CN104781305A - 纳米线修饰的石墨烯及其制造和使用方法 - Google Patents

纳米线修饰的石墨烯及其制造和使用方法 Download PDF

Info

Publication number
CN104781305A
CN104781305A CN201380058242.XA CN201380058242A CN104781305A CN 104781305 A CN104781305 A CN 104781305A CN 201380058242 A CN201380058242 A CN 201380058242A CN 104781305 A CN104781305 A CN 104781305A
Authority
CN
China
Prior art keywords
zno
graphene
middle layer
semiconductor nanowires
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380058242.XA
Other languages
English (en)
Other versions
CN104781305B (zh
Inventor
朴慧成
张世勋
孔敬
S.格拉德卡克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN104781305A publication Critical patent/CN104781305A/zh
Application granted granted Critical
Publication of CN104781305B publication Critical patent/CN104781305B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种透明电极,其可以包括,在基板上的石墨烯片,配置在该石墨烯片上的含导电聚合物的层,和许多的半导体纳米线如ZnO纳米线,所述纳米线配置在含导电聚合物的层上。

Description

纳米线修饰的石墨烯及其制造和使用方法
优先权要求
本申请要求2012年11月26日申请的美国临时申请第61/729,795号的优先权,其通过引用其全部内容来并入。
技术领域
本发明涉及纳米线修饰的石墨烯以及该纳米线修饰的石墨烯的制造和使用方法。
背景技术
具有独特的物理性能的石墨烯的新发现和成功的大面积合成,导致了在它用于光电设备如太阳能电池和发光二极管的应用上越来越多的兴趣。因为石墨烯的高透明度和电导率、化学和机械稳定性(robustness),以及材料充足,所以它正在探索作为用作透明传导性电极材料的氧化铟锡(ITO)的潜在的替代品。同时,随着石墨烯的发展,广泛研究了单晶半导体纳米线,归因于它们具有新颖的电子和光学性能。具体而言,基于纳米线的混合光伏(PV)结构已经获得了显著的注意,这是因为它们可能在良好有序的本体异质结几何形状中具有通过一维电荷迁移路径和大的界面面积来实现高效率的电荷提取。在纳米线和石墨烯之间的有效界面保持各组分的优点是理想的。
发明内容
在一个方面,透明电极包括在基板上的石墨烯片;配置在石墨烯片上的含导电聚合物的中间层;和配置在中间层上的多个半导体纳米线。
所述多个半导体纳米线可以基本上彼此平行。多个半导体纳米线的长轴能够基本上垂直于石墨烯片。多个半导体纳米线可以包括ZnO。该中间层可以包括导电聚合物,如聚噻吩、聚苯胺或者聚吡咯,例如,烷氧基取代的聚噻吩如聚(3,4-亚乙基二氧基噻吩)嵌段双-聚(乙二醇),聚(噻吩-3-[2-(2-甲氧基乙氧基)乙氧基]-2,5-二基),PEDOT:PEG(PC)或RG-1200。包括该电极的设备可以进一步包括光活性材料,该光活性材料配置在所述多个半导体纳米线上。所述光活性材料可以包括量子点或P3HT。该设备可以进一步包括沉积在所述光活性材料上的第二电极。
在另一个方面,一种透明电极的制造方法包括:提供在基板上的石墨烯片;沉积配置在所述石墨烯片上的含导电聚合物的中间层;和在所述中间层上生长多个半导体纳米线。
该中间层的沉积可以包括旋转流延(spin-casting)。在该中间层上生长多个半导体纳米线可以包括水热沉积。所述多个半导体纳米线可以包括ZnO。该中间层可以包括导电聚合物,例如聚噻吩、聚苯胺或聚吡咯,例如,烷氧基取代的聚噻吩如聚(3,4-亚乙基二氧基噻吩)嵌段双-聚(乙二醇),聚(噻吩-3-[2-(2-甲氧基乙氧基)乙氧基]-2,5-二基),PEDOT:PEG(PC)或RG-1200。该方法可以进一步包括沉积光活性材料,该光活性材料配置在多个半导体纳米线上。所述光活性材料可以包括量子点或P3HT。该方法可以进一步包括将第二电极沉积在光活性材料上。
在另一个方面,一种光伏设备包括:在基板上的石墨烯片;配置在所述石墨烯片上的含导电聚合物的中间层;和配置在该中间层上的多个半导体纳米线。
所述光伏设备进一步包括配置在所述多个半导体纳米线上的光活性材料。得到多个半导体纳米线可以包括ZnO。
在另一个方面,一种发电的方法包括照射所述光伏设备。
根据以下说明书、附图和权利要求,其他方面、实施方案和结构将会是清晰可见的。
附图说明
图1表示在改性的石墨烯基板上的ZnO晶种层的润湿性能。参见附图1A-1D,显示了明视野的光学显微镜图像:(a)在石英基板上的石墨烯条;(b)ZnO晶种层旋转涂覆在原始石墨烯上,显示出将ZnO膜进行去湿而形成的岛;(c,d)分别为在ZnO晶种层沉积之前和之后的石墨烯/PEDOT:PEG(PC);以及(e,f)分别为在ZnO晶种层沉积之前和之后的石墨烯/RG-1200。图1C-1F说明了两种聚合物在石墨烯表面上的均匀覆盖和ZnO晶种层在修饰的石墨烯上的均匀覆盖。图1G是基于石墨烯阴极的太阳能电池的示意图。
图2表示在ITO上所转移的石墨烯上和在石墨烯基板上的ZnO晶种层的表面形态分析。图2A-2F显示轻敲模式原子力显微镜图像:(a)ITO/ZnO;(b)石墨烯;(c,d)分别为在ZnO晶种沉积之前和之后的石墨烯/PEDOT:PEG(PC);(e,f)分别为在ZnO晶种沉积之前和之后的石墨烯/RG-1200。两种聚合物都完全涂覆了石墨烯表面(c,e),并且ZnO共形地覆盖了底下的聚合物(d,f)。另外,两种聚合物的表面在ZnO层沉积后是光滑的:对于PEDOT:PEG(PC)而言rms粗糙度从34nm降低到25nm,而对于RG-1200而言,从6nm降低到2nm。
图3表示在ITO上和在用聚合物界面层修饰的石墨烯上所生长的ZnO纳米线阵列的扫描电镜表征。图3A-3C显示在(a)ITO基板、(b)石墨烯/PEDOT:PEG(PC)和(c)石墨烯/RG-1200上以水热方式生长的ZnO纳米线阵列。在同样试验条件下在ITO和修饰的石墨烯上生长的ZnO纳米线阵列显示出相似的均匀性和排列。
图4表示在石墨烯上的ZnO纳米线的光学和结构表征。图4A和图4B显示,(a)为在ITO、石墨烯/PEDOT:PEG(PC)和石墨烯/RG-1200上生长的ZnO纳米线的PL光谱。在所有的情况下,550nm的宽峰的低PL强度证实了与羟基基团有关的低缺陷密度,而集中在376nm处的强的近能带边缘发光(near band edge luminescence)证实了ZnO纳米线的结构品质。(b)高分辨率TEM图像和对应的傅立叶变换(插图)显示了ZnO纳米线的单晶纤锌矿结构,其中在[0001]生长方向上为0.52nm的晶格间距。
图5表示PEDOT:PEG(PC)聚合物和它的混合对应物的拉曼分析。图5A-5C显示,(a)PEDOT:PEG(PC)和PEDOT:PEG(PC)/ZnO的拉曼范围,其中峰值P1集中于1441cm-1。聚合物在与ZnO相互作用后有所减少,如由1441cm-1处的频率降低(红移为6cm-1)所证明的。(b)当与石墨烯接触时,拉曼峰值P1的蓝移为4cm-1。(c)在完全的石墨烯/PEDOT:PEG(PC)/ZnO体系中拉曼峰值P1的红移为2cm-1。在所有这些曲线图中,强度标准化到它们的最大值来比较光谱特征。
图6表示混合石墨烯/ZnO纳米线太阳能电池。图6A-6d显示,(a)石墨烯阴极混合太阳能电池的示意图:在石英上所沉积的石墨烯由聚合物(PEDOT:PEG(PC)或RG-1200)来覆盖,接着是ZnO晶种层和400nm长的ZnO纳米线。然后将该纳米线用PbS QDs(300nm)或P3HT(700nm)来进行渗透和覆盖,最后用的是MoO3(25nm)/Au(100nm)顶面电极。(b)在(a)中显示的太阳能电池的平带能级图。(c)在100mW/cm2AM1.5G照明下的基于头等石墨烯的PbS QD设备(其使用不同的聚合物中间层)的J–V特性,显示的性能可媲美于ITO参比电池的性能。(d)代表性的基于石墨烯的P3HT设备(其使用不同的聚合物中间层)的J–V特性,用ITO参比设备来比较。在(c)和(d)中的插图显示了完整设备的SEM横截面图像,其显示了光活性材料(PbS QD或P3HT)大量渗透到ZnO纳米线之间的纳米级间隙。
图7表示,在用导电聚合物中间层修饰的石墨烯电极上所生长的水热ZnO纳米线的示意图。PEDOT:PEG(PC)或RG-1200旋转涂覆在原始石墨烯上。随后,ZnO晶种层沉积在石墨烯/PEDOT:PEG(PC)(或石墨烯/RG-1200)上,这通过旋转涂覆在2-甲氧基乙醇与乙醇胺中的300mM的醋酸锌二水合物来进行。在该晶种层在175℃退火10分钟以后,ZnO纳米线阵列通过将基板浸没到生长溶液(在去离子水中的50mM的硝酸锌六水合物(25ml)+50mM的六亚甲基四胺(25ml))中来生长。
图8表示,在原始石墨烯上生长的ZnO晶种层和ZnO纳米线的扫描电子显微镜(SEM)图像。图8A和8B显示,(a)直接旋转涂覆在石墨烯表面上的ZnO晶种层的形态显示出不均匀性,这是由于醋酸锌六水合物的差的润湿性所引起的。(b)在所制备的石墨烯/ZnO上生长的ZnO纳米线显示出差的排列和低表面密度。
图9表示在ITO上的旋转涂覆的ZnO晶种层上所生长的ZnO纳米线的SEM图像。ZnO晶种层:(a)在惰性氮气气氛下进行旋转涂覆和退火;(b)在惰性氮气气氛下旋转涂覆和在环境条件下退火;(c)在惰性氮气气氛下旋转涂覆和退火~1分钟,然后在环境条件下退火9分钟;(d)在环境条件下进行旋转涂覆和退火;(e)在环境条件和惰性氮气气氛下比较了在旋转涂覆的ZnO晶种层上生长的ZnO纳米线,说明了在惰性气氛下实现了更均匀的生长。作为此分析的结果,ZnO晶种层按以下方式来进行优化,将在2-甲氧基乙醇中的醋酸锌二水合物按照4000rpm旋转涂覆60s和在175℃在惰性氮气气氛下进行退火。该晶种层的沉积进行了两次以确保完全覆盖。通过在惰性氮气气氛下进行旋转涂覆和通过在环境条件下进行退火所制备的ZnO晶种层,在大面积上导致ZnO纳米线阵列排列良好、生长均匀。
图10表示,在石墨烯/PEDOT:PEG(PC)/ZnO晶种层(退火在不同的温度)上生长的ZnO纳米线的SEM图像。(a)在石墨烯/PEDOT:PEG(PC)/ZnO晶种层上生长的ZnO纳米线的形态(在175℃退火)是相对光滑的。(b)相比之下,在石墨烯/PEDOT:PEG(PC)/ZnO晶种层上生长的ZnO纳米线形态(在250℃退火)是显著起皱的,这是由于PEDOT:PEG(PC)在升高的温度会热降解。
具体实施方式
因此,石墨烯和半导体纳米线的性能结合能够提供一种独特的平台,该平台用于使得纳米结构的太阳能电池发展出优异的透明度和柔韧性,以及改进的稳定性。
用于光电应用的单晶半导体纳米线可以通过各种技术来生长,这些技术包括金属有机气相取向生长(MOVPE)、分子束取向生长和基于溶液的水热工艺。这些方法使得纳米线能够直接生长在各种导电基板如铝箔或ITO上以及在成本有效的柔性基板上。然而,直接在原始石墨烯上生长1D半导体纳米结构且不会削弱它的电子和结构性能是一直具有挑战性的,这归因于石墨烯稳定和惰性的sp2-杂化结构。例如,ZnO纳米线在石墨烯上的高温(~400℃)MOVPE生长,要求对石墨烯基板进行破坏性的氧等离子体处理,从而打破sp2杂化的石墨烯表面和产生作为ZnO纳米线成核点的阶跃边沿(参考文献19-20)。
关于图1,是一种透明光伏设备,其包括基板(如石英)支持石墨烯层,在其上布置有一个或多个中间层。至少一个中间层包括导电聚合物。多个半导体纳米线在所述一个或多个中间层上来配置。将光活性材料沉积在半导体纳米线上。将传导层(如,包括MoO3和Au层)布置在此结构上。
“导线”一般表示任何具有任何半导体或任何金属的导电性的材料,并且在一些实施方案中能够连接两个电子组件以使得它们互相电连通。例如,术语“电传导性”或“导体”或“电导体”,当结合“导电”导线或纳米级导线使用时,则表示该导线传递电荷的能力。优选的导电材料的电阻低于约10-3,更优选低于约10-4并且最优选低于约10-6或10-7Ωm。
“纳米观导线”(本文中也已知为“纳米观-级导线”或“纳米级导线”或简化为“纳米线”)通常是一种导线,其在沿着它的长度的任何点,具有的至少一个的横截面尺寸(以及在一些实施方案中,两个正交的横截面尺寸)低于1μm、低于约500nm,低于约200nm,低于约150nm,低于约100nm,低于约70,低于约50nm,低于约20nm,低于约10nm,甚至低于约5nm。纳米级导线的至少一个横截面尺寸的范围可以为0.5nm到200nm。当纳米级导线描述为例如具有芯和外部区域时,上述尺寸通常涉及芯的尺寸。细长半导体的横截面可以具有所有任意形状,包括但不限于,圆形,正方形,长方形,管形或者椭圆形,并可以具有规则或不规则的形状。
用于形成纳米线的示例材料包括含主族和金属原子元素、过渡金属的导线,砷化镓、氮化镓、磷化铟、锗、硒化镉的结构。
纳米线可以包括元素半导体,例如Si、Ge、Sn、Se、Te、B、C(即金刚石)或P。纳米线可以包括元素半导体的固溶体,例如B--C、B--P(BP6)、B--Si、Si--C、Si--Ge、Si--Sn或Ge--Sn。
纳米线可以包括族III-族V半导体,例如BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs或InSb。纳米线可以包括两种或更多种族III-族V的合金。纳米线可以包括II族-VI族的半导体,例如ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS或MgSe。纳米线可以包括两种或更多种族II-组VI的半导体的合金。纳米线可以包括族II-组VI的半导体和族III-族V半导体的合金。纳米线可以包括族IV-族VI的半导体,例如,GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe或PbTe。纳米线可以包括族I-族VII的半导体,例如,CuF、CuCI、CuBr、Cul、AgF、AgCl、AgBr或AgI。纳米线包括的半导体,可以例如为:BeSiN2、CaCN2、ZnGeP2、CdSnAs2、ZnSnSb2、CuGeP3、CuSi2P3、(Cu,Ag)(Al,Ga,In,Tl,Fe)(S,Se,Te)2、Si3N4、Ge3N4、Al2O3、(Al,Ga,In)2(S,Se,Te)3或Al2CO。
各种各样的这些和其他纳米级导线可以按照对于电子设备是有用的图案的方式来生长在和/或施加在其表面上。纳米级导线可以是至少100nm、至少200nm、至少300nm、至少400nm、至少500nm、至少1μm、至少3μm,至少5μm或者至少10或20μm长。纳米级导线在厚度(高度和宽度)上可以是低于约100nm,低于约75nm,低于约50nm,或低于约25nm。该导线的长宽(长度与厚度)比可以至少约2:1,大于约10:1或大于约100:1。
半导体纳米线,例如,如ZnO或者TiO2可以在石墨烯上通过水热方法来生长。具体而言,半导体纳米线可以与石墨烯电连接,且既不会削弱石墨烯的电性能也不会削弱半导体纳米线的电性能。半导体纳米线的水热制造方法描述于参考文献22-24中。
在一些实施方案中,氧化锌(ZnO)纳米线会是有利的,这是由于其在大面积上具有低温可加工性,其还具有结构稳定性,以及其与石墨烯具有优异的晶格匹配(参考文献25)。
如果石墨烯在半导体纳米线在该石墨烯层上生长之前设置有界面修饰,则可以增强石墨烯上的纳米线的电性能,具体而言,增强石墨烯上的纳米线的电极的电性能。引入此类电极(如作为阴极)的混合太阳能电池,可以通过将溶液处理的光活性材料(如半导体纳米晶体(量子点(QD),共轭聚合物)用作空穴传输层和将半导体纳米线用作电子传输层来制造。
该界面修饰可以包括施加一个或多个中间层,该中间层桥接石墨烯层和半导体纳米线。该中间层可以包括润湿石墨烯表面的材料;该中间层的表面,相比于石墨烯层而言,更加化学相容于半导体纳米线;而且其促进了石墨烯和半导体纳米线之间的电连接(如电荷转移)。
该中间层(至少一个)可以包括一种或多种导电或半导体聚合物,从而促进在石墨烯和半导体纳米线之间的电连接。中间层(至少一个)可以包括其他材料,例如其他聚合物,来促进石墨烯表面的润湿性和增强化学相容性。中间层可以通过简单的基于溶液的方法来沉积,例如在合适的溶剂中进行的聚合物溶液的旋转涂覆。该溶剂可以根据它的溶解中间层材料(至少一种)的能力和根据它的石墨烯润湿性能来选择。例如,硝基甲烷可以是用于PEDOT:PEG(PC)((聚(3,4-亚乙基二氧基噻吩)-嵌段-聚(乙二醇)(PEDOT:PEG),其掺杂有高氯酸盐(PC))的合适的溶剂,而乙二醇单丁基醚(如,作为与水的混合物)可以是RG-1200(磺化聚(噻吩-3-[2-(2-甲氧基乙氧基)乙氧基]-2,5-二基))的合适的溶剂。中间层修饰的石墨烯还可以使用均匀沉积的半导体纳米线来修饰。例如,参见(附图1C-1F)。
用于石墨烯的中间层可以通过选择润湿石墨烯表面的材料来择取,可以提供与随后层化学相容的表面,而且使得在接口处能够进行电荷转移(例如,通过匹配石墨烯和其他载体的功函(work function))。例如,能够溶解在溶剂中的可溶解聚合物适合于在石墨烯表面上进行旋涂。可溶解聚合物可以是在溶剂(例如,乙二醇单丁基醚/水或硝基甲烷)中可溶解的聚噻吩衍生物,从而在石墨烯表面顶部形成均匀膜。聚噻吩衍生物可以是烷基(如,C1-C16)或烷氧基(如,C1-C16烷氧基),或多烷氧基(如,C1-C16,其包括一个、二个、三个或者四个中断的氧原子)。基于聚噻吩的导电聚合物具有对于石墨烯表面的良好润湿性能而且使得电荷转移能够进行在ZnO(纳米线)和石墨烯电极之间。也可以使用其他可溶解导电聚合物。适用于中间层的导电聚合物的例子包括聚噻吩、聚苯胺(PA),聚吡咯、聚亚乙基二氧基噻吩以及其衍生物。例如,导电聚合物可以是烷氧基取代的聚噻吩如聚(3,4-亚乙基二氧基噻吩)嵌段双-聚(乙二醇),聚(噻吩-3-[2-(2-甲氧基乙氧基)乙氧基]-2,5-二基)。
在中间层中可以使用超过一种的导电聚合物。
实施例
结果和讨论
ZnO纳米线通过水热方法在石墨烯上生长,以及为了比较起见,也在ITO基板上进行该生长,而且两种结构都用于随后的设备制造和测试(图7)。石墨烯片通过低压化学气相沉积来合成,而石墨烯电极借助于层叠层转移方法通过堆积三个石墨烯膜的单层来制造(参考9;图1A)。所得的平均片电阻和透射率数值分别为300±12Ω/□和92.0±0.4%(在λ=550nm处),这相似于其他地方所报道的平均片电阻和透射率数值(参考14)。ZnO纳米线的水热生长包括沉积均匀、优质ZnO晶种层,例如,其能通过将在2-甲氧基乙醇中的醋酸锌二水合物的层(其是在生长基板上旋转涂覆的)进行退火来获得。在ITO的情况下,此过程产生均匀的ZnO膜。然而,在原始石墨烯表面上,石墨烯的低表面自由能和疏水性质导致差的ZnO晶种层的润湿而且形成去湿的ZnO岛(参考文献9和26;图1B和8)。已报道了石墨烯与其他物质体系(例如,在水溶液中的聚(3,4-亚乙基二氧基噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS),其常用为空穴注入层)也具有相似的差润湿性。石墨烯表面的用合适的中间层的非破坏性的修饰可以让ZnO晶种层均匀沉积。
均匀和有序ZnO纳米线阵列的生长是高度取决于ZnO晶种层的均匀性,其又强烈地受到退火温度和环境条件(参考文献22;图9)的影响。ZnO晶种层可以通过将醋酸锌二水合物在固体升华温度(~175℃)以上的温度进行热分解来获得。因为ZnO在335℃发生充分变形,所以退火条件一般选择是在175—335℃的温度范围(参考文献22)。将聚合物中间层在其热降解温度(例如,对于PEDOT为~235℃,参考文献28)以上进行退火会影响其形态和导电性。当在PEDOT上的ZnO晶种层在高于235℃的温度进行退火时,所获得的ZnO纳米线阵列的均匀性和形态是显著改变的,这是由于底下的聚合物发生起皱而导致的(图10)。因此,该晶种层的退火温度保持在此值以下,以便保持中间层的结构完整性和电性能以及ZnO纳米线的质量。
除了退火温度之外,界面聚合物的选择也会影响ZnO晶种层的形态。为了表征任何形态变化,在修饰石墨烯表面上的ZnO膜的表面以及在ITO上的所述表面(为了进行比较),通过原子力显微镜(AFM)来研究。在ITO上的醋酸盐衍生的ZnO晶种层是均匀和光滑的,其中均方根(rms)粗糙度低于2nm(图2A),并得到良好有序的ZnO纳米线阵列(图3A)。原始石墨烯的表面(图2B)在沉积PEDOT:PEG(PC)之后显示的rms粗糙度为34nm(图2C),其在沉积共形的ZnO晶种层(图2D)之后降低到24nm。对于用RG-1200修饰的石墨烯膜观测到类似趋势,但是其表面相比于PEDOT:PEG(PC)的情况是更光滑的,其中测定的rms粗糙度值对于石墨烯/RG-1200以及石墨烯/RG-1200/ZnO而言分别为6和2nm(图2D-2E)。图3显示在ITO上以及在修饰石墨烯上在相同条件下生长的ZnO纳米线阵列的SEM图像。特别是,在修饰石墨烯基板上生长的纳米线的形态可媲美于在ITO上所获得的该形态。在石墨烯/RG-1200基板上生长的ZnO纳米线阵列显示的纳米线排列(顺序参数SRG-1200=0.992)优于在石墨烯/PEDOT:PEG(PC)基板上的纳米线排列(SPEDOT:PEG(PC)=0.938)而且该排列类似于在ITO上生长的阵列(SITO=0.997),确认了以下观点:ZnO晶种层的粗糙度影响纳米线阵列的排列。对于两种聚合物而言,在相同条件下生长的ZnO纳米线是约400nm长并且平均直径为20nm。
为了评价在石墨烯上所生长的ZnO纳米线的结构和光学品质,进行了透射电子显微镜(TEM)和光致发光(PL)测量(图4)。在376nm的强的近的带缘发射以及在550-600nm集中的相对弱缺陷峰通常是与在ZnO纳米线中的单离子化的氧缺陷有关的,两者都证实在石墨烯上生长的ZnO纳米线具有优异的质量。在具有聚合物中间层的石墨烯上生长的ZnO纳米线的高-分辨率TEM图像显示了良好-分辨率的晶格,其在[0001]生长方向上具有的间隔为~0.52nm。
以上结果说明,对于在石墨烯表面(其通过使用导电聚合物中间层来进行非破坏性的修饰)上生长良好有序的ZnO纳米线而言,这一方法具有广阔适用性。为了阐明在石墨烯、聚合物中间层(PEDOT:PEG(PC))和ZnO晶种层之间的可能的相互作用如通过电荷转移进行的掺杂,进行了共振拉曼光谱分析(参考文献29-31)。图5A显示PEDOT:PEG(PC)和PEDOT:PEG(PC)/ZnO样品的拉曼光谱,其所在的频率范围对应于在苯型/醌型结构(它们存在于典型的PEDOT体系中)中的碳碳(C-C和C=C)拉伸振动(参考文献29-31)。拉曼光谱符合洛伦兹曲线,并且所获得的拟合参数总结于表1。
表1
在PEDOT:PEG(PC)的拉曼光谱中的最强特征是中心在1441cm-1(P1)处的峰,其归因于在平面拉伸的C=C双键。此拉曼峰的频率已知相对于阴性(还原)和阳性(氧化)掺杂的聚合物是敏感的;也就是说,还原(氧化)既导致频率红(蓝)移又导致线宽变窄(变宽)(参考文献29-31)。因为此敏感性,我们使用峰P1来调查在PEDOT:PEG(PC)、ZnO和石墨烯之间的潜在相互作用。PEDOT:PEG(PC)/ZnO体系的峰P1频率的红移,相对于原始PEDOT:PEG(PC)为6cm-1,而各自光谱线宽收窄了6cm-1。用先前所报道的峰漂移和线宽(其与PEDOT:PSS掺杂(参考文献29-31)相关)所获得的拉曼进行比较,显示当与ZnO接触时还原了聚合物。相比之下,当PEDOT:PEG(PC)层与石墨烯接触时,峰P1蓝移为4cm-1并且其光谱线宽相对于原始石墨烯扩大6cm-1,表明了PEDOT:PEG(PC)发生了氧化(图5B)。最后,通过测量最终的石墨烯/PEDOT:PEG(PC)/ZnO体系(图5C)的P1峰,会观察到它的频率红移为2cm-1和线宽相对于原始PEDOT:PEG(PC)收窄了4cm-1。这一发现与在各双组分体系(石墨烯/PEDOT:PEG(PC)和PEDOT:PEG(PC)/ZnO))上的结果一致,因为由ZnO所引起的聚合物的还原,相比于由石墨烯所引起的氧化,是更加突出的。根据这些观测,可以预期,电子从ZnO传递到导电聚合物PEDOT:PEG(PC)并最终传递到石墨烯电极,正如在完整设备配置中所要求的。
在于石墨烯上获得均匀阵列的ZnO纳米线之后,石墨烯阴极-型混合太阳能电池通过将PbS量子点(QD)(参考文献32)和P3HT用作p-型空穴-传输给体材料和将ZnO纳米线用作到该阴极的电子-传输通道来制造。所生长的石墨烯/ZnO纳米线结构非常适合于倒置的设备几何形状,其通过避免酸性PEDOT:PSS层和易于氧化的低功函金属(例如,Al或Ag)来在传统ITO阳极-型几何形状上提供了改进的稳定性(参考文献33)。
对于这两种类型的设备,在ZnO纳米线生长之前,石墨烯电极用聚合物中间层进行处理,而ITO电极用氧等离子进行处理。详细制造和测试过程描述如下。图6A和6B显示总体设备结构和相应的平带能级图。横截面SEM图像(图6C和6D插图)显示:PbS QD和P3HT深深渗透到ZnO纳米线阵列中,正如高效率电荷分离所希望的(参考文献32)。图6C和6D对比了在AM1.5G光源下的100mW/cm2的太阳能电池(各自具有石墨烯电极和ITO电极)的典型电流密度-电压(J–V)特性。凭借优化的ZnO纳米线生长条件,在两种设备结构中的ITO电极和石墨烯电极都观察到了高效率设备性能:PbSQD-型设备的功率转换效率(PCE)对于ITO/ZnO而言是5.1%,对于石墨烯/PEDOT:PEG(PC)/ZnO而言为4.2%,对于石墨烯/RG-1200/ZnO而言是3.9%;P3HT-型设备的相应的PCE分别是0.4%、0.3%和0.5%。主要光伏性能参数总结于表2中。
表2.
借助于只有三个堆叠单层的石墨烯电极,就观察到的设备性能接近于ITO-型太阳能电池。此外,就ZnO纳米线-型P3HT结构而言,其实现的效率等于或超过先前相似ITO-型设备所报道的效率(参考文献34-35)。这些结果表明,对于聚合物界面修饰而言,提出的独立于基板的方法使得高-质量和有序ZnO纳米线阵列能够生长在石墨烯上同时保持其电性能和结构性能。
材料和方法
石墨烯合成和转移石墨烯膜经由利用铜箔(25μm厚,ALFA AESAR)作为金属催化剂的低压化学气相淀积来合成。生长室抽真空到30-50mTorr的基础压力,在氢气下(H2,10sccm,~320mTorr)加热到1000℃的生长温度,并退火30分钟。随后,将甲烷气(CH4,20sccm,总压:~810mTorr)引入并将石墨烯进行30分钟的生长。然后将该室以~45℃/min向下冷却到室温。石墨烯从生长基板的转移通过使用聚(甲基丙烯酸甲酯)(PMMA,950A9,Microchem)来进行。在Cu箔的一面上的石墨烯通过用氧气的反应性离子蚀刻(Plasma-Therm,100Watt,以7×10-5Torr)来在Cu被蚀刻掉(Cu蚀刻剂:CE-100,Transene)之前去除。然后将石墨烯膜用盐酸(10%)和去离子(DI)水进行彻底漂洗。最后,PMMA层通过在500℃在H2(700sccm)和Ar(400sccm)下退火2小时来去除。重复进行转移来形成三层石墨烯堆叠体。
聚合物界面层过滤(0.2μm)在硝基甲烷中的PEDOT:PEG(PC)(SigmaAldrich),空气中以5000rpm旋转涂覆60秒,并在空气中进行旋转干燥。过滤(0.45μm)在乙二醇单丁基醚/水(3:2)中的OC RG-1200(SigmaAldrich),空气中以4000rpm旋转涂覆60秒,并在空气中在175℃退火30分钟。
ZnO纳米线生长ZnO纳米线通过水热法来在PEDOT:PEG(PC)或RG-1200上生长。ZnO晶种层通过旋转涂覆在2-甲氧基乙醇溶液中的300mM的醋酸锌二水合物和乙醇胺并且在175℃退火10分钟来制备。此过程重复两次来在PEDOT:PEG(PC)或RG-1200上形成均匀ZnO晶种层。该基板随后浸入到纳米线生长溶液中达40分钟。该生长溶液由在去离子水中的50mM硝酸锌六水合物(25ml)和50mM六亚甲基四胺(25ml)组成。所生长的ZnO纳米线在去离子水中进行彻底漂洗并在200℃退火5分钟以便除去残留去离子水。
结构表征石墨烯、PEDOT:PEG(PC)、RG-1200和ZnO晶种层的表面形貌通过使用以轻敲模式操作的Digital Instruments Veeco Dimension 3100原子力显微镜来表征。扫描电子显微镜用Helios Nanolab 600按照5kV来操作。透射电子显微镜(TEM)图像和所制备的ZnO样品的相应的电子衍射图案通过使用加速电压为200kV的JEOL 2010F来获得。
拉曼和光学分析拉曼光谱采用532nm波长的激光源(Nd:YAG激光器),在背散射几何形状中使用100×的物镜。从该物镜中测量的激光功率是1.5mW。在接种Si基板上所生长的ZnO纳米线的PL测量在室温、用操作在262nm的激光器和60W/cm2的功率密度来进行。
设备制造预图案化的ITO基板(薄膜设备,150nm厚,20Ω/sq,85%T)在皂水(Micro-90,Cole-Parmer)、去离子水、丙酮和异丙醇中的清洗通过超声波来进行,接着氧等离子清洗(100W,Plasma Preen,Inc.)30秒。图案化的石墨烯基板的清洗通过在500℃在H2(700sccm)和Ar(400sccm)下退火30分钟来进行。
ZnO-纳米线/P3HT混合太阳能电池制备聚(3-己基噻吩-2,5-二基)(P3HT,OS 2100)在1,2-二氯苯(30mg/ml)中的溶液。然后将环己酮(10vol%)添加到P3HT溶液中,该溶液在24小时之后变紫,表示P3HT纳米纤维的形成。该聚合物溶液在充氮的手套箱中以1000rpm在ZnO纳米线阵列上旋转涂覆60秒。这些基板以150℃在手套箱内退火45分钟以便确保P3HT纳米纤维渗透到纳米线阵列的空隙中。MoO3(Alfa Aesar,99.9995%)和顶部阳极Au(Kurt J.Lesker,3.175mm底板,99.999%)通过荫罩以2×10-6Torr的基础压力各自以的速率来进行热蒸发。由在顶部电极和底部电极之间的重叠限定的设备面积是1.21mm2
ZnO-纳米线/PbS QD混合太阳能电池
在905nm(1.36eV)具有第一激发峰的胶体PbS量子点根据文献方法来合成并通过顺序的层叠层旋转流延来沉积在ZnO纳米线上,如其他地方报道的(参考文献32和36)。每个旋转流延周期沉积~30nm的量子点,其中通过10个沉积周期所实现的膜厚度通常为~300nm。将25mg/mL的PbS量子点在辛烷(无水,Sigma-Aldrich,99+%)中的溶液以1500rpm来旋转流延在ZnO膜上。对于天然油酸封端配位体,1,3-苯二硫酚(BDT)(Sigma-Aldrich,99%)的充分交换通过滴落-流延BDT在乙腈(无水,Sigma-Aldrich,99.8%)中的1.7mM溶液来进行并在旋转干燥之前等待30秒。然后将膜用乙腈漂洗3次,以便除去剩余配位体。PbS量子点和BDT溶液通过0.1μm PTFE膜过滤器来分配。将MoO3(Alfa Aesar,99.9995%)和Au(Kurt J.Lesker,3.175mm底板,99.999%)通过荫罩各自以的速率以1×10-6Torr的室基础压力来进行热蒸发。所有制造步骤都进行在惰性氮气气氛中,从而防止量子点和配位体的氧化。
设备特征
PV设备的电流-电压特性在充氮手套箱中通过使用计算机控制的Keithley 6487picoammeter source-meter来记录。100mW/cm2光源利用配备有AM 1.5G滤光器的150W的氙弧灯(Newport 96000)来提供。聚合物的镜面透射光谱的测量在石英基板上用Cary 5000紫外-可见-近红外双光束分光光度计来进行。片电阻通过使用来自Jandel Engineering LTD的RM3-AR四点探针台来测量。
参考文献
下列参考文献中的每个都通过引用来引入。
1.Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.;Khotkevich,V.V.;Morozov,S.V.;Geim,A.K.P.Natl.Acad.Sci.USA 2005,102,(30),10451-10453.
2.Reina,A.;Jia,X.T.;Ho,J.;Nezich,D.;Son,H.B.;Bulovic,V.;Dresselhaus,M.S.;Kong,J.Nano Lett.2009,9,(1),30-35.
3.Li,X.S.;Cai,W.W.;An,J.H.;Kim,S.;Nah,J.;Yang,D.X.;Piner,R.;Velamakanni,A.;Jung,I.;Tutuc,E.;Banerjee,S.K.;Colombo,L.;Ruoff,R.S.Science 2009,324,(5932),1312-1314.
4.Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,(3),183-191.
5.Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Naud,C.;Mayou,D.;Li,T.B.;Hass,J.;Marchenkov,A.N.;Conrad,E.H.;First,P.N.;deHeer,W.A.Science 2006,312,(5777),1191-1196.
6.Bolotin,K.I.;Sikes,K.J.;Jiang,Z.;Klima,M.;Fudenberg,G.;Hone,J.;Kim,P.;Stormer,H.L.Solid State Commun.2008,146,(9-10),351-355.
7.Wang,X.R.;Li,X.L.;Zhang,L.;Yoon,Y.;Weber,P.K.;Wang,H.L.;Guo,J.;Dai,H.J.Science 2009,324,(5928),768-771.
8.Bonaccorso,F.;Sun,Z.;Hasan,T.;Ferrari,A.C.Nat.Photonics 2010,4,(9),611-622.
9.Park,H.;Brown,P.R.;Buloyic,V.;Kong,J.Nano Lett.2012,12,(1),133-140.
10.De Arco,L.G.;Zhang,Y.;Schlenker,C.W.;Ryu,K.;Thompson,M.E.;Zhou,C.W.Acs Nano 2010,4,(5),2865-2873.
11.Wang,Y.;Tong,S.W.;Xu,X.F.;Ozyilmaz,B.;Loh,K.P.Adv.Mater.2011,23,(13),1514-1518.
12.Han,T.;Lee,Y.;Choi,M.;Woo,S.;Bae,S.;Hong,B.;Ahn,J.;Lee,T.Nat.Photonics 2012,6,105-110.
13.Chung,K.;Lee,C.-H.;Yi,G.-C.Science 2010,330,(6004),655-657.
14.Bae,S.;Kim,H.;Lee,Y.;Xu,X.F.;Park,J.-S.;Zheng,Y.;Balakrishnan,J.;Lei,T.;Ri Kim,H.;Song,Y.I.;Kim,Y.-J.;Kim,K.S.;Ozyilmaz,B.;Ahn,J.-H.;Hong,B.H.;Iijima,S.Nat.Nanotechnol.2010,5,(8),574-578.
15.Savage,N.Nature 2012,483,(7389),S38-S39.
16.Law,M.;Goldberger,J.;Yang,P.D.Ann.Rev.Mater.Res.2004,34,83-122.
17.Ren,S.;Zhao,N.;Crawford,S.C.;Tambe,M.;V.;S.Nano Lett.2010,11,(2),408-413.
18.Ren,S.;Chang,L.-Y.;Lim,S.-K.;Zhao,J.;Smith,M.;Zhao,N.;V.;Bawendi,M.G.;S.Nano Lett.2011,11,(9),3998-4002.
19.Kim,Y.-J.;Lee,J.-H.;Yi,G.-C.Appl.Phys.Lett.2009,95,(21),213101-3.
20.Shin,K.-S.;Jo,H.;Shin,H.-J.;Choi,W.M.;Choi,J.-Y.;Kim,S.-W.J.Mater.Chem.2012,22,(26),13032-13038.
21.Choi,W.M.;Shin,K.S.;Lee,H.S.;Choi,D.;Kim,K.;Shin,H.J.;Yoon,S.M.;Choi,J.Y.;Kim,S.W.Nano Research 2011,4,(5),440-447.
22.Greene,L.E.;Law,M.;Tan,D.H.;Montano,M.;Goldberger,J.;Somorjai,G.;Yang,P.D.Nano Lett.2005,5,(7),1231-1236.
23.Brewster,M.M.;Zhou,X.;Lu,M.-Y.;S.Nanoscale 2011,4,(5),1455-1462.
24.Ruankham,P.;Macaraig,L.;Sagawa,T.;Nakazumi,H.;Yoshikawa,S.J.Phys.Chem.C 2011,115,(48),23809-23816.
25.Munshi,A.M.;Dheeraj,D.L.;Fauske,V.T.;Kim,D.-C.;vanHelvoort,A.T.J.;Fimland,B.-O.;Weman,H.Nano Lett.2012,12,(9),4570-4576.
26.Wang,S.R.;Zhang,Y.;Abidi,N.;Cabrales,L.Langmuir 2009,25,(18),11078-11081.
27.Park,H.;Chang,S.;Smith,M.;S.;Kong,J.2012,inpreparation.
28.Skotheim,T.A.;Reynolds,J.R.,Handbook of Conducting Polymers.CRC press:Boca Raton,2007.
29.de Kok,M.M.;Buechel,M.;Vulto,S.I.E.;van de Weijer,P.;Meulenkamp,E.A.;de Winter,S.;Mank,A.J.G.;Vorstenbosch,H.J.M.;Weijtens,C.H.L.;van Elsbergen,V.Phys.Status Solidi A 2004,201,(6),1342-1359.
30.Chiu,W.W.;Travas-Sejdic,J.;Cooney,R.P.;Bowmaker,G.A.J.Raman Spectrosc.2006,37,(12),1354-1361.
31.Sakamoto,S.;Okumura,M.;Zhao,Z.;Furukawa,Y.Chem.Phys.Lett.2005,412,(4–6),395-398.
32.Jean,J.;Chang,S.;Brown,P.R.;Cheng,J.W.J.;Bawendi,M.G.;S.;V.Adv.Mater.2012,Submitted.
33.Zhang,F.;Xu,X.;Tang,W.;Zhang,J.;Zhuo,Z.;Wang,J.;Wang,J.;Xu,Z.;Wang,Y.Sol.Energy Mater.Sol.Cells 2011,95,(7),1785-1799.
34.Olson,D.C.;Lee,Y.-J.;White,M.S.;Kopidakis,N.;Shaheen,S.E.;Ginley,D.S.;Voigt,J.A.;Hsu,J.W.P.J.Phys.Chem.C 2007,111,(44),16640-16645.
35.Yin,Z.;Wu,S.;Zhou,X.;Huang,X.;Zhang,Q.;Boey,F.;Zhang,H.Small 2010,6,(2),307-312.
36.Zhao,N.;Osedach,T.P.;Chang,L.-Y.;Geyer,S.M.;Wanger,D.;Binda,M.T.;Arango,A.C.;Bawendi,M.G.;V.ACS Nano 2010,4,(7),3743-3752.
其他实施方案在以下权利要求的范围之内。

Claims (22)

1.一种透明电极,其包括:
在基板上的石墨烯片;
配置在所述石墨烯片上的含导电聚合物的中间层;和
配置在该中间层上的多个半导体纳米线。
2.权利要求1的透明电极,其中所述多个半导体纳米线彼此基本上是平行的。
3.权利要求2的透明电极,其中多个半导体纳米线的长轴基本上垂直于所述石墨烯片。
4.权利要求1的透明电极,其中所述多个半导体纳米线包括ZnO。
5.权利要求1的透明电极,其中所述中间层包括导电聚合物。
6.权利要求6的透明电极,其中所述中间层包括聚噻吩。
7.一种设备,其包括权利要求1的透明电极,进一步包括配置在所述多个半导体纳米线上的光活性材料。
8.权利要求7的设备,其中所述光活性材料包括半导体纳米晶体或P3HT。
9.权利要求7的设备,进一步包括沉积在所述光活性材料上的第二电极。
10.一种透明电极的制造方法,其包括:
提供在基板上的石墨烯片;
沉积配置在所述石墨烯片上的含导电聚合物的中间层;和
在所述中间层上生长多个半导体纳米线。
11.权利要求10的方法,其中所述中间层的沉积包括旋转流延。
12.权利要求10的方法,其中在所述中间层上生长多个半导体纳米线包括水热沉积。
13.权利要求10的方法,其中所述多个半导体纳米线包括ZnO。
14.权利要求10的方法,其中所述中间层包括导电聚合物。
15.权利要求14的方法,其中所述中间层包括聚噻吩。
16.一种包括权利要求10的方法的制造设备的方法,进一步包括沉积配置在所述多个半导体纳米线上的光活性材料。
17.权利要求16的方法,其中光活性材料包括半导体纳米晶体或P3HT。
18.权利要求16的方法,进一步包括将第二电极沉积在所述光活性材料上。
19.一种光伏设备,其包括
在基板上的石墨烯片;
配置在所述石墨烯片上的含导电聚合物的中间层;和
配置在该中间层上的多个半导体纳米线。
20.权利要求19的光伏设备,进一步包括配置在所述多个半导体纳米线上的光活性材料。
21.权利要求19的光伏设备,其中所述多个半导体纳米线包括ZnO。
22.一种发电的方法,包括照射权利要求19的光伏设备。
CN201380058242.XA 2012-11-26 2013-11-26 纳米线修饰的石墨烯及其制造和使用方法 Expired - Fee Related CN104781305B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261729795P 2012-11-26 2012-11-26
US61/729,795 2012-11-26
PCT/US2013/071888 WO2014082061A1 (en) 2012-11-26 2013-11-26 Nanowire-modified graphene and methods of making and using same

Publications (2)

Publication Number Publication Date
CN104781305A true CN104781305A (zh) 2015-07-15
CN104781305B CN104781305B (zh) 2018-04-17

Family

ID=49780367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380058242.XA Expired - Fee Related CN104781305B (zh) 2012-11-26 2013-11-26 纳米线修饰的石墨烯及其制造和使用方法

Country Status (4)

Country Link
US (1) US10109752B2 (zh)
EP (1) EP2922891A1 (zh)
CN (1) CN104781305B (zh)
WO (1) WO2014082061A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486544A (zh) * 2018-02-08 2018-09-04 佛山市顺德区中山大学研究院 一种具有自清洁超疏液特性的石墨烯氧化锌微纳分级功能材料的制备方法及其应用
CN109417108A (zh) * 2016-09-28 2019-03-01 华为技术有限公司 透明电极及其制备方法、显示面板、太阳能电池
CN109638102A (zh) * 2018-11-26 2019-04-16 国宏中晶集团有限公司 一种石墨烯异质结的太阳能电池及其制备方法
CN112816526A (zh) * 2020-12-31 2021-05-18 西安工业大学 三维石墨烯气体敏感传感器及其制备方法
CN115844411A (zh) * 2023-02-22 2023-03-28 季华实验室 一种超疏水高导电柔性干电极及其制作方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201021112D0 (en) 2010-12-13 2011-01-26 Ntnu Technology Transfer As Nanowires
GB201200355D0 (en) * 2012-01-10 2012-02-22 Norwegian Univ Sci & Tech Ntnu Nanowires
GB201211038D0 (en) 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
US9805928B2 (en) 2015-03-12 2017-10-31 The Curators Of The University Of Missouri Low temperature nanowire growth on arbitrary substrates
CN108352424B (zh) 2015-07-13 2022-02-01 科莱约纳诺公司 石墨基板上生长的纳米线或纳米锥
EP3323152B1 (en) 2015-07-13 2021-10-27 Crayonano AS Nanowires/nanopyramids shaped light emitting diodes and photodetectors
CN108156828A (zh) 2015-07-31 2018-06-12 科莱约纳诺公司 用于在石墨基板上生长纳米线或纳米角锥体的方法
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
CN108047564B (zh) * 2017-12-27 2020-08-11 新奥石墨烯技术有限公司 导电塑料及其制备方法
WO2019151042A1 (ja) * 2018-01-31 2019-08-08 ソニー株式会社 光電変換素子、固体撮像装置及び電子装置
CN109082654B (zh) * 2018-07-26 2020-05-08 暨南大学 一种基于纳米晶锌镀层水热反应制备氧化锌纳米线薄膜的方法
CN114573330B (zh) * 2022-02-24 2023-03-31 西北工业大学 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447064A (zh) * 2010-10-06 2012-05-09 曾永斌 一种聚合物太阳能电池及其制备方法
US20120141799A1 (en) * 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265037B2 (en) * 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
DE102009010714A1 (de) * 2009-02-27 2010-09-02 Merck Patent Gmbh Vernetzbare und vernetzte Polymere, Verfahren zu deren Herstellung sowie deren Verwendung
CN103025654B (zh) * 2009-12-29 2015-10-14 济宁利特纳米技术有限公司 配位基团修饰的石墨烯的制备方法和应用
US9136488B2 (en) 2012-05-30 2015-09-15 Massachusetts Institute Of Technology Devices comprising graphene and a conductive polymer and related systems and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447064A (zh) * 2010-10-06 2012-05-09 曾永斌 一种聚合物太阳能电池及其制备方法
US20120141799A1 (en) * 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HYESUNG PARK ET AL.: "Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes", 《NANO LETT》 *
HYESUNG PARK ET AL.: "Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells", 《NANO LETTERS》 *
KAIKUN YANG ET AL.: "Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide", 《NANOTECHNOLOGY》 *
ZONGYOU YIN ET AL.: "Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells", 《SMALL》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417108A (zh) * 2016-09-28 2019-03-01 华为技术有限公司 透明电极及其制备方法、显示面板、太阳能电池
US11502209B2 (en) 2016-09-28 2022-11-15 Huawei Technologies Co., Ltd. Transparent electrode, transparent electrode production method, display panel, and solar cell
CN108486544A (zh) * 2018-02-08 2018-09-04 佛山市顺德区中山大学研究院 一种具有自清洁超疏液特性的石墨烯氧化锌微纳分级功能材料的制备方法及其应用
CN108486544B (zh) * 2018-02-08 2020-06-05 佛山市顺德区中山大学研究院 一种具有自清洁超疏液特性的石墨烯氧化锌微纳分级功能材料的制备方法及其应用
CN109638102A (zh) * 2018-11-26 2019-04-16 国宏中晶集团有限公司 一种石墨烯异质结的太阳能电池及其制备方法
CN112816526A (zh) * 2020-12-31 2021-05-18 西安工业大学 三维石墨烯气体敏感传感器及其制备方法
CN112816526B (zh) * 2020-12-31 2022-10-21 西安工业大学 三维石墨烯气体敏感传感器及其制备方法
CN115844411A (zh) * 2023-02-22 2023-03-28 季华实验室 一种超疏水高导电柔性干电极及其制作方法

Also Published As

Publication number Publication date
US20150311363A1 (en) 2015-10-29
WO2014082061A1 (en) 2014-05-30
EP2922891A1 (en) 2015-09-30
US10109752B2 (en) 2018-10-23
CN104781305B (zh) 2018-04-17
WO2014082061A8 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
CN104781305B (zh) 纳米线修饰的石墨烯及其制造和使用方法
Tsuboi et al. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS 2 thin film
Lu et al. Synthesis and applications of wide bandgap 2D layered semiconductors reaching the green and blue wavelengths
Kim et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer
Yoo et al. Direct synthesis of highly conductive poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems
Maity et al. Optoelectronic and photovoltaic properties of graphene quantum dot–polyaniline nanostructures
Bouclé et al. The benefits of graphene for hybrid perovskite solar cells
Akman et al. Improving performance and stability in quantum dot-sensitized solar cell through single layer graphene/Cu2S nanocomposite counter electrode
Liu et al. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells
TWI426614B (zh) 混合的光伏特電池及相關聯之方法
JP5753584B2 (ja) グラフェン膜の導電性を増大させるための方法
Lee et al. Low-cost and efficient perovskite solar cells using a surfactant-modified polyaniline: poly (styrenesulfonate) hole transport material
EP2227836A1 (en) Hybrid nanocomposite
Bai et al. Controlled growth and self‐assembly of multiscale organic semiconductor
Gao et al. Electronics from solution-processed 2D semiconductors
Oyedele et al. The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures
Ambade et al. Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells
Manzano-Ramírez et al. A Review on the Efficiency of Graphene‐Based BHJ Organic Solar Cells
Wang et al. High-efficient dye-sensitized solar cells with all-inorganic Cu2ZnSnSe4 counter-electrode by ligand exchange
Emrick et al. Nanoscale assembly into extended and continuous structures and hybrid materials
Salem et al. Inverted polymer solar cell based on MEH-PPV/PC61BM coupled with ZnO nanoparticles as electron transport layer
Guo et al. Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT: PSS as hole transporting layer
Wang et al. Two-dimensional hybrid perovskite-based van der Waals heterostructures
Li et al. Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly
Yoo et al. Direct synthesis of highly conductive PEDOT: PSS/graphene composites and their applications in energy harvesting systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180417

Termination date: 20211126

CF01 Termination of patent right due to non-payment of annual fee