (zh) * 2017-09-18 2019-08-09 宁波大学 一种碗状银纳米结构的制备方法
CN208399384U (zh) * 2018-01-30 2019-01-18 苏州天际创新纳米技术有限公司 一种sers单元、sers芯片及sers检测系统
CN109270620B (zh) * 2018-11-16 2022-07-19 京东方科技集团股份有限公司 金属线栅偏振片的制作方法及显示面板
CN109665486B (zh) * 2018-12-24 2020-08-28 中山大学 微杯及其转印制备方法和应用
CN109959983A (zh) * 2019-04-26 2019-07-02 上海集成电路研发中心有限公司 一种平面光栅及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018097A (ja) * 2004-07-02 2006-01-19 Alps Electric Co Ltd 微細格子作製方法
KR20080101214A (ko) * 2007-05-16 2008-11-21 연세대학교 산학협력단 에칭 알루미늄 하부기판을 사용하는P(VDF-TrFE) 기반 커패시터 및P(VDF-TrFE)기반 커패시터에서의 고온 안정성향상 방법
EP2199837A1 (en) * 2008-12-16 2010-06-23 Alcatel Lucent A dispersion grating
CN102348966A (zh) * 2009-03-13 2012-02-08 惠普开发有限公司 用于表面增强拉曼光谱法的宽带结构
CN103328176A (zh) * 2011-01-14 2013-09-25 吉坤日矿日石能源株式会社 微细图案转印用模具的制造方法及使用该模具的衍射光栅的制造方法、以及具有该衍射光栅的有机el元件的制造方法
CN103376487A (zh) * 2012-04-23 2013-10-30 中芯国际集成电路制造(上海)有限公司 光栅的制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881315B2 (en) * 2001-08-03 2005-04-19 Nec Corporation Fractionating apparatus having colonies of pillars arranged in migration passage at interval and process for fabricating pillars
US8975615B2 (en) * 2010-11-09 2015-03-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material
GB201117279D0 (en) * 2011-10-06 2011-11-16 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018097A (ja) * 2004-07-02 2006-01-19 Alps Electric Co Ltd 微細格子作製方法
KR20080101214A (ko) * 2007-05-16 2008-11-21 연세대학교 산학협력단 에칭 알루미늄 하부기판을 사용하는P(VDF-TrFE) 기반 커패시터 및P(VDF-TrFE)기반 커패시터에서의 고온 안정성향상 방법
EP2199837A1 (en) * 2008-12-16 2010-06-23 Alcatel Lucent A dispersion grating
CN102348966A (zh) * 2009-03-13 2012-02-08 惠普开发有限公司 用于表面增强拉曼光谱法的宽带结构
CN103328176A (zh) * 2011-01-14 2013-09-25 吉坤日矿日石能源株式会社 微细图案转印用模具的制造方法及使用该模具的衍射光栅的制造方法、以及具有该衍射光栅的有机el元件的制造方法
CN103376487A (zh) * 2012-04-23 2013-10-30 中芯国际集成电路制造(上海)有限公司 光栅的制作方法

Also Published As

Publication number Publication date
CN104803342A (zh) 2015-07-29
US9099407B1 (en) 2015-08-04
TW201534557A (zh) 2015-09-16
US20150206766A1 (en) 2015-07-23
TWI546247B (zh) 2016-08-21

Similar Documents

Publication Publication Date Title
CN104807799A (zh) 拉曼检测系统
CN104803342B (zh) 碗状金属纳米结构的制备方法
Bouchet et al. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas
Wang et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection
US20100075114A1 (en) Mold for optical element, having nanostructure, mold for nanostructure, method for manufacturing the mold, and optical element
CN104808269B (zh) 碗状金属纳米结构
TWI500921B (zh) 光學感測晶片
Li et al. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching
CN108873110A (zh) 4H-SiC光子晶体微谐振腔及其制备方法
Li et al. Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching
Agapov et al. Lithography-free approach to highly efficient, scalable SERS substrates based on disordered clusters of disc-on-pillar structures
Ma et al. Rapidly fabricating a large area nanotip microstructure for high-sensitivity SERS applications
CN106298450A (zh) 一种纳米级图形化蓝宝石衬底及其制备方法和应用
CN104555902B (zh) 自支撑介质薄膜及其制备方法
Tian et al. Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography
WO2011093876A1 (en) Environment sensitive devices
Das et al. Large-area and low-cost SERS substrates based on a gold-coated nanostructured surface fabricated on a wafer-scale
CN106770083B (zh) 一种三维光子晶体-等离激元模式增强荧光纳米结构及其制备方法和应用
Ou et al. Structural and optical properties of textured silicon substrates by three-step chemical etching
Huang et al. Study on silicon nanopillars with ultralow broadband reflectivity via maskless reactive ion etching at room temperature
Hua et al. Control of pore structure in a porous gold nanoparticle for effective cancer cell damage
Li et al. Fabrication of plasmonic nanopillar arrays based on nanoforming
Ovchinnikov et al. Self-organization-based fabrication of stable noble-metal nanostructures on large-area dielectric substrates
Ma et al. Porous Si loaded with Ag nanoparticles for ultra-broadband infrared absorption and detection
CN109596572A (zh) 一种气体传感器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant