CN104779962B - The minimum segment vectors of Max Log MAP decoding algorithm complexities efficiently produce method - Google Patents
The minimum segment vectors of Max Log MAP decoding algorithm complexities efficiently produce method Download PDFInfo
- Publication number
- CN104779962B CN104779962B CN201510154848.4A CN201510154848A CN104779962B CN 104779962 B CN104779962 B CN 104779962B CN 201510154848 A CN201510154848 A CN 201510154848A CN 104779962 B CN104779962 B CN 104779962B
- Authority
- CN
- China
- Prior art keywords
- minimal
- trellises
- depth
- vetsec
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013598 vector Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000010586 diagram Methods 0.000 claims description 5
- 230000011218 segmentation Effects 0.000 description 36
- 238000004891 communication Methods 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Landscapes
- Error Detection And Correction (AREA)
Abstract
Description
技术领域technical field
本发明属于通信技术领域,涉及一种分段向量Vetsec的生成方法,具体涉及一种Max-Log-MAP译码算法中计算复杂度最低的分段向量的高效生成方法。The invention belongs to the technical field of communication, and relates to a generation method of a segment vector Vetsec, in particular to an efficient generation method of a segment vector with the lowest computational complexity in a Max-Log-MAP decoding algorithm.
背景技术Background technique
在基带传输中,信道编码(纠错码)往往消耗了通信设备的很大一部分能量,如在B.Bougard et al.,“Energy-scalability enhancement of wireless local areanetwork transceivers,”in Proc.2004IEEE Workshop on Signal Processing Advancesin Wireless Communications,pp.449–453中,维特比译码在一个典型的802.11接收器中,占据了其总能量消耗的35%。能量消耗的问题制约着通信设备小型化和移动性,如何提高编码的码率,使得单位长度的生成码字能传输更多的信息比特,具有很大的应用价值。对于Turbo码译码来说,要提高总码率,一般采取删余的方式,如M.A.Kousa and A.H.Mugaibel,“Puncturing effects on turbo codes,”IEEE Proc.Commun.,vol.149,no.3,pp.132-138,June 2002中所介绍的方法。另外一种提高总码率的方法是使用高码率的成员码,对于卷积码C(n,k,v)来说,这种方法具有提高单位时间内的通过率、降低时延等作用,但随着k的增加,译码的复杂度会随着k的增加而呈指数倍增长。In baseband transmission, channel coding (error correction code) often consumes a large part of the energy of communication equipment, such as in B.Bougard et al., "Energy-scalability enhancement of wireless local area network transceivers," in Proc.2004IEEE Workshop on In Signal Processing Advances in Wireless Communications, pp.449–453, Viterbi decoding accounts for 35% of the total power consumption of a typical 802.11 receiver. The problem of energy consumption restricts the miniaturization and mobility of communication equipment. How to increase the coding rate so that the generated codeword per unit length can transmit more information bits has great application value. For turbo code decoding, to increase the total code rate, puncturing is generally adopted, such as M.A.Kousa and A.H.Mugaibel, "Puncturing effects on turbo codes," IEEE Proc.Commun., vol.149, no.3, The method described in pp.132-138, June 2002. Another way to increase the total code rate is to use high code rate member codes. For the convolutional code C(n,k,v), this method has the effect of improving the pass rate per unit time and reducing the delay. , but with the increase of k, the complexity of decoding will increase exponentially with the increase of k.
卷积码C(n,k,v)可以用一个半无限的网格图来表示,这个网格图是周期的,它的最短周期称为网格模块。对于一个码率为k/n的网格模块来说,它含有个分段,在深度i有个状态,每个状态发射出条边,ai(0≤i≤n-1)表示连接深度i的某一状态与深度i+1的某一状态的边所代表的输出码字的比特数,总的约束长度是v,vi和bi分别被称为该网格模块在深度i上的状态复杂度和分支复杂度,对于Viterbi算法而言,网格图模块的复杂度定义为:The convolutional code C(n,k,v) can be represented by a semi-infinite trellis graph. This trellis graph is periodic, and its shortest period is called a trellis module. For a grid module with code rate k/n, it contains segments, at depth i there are states, each of which emits side, a i (0≤i≤n-1) represents the number of bits of the output codeword represented by the edge connecting a certain state of depth i and a certain state of depth i+1, and the total constraint length is v, v i and b i are respectively called the state complexity and branch complexity of the grid module at depth i. For the Viterbi algorithm, the complexity of the grid graph module is defined as:
传统网格图(Conventional trellis)是一种最常用的卷积码网格模块的表现形式,它含有个分段,有2v个初始状态和2v个终止状态,每一个初始状态发散出2k条边与终止状态相连,每条边代表n比特(见图1)。Conventional trellis is one of the most commonly used representations of the convolutional code trellis module, which contains There are 2 v initial states and 2 v final states, each initial state emanates 2 k edges connected to the final state, and each edge represents n bits (see Figure 1).
另一种重要的卷积码网格模块表现形式是最小网格图(Minimal trellis),它含有个分段,对于其中的k个分段是带信息的(bi=1),而另外的n-k个分段是无信息的(bi=0),最小网格图含有2v个初始状态和2v个终止状态,每条边代表1比特的生成码字(见图2)。最小网格图能够在维特比译码中以复杂度最低的方法进行译码,故应用最小网格图,可以降低相应的能量消耗并提高硬件的利用率。但对于其它译码方式,如Max-Log-MAP译码,最小网格图并不能保证它的复杂度一定最低。Another important representation of the convolutional code trellis module is the Minimal trellis, which contains segments, of which k segments are informative (bi = 1), and the other nk segments are uninformative ( bi = 0), the minimum grid graph contains 2 v initial states and 2 v termination states, each edge represents a 1-bit generated codeword (see Figure 2). The minimum trellis graph can be decoded with the lowest complexity method in Viterbi decoding, so the application of the minimum trellis graph can reduce the corresponding energy consumption and improve the utilization rate of hardware. But for other decoding methods, such as Max-Log-MAP decoding, the minimum grid graph does not guarantee that its complexity must be the lowest.
将最小网格图某一深度i上的状态全部去掉,而将深度i-1上的状态与深度i+1上的状态直接相连,这样就得到了一个新的分段,它是由原来的最小网格图上的两个分段合并而成,而合并后的网格图只剩下个分段。推广开来,这种将多个分段合并为一个分段的操作称为分段操作,分段后得到的网格图称为分段网格图(Sectionalizedtrellis)。分段操作是一种应用于最小网格图上以获得新的网格图拓扑结构的操作,它通过删除最小网格图某一深度i上的状态,而将深度i-1上的状态与深度i+1上的状态重新进行连接,得到一个更加紧凑的结构。随着分段的次数越来越多,网格图结构将会愈加紧凑,最终,当将中间状态全部删除后,得到传统网格图。对于卷积码C(n,k,v)而言,其可能的分段方式共有2n-1种,为了表达对于最小网格图的各种不同的分段方式,我们定义一个二进制的分段向量vetsec={vetseci},i=1,...,n-1,当最小网格图在深度i的状态被删除而将深度i-1上的状态与深度i+1上的状态直接相连后,则vetseci=1,否则,vetseci=0(见图3)。我们分别用来表示分段网格图在深度i到深度i+1上的边所代表的生成码字的比特数以及深度i上的状态和分支的复杂度,例如,图3是图2所示的C(5,3,5)的最小网格图在分段向量vetsec=(0010)的条件下的分段网格图,在图2所示的最小网格图的深度3上进行分段操作,即将深度3上的状态删除,而将深度2与深度4上的状态直接相连。进行分段操作后的网格图共有个分段,其边复杂度向量而由(1)式定义的网格图复杂度,可以得出传统网格图的复杂度TC(Mconv)=427.5,最小网格图的复杂度TC(Mmin)=74.7,而在分段向量vetsec=(0010)的条件下,分段网格图的复杂度TC(Msec)=96。All the states at a certain depth i of the minimum grid graph are removed, and the states at depth i-1 are directly connected to the states at depth i+1, so that a new segment is obtained, which consists of the original The two segments on the minimal grid graph are merged, and the merged grid graph is only left with segments. Generally speaking, this operation of merging multiple segments into one segment is called a segmentation operation, and the grid graph obtained after segmentation is called a segmented grid graph (Sectionalizedtrellis). The segmentation operation is an operation applied on the minimum grid graph to obtain a new grid graph topology. It deletes the state at a certain depth i of the minimum grid graph, and combines the state at the depth i-1 with The states at depth i+1 are reconnected, resulting in a more compact structure. As the number of segments increases, the structure of the grid graph will become more and more compact. Finally, when all intermediate states are deleted, a traditional grid graph will be obtained. For the convolutional code C(n,k,v), there are 2 n-1 possible segmentation methods. In order to express various segmentation methods for the minimum grid graph, we define a binary segmentation Segment vector vetsec={vetsec i }, i=1,...,n-1, when the state of the minimum grid graph at depth i is deleted and the state at depth i-1 is compared with the state at depth i+1 After being directly connected, vetsec i =1, otherwise, vetsec i =0 (see FIG. 3 ). We use respectively To represent the number of bits of the generated codeword represented by the edge of the segmented lattice graph from depth i to depth i+1 and the complexity of the state and branch at depth i, For example, Fig. 3 is the segmented grid graph of the minimum grid graph of C(5,3,5) shown in Fig. 2 under the condition of segmentation vector vetsec=(0010), and the minimum grid graph shown in Fig. 2 Segmentation operation is performed on the depth 3 of the trellis, that is, the state on the depth 3 is deleted, and the state on the depth 2 is directly connected to the state on the depth 4. The grid map after the segmentation operation has a total of segment, its edge complexity vector As for the complexity of the grid graph defined by formula (1), it can be obtained that the complexity of the traditional grid graph TC(M conv )=427.5, the complexity of the minimum grid graph TC(M min )=74.7, and in the Under the condition of segment vector vetsec=(0010), the complexity of the segmented grid graph is TC(M sec )=96.
在R.J.McEliece and W.Lin,“The trellis complexity of convolutionalcodes,”IEEE Trans.Inf.Theory,vol.42,no.6,pp.1855-1864,Nov.1996中定义的网格图的理论复杂度中,对于Viterbi译码来说,最小网格图的复杂度要小于传统网格图的复杂度,且运用最小网格图并不会带来任何的性能损失。但对于Max-Log-MAP译码算法来说,运用最小网格图进行译码将不一定能够得到最低的译码复杂度。The theoretical complexity of trellis graphs defined in R.J.McEliece and W.Lin, "The trellis complexity of convolutional codes," IEEE Trans.Inf.Theory, vol.42, no.6, pp.1855-1864, Nov.1996 Among them, for Viterbi decoding, the complexity of the minimum trellis graph is smaller than that of the traditional trellis graph, and the use of the minimum trellis graph will not bring any performance loss. But for the Max-Log-MAP decoding algorithm, using the minimum lattice graph for decoding may not necessarily be able to obtain the lowest decoding complexity.
分段网格图的Max-Log-MAP译码算法的计算复杂度可以用每一段加法、乘法和比较的次数的累加来表示,这里我们分别用M、S、C来表示加法、乘法和比较运算。在Moritz G,Souza R,Pimentel C,et al.“Turbo Decoding Using the Sectionalized MinimalTrellis of the Constituent Code:Performance-Complexity Trade-Off”.2013.中给出了Max-Log-MAP译码算法对于分段网格图第i个分段中γi,αi,βi,Λi计算复杂度以及总的计算复杂度的计算公式。以C(5,3,5)为例,在Max-Log-MAP译码中选用合适的分组方式,在损失一定性能的条件下,其计算复杂度最低的分段方式的加法与比较运算的次数与传统网格图相比分别降低了63.8%和59.4%,复杂度大大降低了。现有的技术方案对于如何找到C(n,k,v)码的Max-Log-MAP译码算法中计算复杂度最低的分段向量并没有专门的方法,只能对其2n-1种分段方式进行遍历运算后比较得出。The computational complexity of the Max-Log-MAP decoding algorithm for segmented grid graphs can be expressed by the accumulation of the number of additions, multiplications, and comparisons in each segment. Here we use M, S, and C to represent additions, multiplications, and comparisons, respectively. operation. In Moritz G, Souza R, Pimentel C, et al. "Turbo Decoding Using the Sectionalized Minimal Trellis of the Constituent Code: Performance-Complexity Trade-Off". 2013. The Max-Log-MAP decoding algorithm is given for segmentation Computational complexity of γ i , α i , β i , Λ i in the i-th segment of the grid diagram and the calculation formula of the total computational complexity. Taking C(5,3,5) as an example, in the Max-Log-MAP decoding, select the appropriate grouping method, under the condition of losing a certain performance, the addition and comparison operations of the segmented method with the lowest computational complexity Compared with the traditional grid graph, the times are respectively reduced by 63.8% and 59.4%, and the complexity is greatly reduced. The existing technical solutions do not have a special method for how to find the segment vector with the lowest computational complexity in the Max-Log-MAP decoding algorithm of the C(n,k,v) code, only 2 n-1 kinds of It is obtained after performing traversal operations in a segmented manner.
发明内容Contents of the invention
本发明的作用在于克服了上述现有方法需进行遍历运算的缺点,提供了一种Max-Log-MAP译码算法中计算复杂度最低的分段向量的高效生成方法,该方法可以高效地生成Max-Log-MAP译码算法计算复杂度最低的分段向量Vetsec。The function of the present invention is to overcome the shortcoming that the above-mentioned existing method needs to perform traversal operation, and provides a method for efficiently generating segmented vectors with the lowest computational complexity in the Max-Log-MAP decoding algorithm, which can efficiently generate Max-Log-MAP decoding algorithm calculates the segment vector Vetsec with the lowest computational complexity.
为达到上述目的,本发明所述的Max-Log-MAP译码算法计算复杂度最低的分段向量Vetsec的生成方法包括以下步骤:In order to achieve the above object, the generation method of the segment vector Vetsec with the lowest computational complexity of the Max-Log-MAP decoding algorithm of the present invention comprises the following steps:
1)根据Max-Log-MAP译码算法的最小网格图Mmin,获取所述最小网格图Mmin上各深度对应的状态向量及信息比特向量;1) According to the minimum grid map M min of the Max-Log-MAP decoding algorithm, obtain the state vector and information bit vector corresponding to each depth on the minimum grid map M min ;
2)根据步骤1)的最小网格图Mmin上各深度对应的状态向量及信息比特向量得到最小网格图Mmin中各段的分段向量;2) According to the state vector and the information bit vector corresponding to each depth on the minimum grid graph M min of step 1), obtain the segmentation vector of each segment in the minimum grid graph M min ;
3)组合步骤2)得到的最小网格图Mmin中各段的分段向量,得到对于Max-Log-MAP译码算法计算复杂度最低的分段向量Vetsec。3) Combining the segment vectors of each segment in the minimum grid graph M min obtained in step 2), to obtain the segment vector Vetsec with the lowest computational complexity for the Max-Log-MAP decoding algorithm.
步骤2)的具体过程为:The concrete process of step 2) is:
判断最小网格图Mmin上深度i上对应的状态向量vi及信息比特向量bi与深度i+1上对应的状态向量vi+1的大小,其中,i=0,1,...,n-2,n为最小网格图Mmin上深度的总数;Judging the size of state vector v i and information bit vector b i corresponding to depth i on the minimum grid graph M min and state vector v i+1 corresponding to depth i+ 1 , where i=0,1,.. ., n-2, n is the total number of depths on the minimum grid map M min ;
当vi=vi+1-1时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=1;When v i =v i+1 -1, then the segmentation vector vetsec i+1 of segment i+1 in the minimum grid graph M min is vetsec i+1 =1;
当vi=vi+1+1时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=0;When v i =v i+1 +1, then the segmentation vector vetsec i+1 of segment i+1 in the minimum grid graph M min is 0;
当vi=vi+1,且最小网格图Mmin上深度i上对应的信息比特向量bi=1时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=0;When v i =v i+1 , and the corresponding information bit vector b i on the depth i on the minimum grid graph M min =1, then the segmentation vector vetsec i of the i+1 segment in the minimum grid graph M min +1 = 0;
当vi=vi+1,且最小网格图Mmin上深度i上对应的信息比特向量bi=0时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=1。When v i =v i+1 , and the information bit vector b i corresponding to the depth i on the minimum grid graph M min =0, then the segmentation vector vetsec i of the i+1 segment in the minimum grid graph M min +1 =1.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明所述的Max-Log-MAP译码算法中计算复杂度最低的分段向量的高效生成方法在操作时,只需根据其最小网格图Mmin上各深度对应的状态向量vi及信息比特向量bi的比较判定来获取最小网格图Mmin中各段的分段向量vetseci,再将各段的分段向量组合起来即可,与传统生成复杂度最低的分段向量Vetsec需要进行遍历运算相比,本发明提高了寻找Max-Log-MAP译码算法计算复杂度最低分段方式的效率。另外,从理论上来讲,对于有时变生成矩阵的应用场合,在知道其最小网格图的条件下,该方法可以在线实时地快速挑选复杂度最低的一组分段向量。In the Max-Log-MAP decoding algorithm described in the present invention, the efficient generation method of the segment vector with the lowest computational complexity only needs to be based on the state vector v i corresponding to each depth on the minimum grid map M min and The comparison and judgment of the information bit vector b i is used to obtain the segment vector vetsec i of each segment in the minimum grid graph M min , and then the segment vectors of each segment can be combined, which is the same as the traditional generation of the segment vector Vetsec with the lowest complexity Compared with the need to perform traversal operations, the present invention improves the efficiency of finding the segmentation mode with the lowest computational complexity of the Max-Log-MAP decoding algorithm. In addition, theoretically speaking, for the application of time-varying generator matrix, under the condition of knowing its minimum grid graph, this method can quickly select a group of segment vectors with the lowest complexity online and in real time.
附图说明Description of drawings
图1为C(5,3,5)码的传统网格图;Fig. 1 is the traditional grid diagram of C (5,3,5) sign indicating number;
图2为C(5,3,5)码的最小网格图;Fig. 2 is the minimum grid figure of C (5,3,5) code;
图3为C(5,3,5)码在分段向量vetsec=(0010)的条件下的分段网格图;Fig. 3 is the segmentation grid figure of C (5,3,5) code under the condition of segmentation vector vetsec=(0010);
图4为C(7,4,4)的最小网格图;Fig. 4 is the minimum grid diagram of C(7,4,4);
图5为运用遍历计算得出的C(7,4,4)各种分段方式下的复杂度计算结果图。Fig. 5 is a diagram of the complexity calculation results of C(7,4,4) in various segmentation methods obtained by traversal calculation.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:
本发明所述的Max-Log-MAP译码算法中计算复杂度最低的分段向量的高效生成方法包括以下步骤:The efficient generation method of the segment vector with the lowest computational complexity in the Max-Log-MAP decoding algorithm of the present invention comprises the following steps:
1)根据Max-Log-MAP译码算法的最小网格图Mmin,获取所述最小网格图Mmin上各深度对应的状态向量及信息比特向量;1) According to the minimum grid map M min of the Max-Log-MAP decoding algorithm, obtain the state vector and information bit vector corresponding to each depth on the minimum grid map M min ;
2)根据步骤1)的最小网格图Mmin上各深度对应的状态向量及信息比特向量得到最小网格图Mmin中各段的分段向量;2) According to the state vector and the information bit vector corresponding to each depth on the minimum grid graph M min of step 1), obtain the segmentation vector of each segment in the minimum grid graph M min ;
3)组合步骤2)得到的最小网格图Mmin中各段的分段向量,得到对于Max-Log-MAP译码算法计算复杂度最低的分段向量Vetsec。3) Combining the segment vectors of each segment in the minimum grid graph M min obtained in step 2), to obtain the segment vector Vetsec with the lowest computational complexity for the Max-Log-MAP decoding algorithm.
步骤2)的具体过程为:The concrete process of step 2) is:
判断最小网格图Mmin上深度i上对应的状态向量vi及信息比特向量bi与深度i+1上对应的状态向量vi+1的大小,其中i=0,1,...,n-2,n为最小网格图Mmin上深度的总数;Judging the size of the state vector v i and the information bit vector b i corresponding to the depth i on the minimum grid graph M min and the state vector v i +1 corresponding to the depth i+1, where i=0,1,... , n-2, n is the total number of depths on the minimum grid map M min ;
当vi=vi+1-1时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=1;When v i =v i+1 -1, then the segmentation vector vetsec i+1 of segment i+1 in the minimum grid graph M min is vetsec i+1 =1;
当vi=vi+1+1时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=0;When v i =v i+1 +1, then the segmentation vector vetsec i+1 of segment i+1 in the minimum grid graph M min is 0;
当vi=vi+1,且最小网格图Mmin上深度i对应的信息比特向量bi=1时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=0;When v i =v i+1 , and the information bit vector b i corresponding to depth i on the minimum grid map M min =1, then the segmentation vector vetsec i+ 1 = 0;
当vi=vi+1,且最小网格图Mmin上深度i对应的信息比特向量bi=0时,则最小网格图Mmin中第i+1段的分段向量vetseci+1=1。When v i =v i+1 , and the information bit vector b i corresponding to depth i on the minimum grid graph M min =0, then the segmentation vector vetsec i+ of segment i+1 in the minimum grid graph M min 1 = 1.
对C(n,k,v)来说,用Max-Log-MAP算法对其进行分段译码,如果需要选取复杂度最低的分段方式,需要对其2n-1种分段方式进行遍历,分别算出每种分段方式下所需要的加法,乘法和比较的个数。而本发明所用的方法,只需要在知道其最小网格图的状态向量V={vi}和信息比特向量B={bi}的情况下,就可以通过简单的判决运算得出其复杂度最低的一种分段方式,判决运算的总次数不大于2*(n-1)次,而运用传统的遍历运算需要次运算,其中 和分别表示在第j种分段方式下分段网格图中的第i+1段的γ,α,β,Λ的计算复杂度和总的分段数,这对于迅速找出计算复杂度最低的Max-Log-MAP译码算法所节省的计算量是显著的,且随着n,k的增大,这种方法的优势会愈加明显。另外,对于有时变生成矩阵的应用场合,在知道其最小网格图的条件下,该方法可以在线实时地快速挑选复杂度最低的一组分段向量,极大地提高了寻找Max-Log-MAP译码算法计算复杂度最低分段方式的速度。这种计算复杂度最低分段方式的确定适用于对运算复杂度敏感的应用场合,在降低通信设备的能耗,提高运算效率方面是可观的,以图4所示的C(7,4,4)码为例,运用上述生成方法:For C(n,k,v), use the Max-Log-MAP algorithm to decode it in segments. If you need to select the segmentation method with the lowest complexity, you need to perform 2 n-1 segmentation methods Traverse and calculate the number of additions, multiplications and comparisons required for each segmentation method. However, the method used in the present invention only needs to know the state vector V={v i } and the information bit vector B={b i } of the minimum grid graph, and can obtain its complex A segmented method with the lowest degree, the total number of judgment operations is not more than 2*(n-1) times, while using traditional traversal operations requires operations, where and Respectively represent the computational complexity of γ, α, β, Λ and the total number of segments in the i+1th segment of the segmented grid graph under the jth segmentation method, which is the lowest for quickly finding out the computational complexity The amount of calculation saved by the Max-Log-MAP decoding algorithm is significant, and as n,k increases, the advantages of this method will become more obvious. In addition, for the application of time-varying generator matrix, under the condition of knowing its minimum grid map, this method can quickly select a group of segment vectors with the lowest complexity online and in real time, which greatly improves the efficiency of finding the Max-Log-MAP The decoding algorithm calculates the speed of the least complex segmented way. The determination of the segmented method with the lowest computational complexity is suitable for applications that are sensitive to computational complexity, and it is considerable in terms of reducing energy consumption of communication equipment and improving computational efficiency. The C(7,4, 4) Code as an example, use the above generation method:
v0=v1-1,所以最小网格图Mmin中第1段的分段向量vetsec1=1;v 0 =v 1 -1, so the segmentation vector vetsec 1 of the first segment in the minimum grid graph M min =1;
v1=v2-1,所以最小网格图Mmin中第2段的分段向量vetsec2=1;v 1 =v 2 -1, so the segmentation vector vetsec 2 of the second segment in the minimum grid graph M min =1;
v2=v3+1,所以最小网格图Mmin中第3段的分段向量vetsec3=0;v 2 =v 3 +1, so the segmentation vector vetsec 3 of the third segment in the minimum grid graph M min =0;
v3=v4,且最小网格图Mmin上深度3对应的信息比特向量b3=1时,所以最小网格图Mmin中第4段的分段向量vetsec4=0;v 3 =v 4 , and the information bit vector b 3 corresponding to depth 3 on the minimum grid graph M min is 1, so the segmentation vector vetsec 4 of the fourth segment in the minimum grid graph M min is 0;
v4=v5+1,所以最小网格图Mmin中第5段的分段向量vetsec5=0。v 4 =v 5 +1, so the segmentation vector vetsec 5 of the fifth segment in the minimum grid graph M min is 0.
v5=v6-1,所以最小网格图Mmin中第6段的分段向量vetsec6=1;v 5 =v 6 -1, so the segmentation vector vetsec 6 of the sixth segment in the minimum grid map M min is 1;
按照上述生成方法得到的计算复杂度最低的分段方式vetsec=[110001],与图5所示的通过遍历运算得到的计算复杂度最低的分段方式vetsec=[110001]是一样的,其运算次数节省率为约为99.99%。The segmentation method vetsec=[110001] with the lowest computational complexity obtained according to the above generation method is the same as the segmentation method vetsec=[110001] with the lowest computational complexity obtained through the traversal operation shown in Figure 5, and its operation Reps save rate About 99.99%.
图5中,S,M,C分别代表加法,乘法和比较运算次数,Tr、Ta、Tb、Tv分别代表在对应的分段方式下Max-Log-MAP译码算法中计算α,β,γ,Λ所需的运算数。In Figure 5, S, M, and C represent the number of addition, multiplication, and comparison operations, and Tr, Ta, Tb, and Tv represent the calculation of α, β, and γ in the corresponding segmented Max-Log-MAP decoding algorithm. , the number of operands required by Λ.
注:图1至图3摘自Moritz G L,Demo Souza R,Pimentel C,et al.Turbodecoding using the sectionalized minimal trellis of the constituent code:performance-complexity trade-off[J].Communications,IEEE Transactions on,2013,61(9):3600-3610.图4摘自Benchimol I,Pimentel C,Demo Souza R.Sectionalizationof the minimal trellis module for convolutional codes[C]//Telecommunicationsand Signal Processing(TSP),201235th International Conference on.IEEE,2012:227-232。Note: Figures 1 to 3 are extracted from Moritz G L, Demo Souza R, Pimentel C, et al. Turbodecoding using the sectionalized minimal trellis of the constituent code: performance-complexity trade-off[J]. Communications, IEEE Transactions on, 2013, 61(9):3600-3610. Figure 4 is excerpted from Benchimol I, Pimentel C, Demo Souza R. Sectionalization of the minimal trellis module for convolutional codes[C]//Telecommunications and Signal Processing (TSP), 2012 35th International Conference on. IEEE, 2012 :227-232.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510154848.4A CN104779962B (en) | 2015-04-02 | 2015-04-02 | The minimum segment vectors of Max Log MAP decoding algorithm complexities efficiently produce method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510154848.4A CN104779962B (en) | 2015-04-02 | 2015-04-02 | The minimum segment vectors of Max Log MAP decoding algorithm complexities efficiently produce method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104779962A CN104779962A (en) | 2015-07-15 |
CN104779962B true CN104779962B (en) | 2018-03-02 |
Family
ID=53621237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510154848.4A Expired - Fee Related CN104779962B (en) | 2015-04-02 | 2015-04-02 | The minimum segment vectors of Max Log MAP decoding algorithm complexities efficiently produce method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104779962B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6973615B1 (en) * | 2000-12-15 | 2005-12-06 | Conexant Systems, Inc. | System of and method for decoding trellis codes |
CN101286817B (en) * | 2008-04-03 | 2011-07-20 | 浙江大学 | General decoding method for conventional binary and double-binary Turbo code |
CN102611464A (en) * | 2012-03-30 | 2012-07-25 | 电子科技大学 | Turbo decoder based on external information parallel update |
US8358713B2 (en) * | 2007-09-10 | 2013-01-22 | Sarath Babu Govindarajulu | High throughput and low latency map decoder |
CN103200142A (en) * | 2013-03-22 | 2013-07-10 | 西安电子科技大学 | Two-state simplified method of non-recursive shaped offset quadrature phase shift keying (SOQPSK)-TG signal |
-
2015
- 2015-04-02 CN CN201510154848.4A patent/CN104779962B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6973615B1 (en) * | 2000-12-15 | 2005-12-06 | Conexant Systems, Inc. | System of and method for decoding trellis codes |
US8358713B2 (en) * | 2007-09-10 | 2013-01-22 | Sarath Babu Govindarajulu | High throughput and low latency map decoder |
CN101286817B (en) * | 2008-04-03 | 2011-07-20 | 浙江大学 | General decoding method for conventional binary and double-binary Turbo code |
CN102611464A (en) * | 2012-03-30 | 2012-07-25 | 电子科技大学 | Turbo decoder based on external information parallel update |
CN103200142A (en) * | 2013-03-22 | 2013-07-10 | 西安电子科技大学 | Two-state simplified method of non-recursive shaped offset quadrature phase shift keying (SOQPSK)-TG signal |
Non-Patent Citations (3)
Title |
---|
urbo Decoding Using the Sectionalized Minimal Trellis of the Constituent Code: Performance-Complexity Trade-Off;Guilherme Luiz Moritz,et al;《IEEE Transactions on Communications》;20130930;第61卷(第9期);第3600-3609页 * |
低复杂度Log-MAP译码算法的研究;毕岗 等;《计算机工程与应用》;20111231;第47卷(第10期);第89-91,97页 * |
高性能的Max-Log-MAP线性分段算法研究;毕岗 等;《电路与系统学报》;20121231;第17卷(第6期);第27-30页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104779962A (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105281785B (en) | A kind of list successive elimination polarization code coding method, device | |
CN106130688B (en) | A low-complexity sparse code multiple access detection method | |
CN105356971A (en) | SCMA decoder based on probability calculation | |
CN105515590B (en) | An efficient and low-complexity serial cancellation list polar code decoding method | |
CN110535475B (en) | Hierarchical adaptive normalized minimum sum decoding algorithm | |
CN107689801B (en) | An Early Stopping Method for ADMM Iterative Decoding of LDPC Codes | |
CN105141322A (en) | Polar code SC decoding-based partial sum method | |
CN107743056B (en) | SCMA (sparse code multiple access) multi-user detection method based on compressed sensing assistance | |
KR101583139B1 (en) | High-Throughput Low-Complexity Successive-Cancellation Polar Decoder Architecture and Method | |
CN106656213B (en) | Implementation method of low-complexity polar code folding hardware architecture based on k-segment decomposition | |
CN110166241A (en) | A kind of data error-correcting method that the wide signal-to-noise ratio suitable for continuous variable quantum key distribution changes | |
CN108173624B (en) | A partial decoding polar code serial cancellation decoding circuit and method | |
CN108809329B (en) | Configuration method of BP decoder capable of simultaneously processing polarization code and LDPC code | |
CN104779962B (en) | The minimum segment vectors of Max Log MAP decoding algorithm complexities efficiently produce method | |
CN110097613A (en) | A kind of B-spline curves generation method and system based on probability calculation | |
CN107612557B (en) | An Improved Shuffled BP Algorithm | |
CN111313914B (en) | SCL simplified decoding method based on neural network classifier | |
CN111200481B (en) | A method for improving the universality of computing unit in the decoding process of Polar code | |
CN103944673B (en) | A kind of low time delay progressive interpretation method of suitable no-rate codes | |
CN110555519B (en) | A low-complexity convolutional neural network architecture based on symbolic stochastic computation | |
JP2006340373A (en) | Radio communication apparatus | |
CN109639290B (en) | A kind of semi-random block superposition coding and decoding method | |
CN105846961A (en) | DMR protocol grid code fast decoding method and decoding device | |
Qin et al. | Convolutional neural network-based polar decoding | |
CN109787718B (en) | A Simplified Decoding Method for Efficient LDPC Codes for Quantum Key Distribution Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180302 |