CN104792730B - 一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用 - Google Patents

一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用 Download PDF

Info

Publication number
CN104792730B
CN104792730B CN201510185563.7A CN201510185563A CN104792730B CN 104792730 B CN104792730 B CN 104792730B CN 201510185563 A CN201510185563 A CN 201510185563A CN 104792730 B CN104792730 B CN 104792730B
Authority
CN
China
Prior art keywords
plane
light
laser
aluminum garnet
blood sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510185563.7A
Other languages
English (en)
Other versions
CN104792730A (zh
Inventor
谭杨
陈�峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201510185563.7A priority Critical patent/CN104792730B/zh
Publication of CN104792730A publication Critical patent/CN104792730A/zh
Application granted granted Critical
Publication of CN104792730B publication Critical patent/CN104792730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种基于光波导激光结构的血糖浓度探测器及其制备方法,采用能量为6~10MeV的氧离子轰击晶体表面,制作厚度为3~6微米的光波导结构,氧离子的剂量为2~6×1014ions/cm2;在光波导表面设置微流通道,使微流通道内的液体与光波导表面接触;对光波导的两个端面进行抛光、镀膜,利用利用泵浦激光对钕离子掺杂钇铝石榴石晶体进行泵浦,实现1064nm激光输出,根据激光输出功率的变化判断血糖浓度,且结构小,利于集成,稳定性高,灵敏度高。

Description

一种基于光波导激光结构的血糖浓度探测器及其制备方法与 应用
技术领域
本发明涉及一种基于光波导激光结构的血糖浓度探测器及其制备方法,属于光电子器件制备技术领域。
背景技术
微流控芯片技术可以对生物、化学、医学分析的样品,进行自动的制备、反应、分离、检测等操作,并且,完成所有操作的基本元件,被集成在一块微米尺度的芯片上。因此,基于该技术的器件,具有尺寸小、集成度高、稳定性强等特点。该技术在生物、化学、医学等领域有巨大的应用潜力,已将成为一个跨越生物、化学、医学、流体、电子、材料、机械等学科的交叉研究课题。微流控芯片功能的实现,取决于使用微加工技术制备的各种控制、检测元件。例如对血液中血糖含量的检测,需要对待测样品进行分离,使用微型传感器对样品进行测试并输出测试结果。本发明涉及一种新型的血糖含量微型传感器。
光波导激光是集成光学中的基本元件。它以增益介质为基质,使用各种微加工技术,在增益介质中制备光波导结构,利用光波导结构作为激光谐振腔的一部分,在适当的泵浦条件下,可以实现激光输出。与传统的激光器相比,光波导激光具有激光阈值低、斜率效率高等特点,此外光波导激光输出能量对光损耗极为敏感。以基于钕离子掺杂钇铝石榴石晶体(Nd-doped yttrium aluminum garnet,简写为Nd:YAG)的光波导激光结构为例,该光波导激光可以产生1064nm波长的激光输出,光波导内微小的光损耗变化可以导致输出激光强度发生剧烈变化,而血糖中的主要成分葡萄糖对波长为1064nm的光具有相对较强的吸收。因此,可以利用波导激光结构对血糖中葡萄糖含量进行测量。
发明内容
针对现有技术的不足,本发明提供一种基于光波导激光结构的血糖浓度探测器及其制备方法,可以应用于微流控芯片相关领域。
本发明的技术方案如下:
一种基于光波导激光结构的血糖浓度探测器,包括钕掺杂钇铝石榴石晶体,所述钕掺杂钇铝石榴石晶体的横向平面上设置有由氧离子轰击形成的光波导平面,所述光波导平面上方设置有微流结构,所述微流结构底部设置有与光波导平面上表面相通的微流通道;钕掺杂钇铝石榴石晶体的两个竖向端面与光波导平面相垂直,并且两个竖向端面分别镀有入射光学薄膜和出射光学薄膜。
根据本发明优选的,所述光波导平面的厚度为3~7微米。
根据本发明优选的,所述微流通道与光波导平面上表面相通的面积大于20μm2
上述基于光波导激光结构的血糖浓度探测器的制备方法,包括以下步骤:
1)对钕掺杂钇铝石榴石晶体的横向平面进行抛光,并对抛光后的样品进行清洗;
2)用氧离子轰击步骤1中钕掺杂钇铝石榴石晶体抛光清洗后的平面,在钕掺杂钇铝石榴石晶体表面形成光波导平面;
3)将钕掺杂钇铝石榴石晶体垂直于光波导平面的两个竖向端面进行抛光处理,并分别在两个竖向端面上镀入射光学薄膜和出射光学薄膜,分别作为光的入射端面和出射端面,光学薄膜与光波导平面构成激光谐振腔,形成钕掺杂钇铝石榴石晶体光波导激光结构;
4)在光波导平面上方设置微流结构,微流结构底部设置有与光波导平面上表面相通的若干平行微流通道。
根据本发明优选的,步骤2)中氧离子的能量为6~10MeV,剂量为2~6×1014ions/cm2,氧离子轰击形成的光波导平面的厚度为3~7微米。
根据本发明优选的,在步骤3)中入射光学薄膜对波长为810nm的光高透,对波长为1064nm的光高反;出射光学薄膜对波长为810nm的光高反,对波长为1064nm的光反射率为50%。
根据本发明优选的,步骤4)中微流通道与光波导平面上表面相通的面积大于20μm2
上述基于光波导激光结构的血糖浓度探测器的应用,用于检测血糖浓度,血液通过微流通道与光波导平面相接触;利用将泵浦光对激光谐振腔进行泵浦,输出波长为1064nm红外激光,根据输出激光强度变化,判断血糖浓度变化。例如:激光强度减弱,说明血糖浓度增加;激光强度升高,说明血糖浓度降低。
本发明的有益效果:
本发明的结构小,利于集成,稳定性高,灵敏度高。
附图说明
图1为本发明基于光波导激光结构的血糖浓度探测器制备方法的工艺流程图;
图2为基于光波导激光结构的血糖浓度探测器的结构示意图;
图中:1.微流通道,2.光波导平面,3.钇铝石榴石晶体,4.入射光学薄膜,5.出射光学薄膜。
具体实施方式
实施例1
一种基于光波导激光结构的血糖浓度探测器,结构如图2所示,包括钕掺杂钇铝石榴石晶体3,钕掺杂钇铝石榴石晶体3的横向平面上设置有由氧离子轰击形成的光波导平面,光波导平面的厚度为4微米。光波导平面上方设置有微流结构,微流结构底部设置有与光波导平面上表面相通的微流通道1,微流通道与光波导平面上表面相通的面积大于20μm2。钕掺杂钇铝石榴石晶体与光波导平面相垂直的两个竖向端面分别镀有入射光学薄膜4和出射光学薄膜5。
实施例2
基于光波导激光结构的血糖浓度探测器的制备方法,包括步骤如下:
1)将Nd:YAG晶体3的一个面进行抛光处理,并对抛光后的样品清洗;
2)用氧离子轰击晶体的抛光面,在晶体表面形成平面光波导结构2,氧离子的能量为6MeV,剂量为5×1014ions/cm2
3)将步骤2)中形成的平面光波导的两个端面进行抛光处理,作为光的入射和出射端面。将光学薄膜镀在入射和出射端面,分别作为入射光学薄膜4和出射光学薄膜5。入射光学薄膜4对波长为810nm的光高透,波长为1064nm的光高反;出射光学薄膜5对波长为810nm的光高反,波长为1064nm的光反射率为50%。
4)透过入射光学薄膜4,将波长为810nm的激光耦合到平面波导2内,在光波导内产生波长为1064nm的激光,波长为1064nm的激光透过出射光学薄膜5出射。
5)将待测血糖液体通入微流通道1内,由于通道内血糖对波长为1064nm激光的吸收,波长为1064nm的出射光光强将会发生变化。
6)探测出射光光强的变化,根据光强变化,判断微流通道1内待测液体的血糖含量。
实施例3
基于光波导激光结构的血糖浓度探测器的制备方法,步骤如下:
1)将Nd:YAG晶体3的一个面进行抛光处理,并对抛光后的样品清洗;
2)用氧离子轰击晶体的抛光面,在晶体表面形成平面光波导结构2。氧离子的能量为8MeV,剂量为3×1014ions/cm2
3)将步骤2)中形成的平面光波导的两个端面进行抛光处理,作为光的入射和出射端面。1)将光学薄膜镀在入射和出射端面,分别作为入射光学薄膜4和出射光学薄膜5。入射光学薄膜4对波长为810nm的光高透,波长为1064nm的光高反;出射光学薄膜5对波长为810nm的光高反,波长为1064nm的光反射率为60%。
4)透过入射光学薄膜4,将波长为810nm的激光耦合到平面波导2内,在光波导内产生波长为1064nm的激光,波长为1064nm的激光透过出射光学薄膜5出射。
5)将待测血糖液体通入微流通道1内,由于通道内血糖对波长为1064nm激光的吸收,波长为1064nm的出射光光强将会发生变化。
6)探测出射光光强的变化,根据光强变化,判断微流通道1内待测液体的血糖含量。

Claims (3)

1.一种基于光波导激光结构的血糖浓度探测器,其特征在于:包括钕掺杂钇铝石榴石晶体,所述钕掺杂钇铝石榴石晶体的横向平面上设置有由氧离子轰击形成的光波导平面,所述光波导平面上方设置有微流结构,所述微流结构底部设置有与光波导平面上表面相通的微流通道;钕掺杂钇铝石榴石晶体的与光波导平面相垂直的两个竖向端面分别镀有入射光学薄膜和出射光学薄膜;其中所述光波导平面的厚度为3~7微米;所述微流通道与光波导平面上表面相通的面积大于20μm2
2.一种权利要求1所述的基于光波导激光结构的血糖浓度探测器的制备方法,其特征在于,包括以下步骤:
1)对钕掺杂钇铝石榴石晶体的横向平面进行抛光,并对抛光后的样品进行清洗;
2)用氧离子轰击步骤1)中钕掺杂钇铝石榴石晶体抛光清洗后的平面,在钕掺杂钇铝石榴石晶体表面形成光波导平面;光波导平面由能量为6~10MeV,剂量为2~6×1014ions/cm2的氧离子轰击形成,厚度为为3~7微米;
3)将钕掺杂钇铝石榴石晶体垂直于光波导平面的两个竖向端面进行抛光处理,并分别在两个竖向端面上镀入射光学薄膜和出射光学薄膜,分别作为光的入射端面和出射端面,光学薄膜与光波导平面构成激光谐振腔,形成钕掺杂钇铝石榴石晶体光波导激光结构;其中入射光学薄膜对波长为810nm的光高透,波长为1064nm的光高反;出射光学薄膜对波长为810nm的光高反,波长为1064nm的光反射率为50%;
4)在光波导平面上方设置微流结构,微流结构底部设置有与光波导平面上表面相通的若干平行微流通道;并且微流通道与光波导平面上表面相通的面积大于等于20μm2
3.权利要求1所述的基于光波导激光结构的血糖浓度探测器的应用,用于检测血糖浓度,血液通过微流通道与光波导平面相接触;利用将泵浦光对激光谐振腔进行泵浦,输出波长为1064nm红外激光,根据输出激光强度变化,判断血糖浓度变化。
CN201510185563.7A 2015-04-17 2015-04-17 一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用 Active CN104792730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510185563.7A CN104792730B (zh) 2015-04-17 2015-04-17 一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510185563.7A CN104792730B (zh) 2015-04-17 2015-04-17 一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN104792730A CN104792730A (zh) 2015-07-22
CN104792730B true CN104792730B (zh) 2018-02-16

Family

ID=53557717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510185563.7A Active CN104792730B (zh) 2015-04-17 2015-04-17 一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN104792730B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219751A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 光導波路デバイスならびにそれを用いた光導波路レーザおよびそれを備えた光学装置
JP2005229011A (ja) * 2004-02-16 2005-08-25 Anritsu Corp 波長可変半導体レーザ及びガス検知装置
CN1940529B (zh) * 2005-09-29 2010-09-01 株式会社东芝 光波导型生物化学传感器芯片及其制造方法
CN101436748B (zh) * 2008-12-16 2010-07-28 福州高意通讯有限公司 一种光波导激光器、光波导放大器及其制作方法
EP2287592B1 (de) * 2009-08-22 2014-11-12 Karlsruher Institut für Technologie Mikrooptisches Bauelement mit einem mikrofluidischen Kanal und Verfahren zu dessen Herstellung
JP2011127937A (ja) * 2009-12-15 2011-06-30 Toshiba Corp グルコースセンサチップ
US20110215705A1 (en) * 2010-03-05 2011-09-08 James Peter Long Micro-chip plasmonic source
US9772284B2 (en) * 2010-04-20 2017-09-26 President And Fellows Of Harvard College Biomedical and chemical sensing with nanobeam photonic crystal cavities using optical bistability
CN102005688A (zh) * 2010-09-17 2011-04-06 山东大学 在钕掺杂钒酸镥晶体内制备条形波导激光器件的方法

Also Published As

Publication number Publication date
CN104792730A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
Tong et al. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis
CN104646837B (zh) 电/机械微芯片以及使用超快激光脉冲群的制造方法
CN100465621C (zh) 具有表面增强拉曼光谱活性基底的微流控芯片及制备方法
JP5004169B2 (ja) マイクロチップの製造方法
WO2016101697A1 (zh) 微流控表面增强拉曼散射透明器件结构及其制备方法
CN102621214A (zh) 一种基于固态纳米孔对核酸分子进行减速及单分子捕获的方法
CN104483498A (zh) 传感芯片及其制备方法
TWI484157B (zh) 分子感測裝置及其製作方法
CN106409640B (zh) 用于检查样本材料的微腔
Ostholt et al. High speed through glass via manufacturing technology for interposer
CN105149020A (zh) 一种嵌入微纳结构端面光纤的拉曼检测微流控芯片
US20130230912A1 (en) Base body and method for manufacturing base body
CN104792730B (zh) 一种基于光波导激光结构的血糖浓度探测器及其制备方法与应用
CN106680907B (zh) 一种原位成形微透镜制造过程中uv胶粘度控制工艺
CN106975526A (zh) 微流控芯片、其制作方法以及原位催化和检测方法
JP2016161546A (ja) マイクロ流路チップ
Cai et al. Hollow-core fiber-based Raman probe extension kit for in situ and sensitive ultramicro-analysis
WO2016060080A1 (ja) ワークの貼り合わせ方法
US20090074619A1 (en) Device for measuring total organic carbon
Le et al. Design, simulation and fabrication of a total internal reflection (TIR)-based chip for highly sensitive fluorescent imaging
CN102218595B (zh) 一种微流芯片的制备方法
JP6195022B2 (ja) ワークの貼り合わせ方法
CN104505709B (zh) 利用飞秒脉冲激光制备微流道掺杂纳米晶激光器的方法
CN113941377A (zh) 一种全玻璃微流控芯片及加工方法
CN101498656A (zh) 微量流通检测装置及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant