CN104765403A - Chaos optimizing search based photovoltaic array maximum power point tracing method - Google Patents

Chaos optimizing search based photovoltaic array maximum power point tracing method Download PDF

Info

Publication number
CN104765403A
CN104765403A CN201510090350.6A CN201510090350A CN104765403A CN 104765403 A CN104765403 A CN 104765403A CN 201510090350 A CN201510090350 A CN 201510090350A CN 104765403 A CN104765403 A CN 104765403A
Authority
CN
China
Prior art keywords
value
maximum power
voltage
photovoltaic array
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510090350.6A
Other languages
Chinese (zh)
Other versions
CN104765403B (en
Inventor
王立华
魏学业
覃庆努
王桂海
郭华
丁政开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201510090350.6A priority Critical patent/CN104765403B/en
Publication of CN104765403A publication Critical patent/CN104765403A/en
Application granted granted Critical
Publication of CN104765403B publication Critical patent/CN104765403B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于混沌优化搜索的光伏阵列最大功率点跟踪方法,通过实时采样光伏阵列输出的直流电压Vpv和电流Ipv,计算出光伏阵列的输出功率 ,并和MPPT控制器预存的当前最大功率值进行比较, 若>,则把的值赋给,Vpv的值赋给MPPT控制器的输出电压,反之,则把的值舍弃,的值保持不变。然后,MPPT控制器输出的电压与光伏阵列输出的电压Vpv加到加法器上,产生的误差电压经过比例积分环节加到比较器的同相端与加到比较器反相端的锯齿波电压进行比较,来改变DC/DC变换器中开关管栅极驱动信号的占空比,从而调节控制DC/DC变换电路的参数,实现最大功率跟踪控制,跟踪速度快、控制精度高。

The invention discloses a method for tracking the maximum power point of a photovoltaic array based on chaotic optimization search, and calculates the output power of the photovoltaic array by sampling the DC voltage Vpv and current Ipv output by the photovoltaic array in real time , and the current maximum power value stored in the MPPT controller For comparison, if > , then put The value assigned to , the value of Vpv is assigned to the output voltage of the MPPT controller , otherwise, put value discarded, and value remains unchanged. Then, the output voltage of the MPPT controller The voltage Vpv output by the photovoltaic array is added to the adder, and the generated error voltage is added to the non-inverting terminal of the comparator through a proportional integral link and compared with the sawtooth wave voltage added to the inverting terminal of the comparator to change the voltage in the DC/DC converter. The duty cycle of the gate drive signal of the switching tube is used to adjust and control the parameters of the DC/DC conversion circuit to achieve maximum power tracking control with fast tracking speed and high control precision.

Description

基于混沌优化搜索的光伏阵列最大功率点跟踪方法Photovoltaic Array Maximum Power Point Tracking Method Based on Chaotic Optimal Search

本发明是申请号2014101365845,申请日2014年04月08日,发明名称“一种基于混沌优化搜索的光伏阵列最大功率点跟踪方法”的分案申请。 The present invention is a divisional application with application number 2014101365845, application date April 8, 2014, and title of the invention "a method for tracking the maximum power point of a photovoltaic array based on chaotic optimization search".

技术领域 technical field

本发明涉及一种光伏发电系统,具体地说,涉及一种基于混沌优化搜索的光伏阵列最大功率点跟踪方法,利用MPPT方法提高光伏发电过程中光伏电池阵列的效率,使太阳能以最大效率转化为电能输出,属于光伏发电技术领域。 The invention relates to a photovoltaic power generation system, in particular to a method for tracking the maximum power point of a photovoltaic array based on chaotic optimization search, using the MPPT method to improve the efficiency of the photovoltaic cell array in the process of photovoltaic power generation, so that the solar energy can be converted into Electric energy output belongs to the technical field of photovoltaic power generation.

背景技术 Background technique

光伏发电系统工作时,在一定的温度和日照强度下,光伏电池阵列具有唯一的最大功率点,但是由于光伏电池阵列的输出特性受负载状态、日照强度、环境温度等因素的影响,光伏电池阵列的输出电压和电流都会随之产生很大的变化,从而使输出功率不稳定,若不能实时跟踪其变化,则会降低光伏系统的输出效率。另外,由于光伏电池阵列的输出特性具有复杂的非线性特性,很难准确确定其数学模型,无法用解析法求取最大功率。为了使光伏阵列的输出功率最大,就必须利用相应的控制方法实时跟踪、控制光伏电池阵列的最大功率点,最大限度地利用太阳能,这种保证光伏阵列持续输出最大功率的调节过程称为最大功率点跟踪(MPPT)。 When the photovoltaic power generation system is working, under a certain temperature and sunlight intensity, the photovoltaic cell array has a unique maximum power point, but because the output characteristics of the photovoltaic cell The output voltage and current of the photovoltaic system will change greatly accordingly, which will make the output power unstable. If the change cannot be tracked in real time, the output efficiency of the photovoltaic system will be reduced. In addition, due to the complex nonlinear characteristics of the output characteristics of the photovoltaic cell array, it is difficult to accurately determine its mathematical model, and it is impossible to obtain the maximum power by analytical method. In order to maximize the output power of the photovoltaic array, it is necessary to use the corresponding control method to track and control the maximum power point of the photovoltaic cell array in real time to maximize the use of solar energy. This adjustment process to ensure the continuous output of the maximum power of the photovoltaic array is called maximum power. Point Tracking (MPPT).

目前,常见的最大功率点跟踪控制方法有恒定电压控制法、扰动观察法、增量导纳法和单一混沌搜索等,但不同的方法在实际使用中都存在不同的优缺点。恒定电压法是一种简单的最大功率点跟踪方法,其优点是控制简单、易实现,但是这种跟踪方法在温度变化时,其跟踪效率不高,有较为严重的功率损失。扰动观察法和增量导纳法都会在最大功率点附近震荡运行,导致部分功率损失。单一混沌搜索的方法虽然可以准确的跟踪全局最大值,但是若在全局最大值附近有密集地存在许多局部最大值的情况时, 虽然混沌运动存在遍历性, 但要跳出局部最大值往往需要很长时间,并且由于混沌运动具有的随机性使得有可能在接近全局最大值时, 却跳得很远, 从而造成优化搜索时间的浪费。 At present, the common maximum power point tracking control methods include constant voltage control method, disturbance and observation method, incremental admittance method and single chaos search, etc., but different methods have different advantages and disadvantages in actual use. The constant voltage method is a simple maximum power point tracking method. Its advantages are simple control and easy implementation. However, when the temperature changes, the tracking efficiency of this tracking method is not high, and there is a serious power loss. Both the perturbation and observation method and the incremental admittance method will oscillate near the maximum power point, resulting in partial power loss. Although a single chaotic search method can accurately track the global maximum, if there are many local maxima densely around the global maximum, although the chaotic motion has ergodicity, it often takes a long time to jump out of the local maximum. time, and due to the randomness of chaotic motion, it is possible to jump far when approaching the global maximum value, resulting in a waste of optimization search time.

发明内容 Contents of the invention

本发明要解决的问题是针对以上不足,提供一种基于混沌优化搜索的光伏阵列最大功率点跟踪方法,该方法采用二次载波混沌优化搜索算法在搜索到具有一定保证的当前最优解以后, 缩小优化变量的搜索空间,使得算法能够更快、更精确地收敛到全局最优解,因此搜索效率有较大提高。 The problem to be solved in the present invention is to provide a method for tracking the maximum power point of photovoltaic arrays based on chaotic optimization search for the above deficiencies. Narrowing the search space of optimization variables enables the algorithm to converge to the global optimal solution faster and more accurately, so the search efficiency is greatly improved.

本发明解决以上技术问题所采用的技术方案是:基于混沌优化搜索的光伏阵列最大功率点跟踪方法,其特征在于:所述跟踪方法包括以下步骤: The technical solution adopted by the present invention to solve the above technical problems is: a method for tracking the maximum power point of a photovoltaic array based on chaotic optimization search, characterized in that: the tracking method includes the following steps:

步骤1),根据系统的需求,对系统参数进行初始化:混沌变量                                                的初值为0.126;电压搜索的上下边界值c,d的初始值为c=0,d=90;二次载波的幂α取0.6,β取3;当前最大功率 =0; 常数r =2.1;主循环次数=0; Step 1), according to the requirements of the system, initialize the system parameters: chaotic variables The initial value of the initial value of 0.126; the initial value of the upper and lower boundary values c and d of the voltage search are c=0, d=90; the power of the secondary carrier α is 0.6, and β is 3; the current maximum power =0; Constant r =2.1; Number of main loops =0;

步骤2),令一次载波迭代次数k初值为0,循环次数i=0,然后进入步骤3); Step 2), let the initial value of the carrier iteration number k be 0, the number of cycles i=0, and then enter step 3);

步骤3),将混沌变量的初值代入进行迭代运算,并将上式得到的代入,得到mppt控制器输出电压,令,然后进入步骤4); Step 3), the initial value of the chaotic variable substitute Carry out iterative operation, and get the above formula substitute , to get the mppt controller output voltage ,make , then go to step 4);

步骤4),计算光伏阵列输出瞬时功率,然后进入步骤5); Step 4), calculate the instantaneous output power of the photovoltaic array , then go to step 5);

步骤5),判断光伏阵列输出瞬时功率是否大于MPPT控制器预存的当前最大功率值,如果是,则进入步骤7);如果否,则进入步骤6); Step 5), judge the instantaneous output power of the photovoltaic array Is it greater than the current maximum power value stored in the MPPT controller , if yes, go to step 7); if no, go to step 6);

步骤6),执行i=i+1,然后进入步骤8); Step 6), execute i=i+1, and then go to step 8);

步骤7),将光伏阵列输出瞬时功率的值赋给MPPT控制器预存的当前最大功率值,将瞬时电压的值赋MPPT控制器的输出电压,然后进入步骤8); Step 7), the photovoltaic array output instantaneous power The value of is assigned to the current maximum power value stored in the MPPT controller , the instantaneous voltage The value assigned to the output voltage of the MPPT controller , and then go to step 8);

步骤8),判断循环次数i是否大于10或者一次载波的混沌变量迭代次数k是否大于100,若是进入步骤9),如果否,进入步骤3); Step 8), judging whether the number of cycles i is greater than 10 or whether the number of iterations k of the chaotic variable of a carrier is greater than 100, if so, enter step 9), if not, enter step 3);

步骤9),令二次载波的混沌变量迭代次数初值为0,循环次数i=0,然后进入步骤10); Step 9), let the number of iterations of the chaotic variable of the secondary carrier The initial value is 0, the number of cycles i=0, and then enter step 10);

步骤10),将混沌变量的初值代入进行迭代运算,并将上式得到的代入 Step 10), the initial value of the chaotic variable substitute Carry out iterative operation, and get the above formula substitute

,然后进入步骤11); make , and then go to step 11);

步骤11),计算,然后进入步骤12); Step 11), calculate , and then go to step 12);

步骤12),判断是否大于,如果是,即实时功率大于当前预设的最大功率,则进入步骤14);如果否,则进入步骤13); Step 12), judge Is it greater than , if yes, that is, the real-time power is greater than the current preset maximum power, then go to step 14); if no, go to step 13);

步骤13),执行i=i+1,然后进入步骤15); Step 13), execute i=i+1, and then go to step 15);

步骤14),将实时功率的值赋MPPT控制器的输出电压,将电压的值赋MPPT控制器的输出电压,然后进入步骤15); Step 14), set the real-time power The value assigned to the output voltage of the MPPT controller , the voltage The value assigned to the output voltage of the MPPT controller , and then go to step 15);

步骤15),判断二次载波循环次数i是否大于10或者二次载波的混沌变量迭代次数k是否大于100,若是进入步骤16),如果否,进入步骤10); Step 15), judging whether the secondary carrier cycle number i is greater than 10 or whether the chaotic variable iteration number k of the secondary carrier is greater than 100, if it enters step 16), if not, enters step 10);

步骤16),执行 Step 16), execute

,即调整 c,d 的值来实现重新构造优化变量取值区间,然后主循环次数,然后进入步骤17); , , that is, adjust the values of c and d to realize the reconstruction of the optimized variable value range, and then the number of main loops , and then go to step 17);

步骤17),判断主循环次数是否大于3,如果是,则进入步骤18);如果否,则进入步骤2); Step 17), determine the number of main loops Whether it is greater than 3, if yes, go to step 18); if not, go to step 2);

步骤18),输出最大功率值和mppt控制器的最优输出电压,然后进入步骤19); Step 18), output the maximum power value and the optimum output voltage of the mppt controller , and then go to step 19);

步骤19),搜索结束。 Step 19), the search ends.

本发明采用以上技术方案,与现有技术相比,具有以下优点: The present invention adopts the above technical scheme, and compared with the prior art, has the following advantages:

(1)采用一次载波和二次载波相结合进行迭代搜索,较传统混沌搜索法更能提高跟踪速度;(2)由于采用了二次载波法进行搜索进一步精确跟踪控制,提高了控制精度,也解决了部分阴影的光伏系统最大功率点跟踪易落入局部最大值的问题;(3)本发明能够满足光伏发电系统最大功率跟踪控制的需要,能更有效的提高系统的跟踪效率。 (1) Using the combination of the primary carrier and the secondary carrier for iterative search can improve the tracking speed more than the traditional chaotic search method; (2) Due to the use of the secondary carrier method for search and further precise tracking control, the control accuracy is improved and the control accuracy is also improved. It solves the problem that the maximum power point tracking of the partially shaded photovoltaic system tends to fall into a local maximum; (3) the present invention can meet the needs of the maximum power tracking control of the photovoltaic power generation system, and can more effectively improve the tracking efficiency of the system.

下面结合附图和实施例对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

附图说明 Description of drawings

图1为本发明实施例中控制系统的结构图; Fig. 1 is the structural diagram of control system in the embodiment of the present invention;

   图2为本发明实施例中跟踪方法的流程图; Fig. 2 is the flow chart of tracking method in the embodiment of the present invention;

   图中, In the figure,

1-PV Array是光伏阵列,2-MPPT控制器,3-加法器,4-比例积分电路,5-比较器,6-DC/DC变换器输出电容,7-续流二极管,8-开关管,9-电感,10-滤波电容。 1-PV Array is a photovoltaic array, 2-MPPT controller, 3-adder, 4-proportional integral circuit, 5-comparator, 6-DC/DC converter output capacitor, 7-freewheeling diode, 8-switch tube , 9-inductance, 10-filter capacitor.

具体实施方式 Detailed ways

实施例,如图1所示,一种基于混沌优化搜索的光伏阵列最大功率点跟踪方法,Vpv为光伏阵列的实时输出电压,Ipv为光伏阵列的实时输出电流,为光伏阵列瞬时输出功率,为MPPT控制器预存的光伏阵列当前最大功率值,为与相对应的MPPT控制器的最优输出电压,[c,d]为mppt过程中第i次迭代的光伏阵列的输出电压取值区间,c为下边界,d为上边界。是主循环的循环次数。为一次载波的混沌变量,为一次载波迭代过程中的光伏阵列瞬时输出电压, Embodiment, as shown in Figure 1, a kind of photovoltaic array maximum power point tracking method based on chaotic optimization search, Vpv is the real-time output voltage of photovoltaic array, Ipv is the real-time output current of photovoltaic array, is the instantaneous output power of the photovoltaic array, The current maximum power value of the PV array pre-stored for the MPPT controller, for with Corresponding to the optimal output voltage of the MPPT controller, [c, d] is the output voltage range of the photovoltaic array in the i-th iteration in the mppt process, c is the lower boundary, and d is the upper boundary. is the loop count of the main loop. is the chaotic variable of a carrier wave, is the instantaneous output voltage of the photovoltaic array during one carrier iteration,

MPPT控制器2通过实时采样光伏阵列1输出的直流电压Vpv和电流Ipv,计算出光伏阵列的输出功率,并和MPPT控制器预存的当前最大功率值进行比较, 若>,则把的值赋给,Vpv的值赋给MPPT控制器的输出电压,反之,则把的值舍弃,的值保持不变。然后,MPPT控制器2输出的电压与光伏阵列输出的电压Vpv加到加法器上,产生的误差电压经过比例积分环节4加到比较器5的同相端与加到比较器5反相端的锯齿波电压进行比较,来改变DC/DC变换器中开关管8的栅极驱动信号占空比,从而调节控制DC/DC变换电路的参数,实现最大功率跟踪控制。 MPPT controller 2 calculates the output power of the photovoltaic array by sampling the DC voltage Vpv and current Ipv output by the photovoltaic array 1 in real time , and the current maximum power value stored in the MPPT controller For comparison, if > , then put The value assigned to , the value of Vpv is assigned to the output voltage of the MPPT controller , otherwise, put value discarded, and value remains unchanged. Then, the output voltage of MPPT controller 2 The voltage Vpv output by the photovoltaic array is added to the adder, and the generated error voltage is added to the non-inverting terminal of the comparator 5 through the proportional integral link 4 and compared with the sawtooth wave voltage applied to the inverting terminal of the comparator 5 to change the DC/DC The duty cycle of the gate drive signal of the switching tube 8 in the converter is used to adjust and control the parameters of the DC/DC conversion circuit to achieve maximum power tracking control.

混沌优化搜索的一次载波选择Logistic映射 Primary Carrier Selection Logistic Mapping for Chaotic Optimal Search

(1) (1)

其中k是混沌变量的迭代次数,μ是一个控制参数,当μ= 4时,则所述Logistic映射产生的混沌变量处于完全混沌状态,且在(0,1)范围内是遍历的。 Where k is the number of iterations of the chaotic variable, μ is a control parameter, when μ = 4, the chaotic variable generated by the Logistic mapping is in a complete chaotic state, and it is ergodic in the range of (0, 1).

混沌优化搜索的二次载波方式如(3)式所示,其能够产生在某一指定点附近轨道概率密度较大的混沌变量。 The secondary carrier method of chaos optimization search is shown in formula (3), which can generate a chaotic variable with a large orbital probability density near a specified point.

       (3)。 (3).

式中为所述一次载波搜索过程中的最大功率点所对应的mppt控制器输出电压,为(1)式产生的混沌变量,为(1)式产生的另一混沌变量, 0<α<1,β>1。当取α为较小的值,β取较大的值时,可以得到以为中心的二次载波混沌序列,可以使混沌搜索在最大功率点附近有较好的遍历性。为二次载波迭代次数。 In the formula is the maximum power point in the primary carrier search process The corresponding mppt controller output voltage, is the chaotic variable generated by formula (1), is another chaotic variable generated by formula (1), 0<α<1, β>1. When α is taken as a smaller value and β is taken as a larger value, the following can be obtained centered secondary carrier chaotic sequence , which can make the chaotic search have better ergodicity near the maximum power point. is the number of iterations of the secondary carrier.

如图2所示,为跟踪最大功率点的基本控制流程,该流程开始于步骤S101。然后,在步骤S102,根据系统的需求,对系统参数进行初始化:混沌变量的初值为0.126;电压搜索的上下边界值c,d的初始值为c=0,d=90; 二次载波的幂α取0.6,β取3;当前最大功率 =0; 常数r =2.1;主循环次数=0。 As shown in FIG. 2 , for the basic control process of tracking the maximum power point, the process starts at step S101 . Then, in step S102, according to the requirements of the system, the system parameters are initialized: chaotic variables The initial value of 0.126; the initial value of the upper and lower boundary values c and d of the voltage search are c=0, d=90; the power of the secondary carrier α is 0.6, and β is 3; the current maximum power =0; Constant r =2.1; Number of main loops =0.

在步骤S103,令一次载波迭代次数k初值为0,循环次数i=0,然后进入步骤S104; In step S103, the initial value of the number of carrier iterations k is 0, the number of cycles i=0, and then enter step S104;

在步骤S104,将混沌变量的初值代入进行迭代运算,并将上式得到的代入,得到mppt控制器输出电压,令,然后进入步骤S105; In step S104, the initial value of the chaotic variable substitute Carry out iterative operation, and get the above formula substitute , to get the mppt controller output voltage ,make , and then enter step S105;

在步骤S105,计算光伏阵列输出瞬时功率,然后进入步骤S106; In step S105, calculate the instantaneous output power of the photovoltaic array , and then enter step S106;

在步骤S106,判断光伏阵列输出瞬时功率是否大于MPPT控制器预存的当前最大功率值,如果是,即实时功率大于当前预设的最大功率,则进入步骤S108;如果否,则进入步骤S107; In step S106, judge the output instantaneous power of photovoltaic array Is it greater than the current maximum power value stored in the MPPT controller , if yes, that is, the real-time power is greater than the current preset maximum power, then enter step S108; if no, then enter step S107;

在步骤S107,执行i=i+1,然后进入步骤S109; In step S107, execute i=i+1, and then enter step S109;

在步骤S108,将光伏阵列输出瞬时功率的值赋给MPPT控制器预存的当前最大功率值,将瞬时电压的值赋MPPT控制器的输出电压,然后进入步骤S109; In step S108, the photovoltaic array output instantaneous power The value of is assigned to the current maximum power value stored in the MPPT controller , the instantaneous voltage The value assigned to the output voltage of the MPPT controller , and then enter step S109;

在步骤S109,判断循环次数i是否大于10或者一次载波的混沌变量迭代次数k是否大于100,若是进入步骤S110,如果否,进入步骤S104; In step S109, it is judged whether the number of cycles i is greater than 10 or whether the number of iterations k of the chaotic variable of a carrier is greater than 100, if it enters step S110, if not, enters step S104;

在步骤S110,令二次载波的混沌变量迭代次数初值为0,循环次数i=0,然后进入步骤S111; In step S110, the number of iterations of the chaotic variable of the secondary carrier The initial value is 0, the number of cycles i=0, and then enter step S111;

在步骤S111,将混沌变量的初值代入进行迭代运算,并将上式得到的代入 In step S111, the initial value of the chaotic variable substitute Carry out iterative operation, and get the above formula substitute

为奇数时 when when odd

,然后进入步骤S112; make , and then enter step S112;

在步骤S112,计算,然后进入步骤S113; In step S112, calculate , and then enter step S113;

在步骤S113,判断是否大于,如果是,即实时功率大于当前预设的最大功率,则进入步骤S115;如果否,则进入步骤S114; In step S113, it is judged that Is it greater than , if yes, that is, the real-time power is greater than the current preset maximum power, then enter step S115; if no, then enter step S114;

在步骤S114,执行i=i+1,然后进入步骤S116; In step S114, execute i=i+1, and then enter step S116;

在步骤S115,将实时功率的值赋MPPT控制器的输出电压,将电压的值赋MPPT控制器的输出电压,然后进入步骤S116; In step S115, the real-time power The value assigned to the output voltage of the MPPT controller , the voltage The value assigned to the output voltage of the MPPT controller , and then enter step S116;

在步骤S116,判断二次载波循环次数i是否大于10或者二次载波的混沌变量迭代次数k是否大于100,若是进入步骤S117,如果否,进入步骤S111; In step S116, it is judged whether the number of cycles i of the secondary carrier is greater than 10 or whether the number of iterations k of the chaotic variable of the secondary carrier is greater than 100, if it is entered into step S117, if not, it is entered into step S111;

在步骤S117,执行In step S117, execute ,

 ,即调整 c , d 的值来实现重新构造优化变量取值区间,然后主循环次数,然后进入步骤S118; , that is, adjust the values of c and d to realize the reconstruction of the optimized variable value range, and then the number of main loops , and then enter step S118;

在步骤S118,判断主循环次数是否大于3,如果是,则进入步骤S119;如果否,则进入步骤S103; In step S118, determine the number of main loops Whether it is greater than 3, if yes, then enter step S119; if no, then enter step S103;

在步骤S119,输出最大功率值和mppt控制器的最优输出电压,然后进入步骤S120; In step S119, output the maximum power value and the optimum output voltage of the mppt controller , and then enter step S120;

在步骤S120,搜索结束。 In step S120, the search ends.

经试验,跟踪速度和控制精度高。 After testing, the tracking speed and control precision are high.

本领域技术人员应该认识到,上述的具体实施方式只是示例性的,是为了使本领域技术人员能够更好的理解本发明内容,不应理解为是对本发明保护范围的限制,只要是根据本发明技术方案所作的改进,均落入本发明的保护范围。 Those skilled in the art should realize that the above-mentioned specific embodiments are only exemplary, and are intended to enable those skilled in the art to better understand the content of the present invention, and should not be construed as limiting the protection scope of the present invention. The improvements made in the technical solution of the invention all fall into the protection scope of the present invention.

Claims (1)

1.基于混沌优化搜索的光伏阵列最大功率点跟踪方法,其特征在于:所述跟踪方法包括以下步骤: 1. The photovoltaic array maximum power point tracking method based on chaos optimization search, is characterized in that: described tracking method comprises the following steps: 步骤1),根据系统的需求,对系统参数进行初始化:混沌变量                                                的初值为0.126;电压搜索的上下边界值c,d的初始值为c=0,d=90;二次载波的幂α取0.6,β取3;当前最大功率 =0; 常数r =2.1;主循环次数=0; Step 1), according to the requirements of the system, initialize the system parameters: chaotic variables The initial value of the initial value of 0.126; the initial value of the upper and lower boundary values c and d of the voltage search are c=0, d=90; the power of the secondary carrier α is 0.6, and β is 3; the current maximum power =0; Constant r =2.1; Number of main loops =0; 步骤2),令一次载波迭代次数k初值为0,循环次数i=0,然后进入步骤3); Step 2), let the initial value of the carrier iteration number k be 0, the number of cycles i=0, and then enter step 3); 步骤3),将混沌变量的初值代入进行迭代运算,并将上式得到的代入,得到mppt控制器输出电压,令,然后进入步骤4); Step 3), the initial value of the chaotic variable substitute Carry out iterative operation, and get the above formula substitute , to get the mppt controller output voltage ,make , then go to step 4); 步骤4),计算光伏阵列输出瞬时功率,然后进入步骤5); Step 4), calculate the instantaneous output power of the photovoltaic array , then go to step 5); 步骤5),判断光伏阵列输出瞬时功率是否大于MPPT控制器预存的当前最大功率值,如果是,则进入步骤7);如果否,则进入步骤6); Step 5), judge the instantaneous output power of the photovoltaic array Is it greater than the current maximum power value stored in the MPPT controller , if yes, go to step 7); if no, go to step 6); 步骤6),执行i=i+1,然后进入步骤8); Step 6), execute i=i+1, and then go to step 8); 步骤7),将光伏阵列输出瞬时功率的值赋给MPPT控制器预存的当前最大功率值,将瞬时电压的值赋MPPT控制器的输出电压,然后进入步骤8); Step 7), the photovoltaic array output instantaneous power The value of is assigned to the current maximum power value stored in the MPPT controller , the instantaneous voltage The value assigned to the output voltage of the MPPT controller , and then go to step 8); 步骤8),判断循环次数i是否大于10或者一次载波的混沌变量迭代次数k是否大于100,若是进入步骤9),如果否,进入步骤3); Step 8), judging whether the number of cycles i is greater than 10 or whether the number of iterations k of the chaotic variable of a carrier is greater than 100, if so, enter step 9), if not, enter step 3); 步骤9),令二次载波的混沌变量迭代次数初值为0,循环次数i=0,然后进入步骤10); Step 9), let the number of iterations of the chaotic variable of the secondary carrier The initial value is 0, the number of cycles i=0, and then enter step 10); 步骤10),将混沌变量的初值代入进行迭代运算,并将上式得到的代入 Step 10), the initial value of the chaotic variable substitute Carry out iterative operation, and get the above formula substitute ,然后进入步骤11); make , and then go to step 11); 步骤11),计算,然后进入步骤12); Step 11), calculate , and then go to step 12); 步骤12),判断是否大于,如果是,即实时功率大于当前预设的最大功率,则进入步骤14);如果否,则进入步骤13); Step 12), judge Is it greater than , if yes, that is, the real-time power is greater than the current preset maximum power, then go to step 14); if no, go to step 13); 步骤13),执行i=i+1,然后进入步骤15); Step 13), execute i=i+1, and then go to step 15); 步骤14),将实时功率的值赋MPPT控制器的输出电压,将电压的值赋MPPT控制器的输出电压,然后进入步骤15); Step 14), set the real-time power The value assigned to the output voltage of the MPPT controller , the voltage The value assigned to the output voltage of the MPPT controller , and then go to step 15); 步骤15),判断二次载波循环次数i是否大于10或者二次载波的混沌变量迭代次数k是否大于100,若是进入步骤16),如果否,进入步骤10); Step 15), judging whether the secondary carrier cycle number i is greater than 10 or whether the chaotic variable iteration number k of the secondary carrier is greater than 100, if it enters step 16), if not, enters step 10); 步骤16),执行 Step 16), execute ,即调整 c,d 的值来实现重新构造优化变量取值区间,然后主循环次数,然后进入步骤17); , , that is, adjust the values of c and d to realize the reconstruction of the optimized variable value range, and then the number of main loops , and then go to step 17); 步骤17),判断主循环次数是否大于3,如果是,则进入步骤18);如果否,则进入步骤2); Step 17), determine the number of main loops Whether it is greater than 3, if yes, go to step 18); if not, go to step 2); 步骤18),输出最大功率值和mppt控制器的最优输出电压,然后进入步骤19); Step 18), output the maximum power value and the optimum output voltage of the mppt controller , and then go to step 19); 步骤19),搜索结束。 Step 19), the search ends.
CN201510090350.6A 2014-04-08 2014-04-08 Maximum power point of photovoltaic array tracking based on chaos optimization search Expired - Fee Related CN104765403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510090350.6A CN104765403B (en) 2014-04-08 2014-04-08 Maximum power point of photovoltaic array tracking based on chaos optimization search

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510090350.6A CN104765403B (en) 2014-04-08 2014-04-08 Maximum power point of photovoltaic array tracking based on chaos optimization search
CN201410136584.5A CN103995558B (en) 2014-04-08 2014-04-08 A kind of maximum power point of photovoltaic array tracking based on chaos optimization search

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410136584.5A Division CN103995558B (en) 2014-04-08 2014-04-08 A kind of maximum power point of photovoltaic array tracking based on chaos optimization search

Publications (2)

Publication Number Publication Date
CN104765403A true CN104765403A (en) 2015-07-08
CN104765403B CN104765403B (en) 2016-06-29

Family

ID=51309748

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410136584.5A Expired - Fee Related CN103995558B (en) 2014-04-08 2014-04-08 A kind of maximum power point of photovoltaic array tracking based on chaos optimization search
CN201510090350.6A Expired - Fee Related CN104765403B (en) 2014-04-08 2014-04-08 Maximum power point of photovoltaic array tracking based on chaos optimization search

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410136584.5A Expired - Fee Related CN103995558B (en) 2014-04-08 2014-04-08 A kind of maximum power point of photovoltaic array tracking based on chaos optimization search

Country Status (1)

Country Link
CN (2) CN103995558B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306398B6 (en) * 2015-09-13 2017-01-04 BEL s.r.o. The method of determining the maximum output that can be taken from a photovoltaic panel
CN112148059A (en) * 2020-10-12 2020-12-29 四川科陆新能电气有限公司 MPPT maximum power tracking method for photovoltaic power station

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676941B (en) * 2016-03-29 2017-07-28 安徽理工大学 Maximum power point tracking system and method under a kind of photovoltaic array local shades
CN105938381B (en) * 2016-06-02 2017-05-10 华中科技大学 A Method for Tracking the Maximum Power Point of Photovoltaic Cell Based on Fuzzy Probability
CN106020326B (en) * 2016-06-12 2017-06-23 安徽理工大学 A kind of quick photovoltaic module maximum power tracing system and method for tracing
CN110209232B (en) * 2019-05-14 2020-07-24 中国矿业大学 Direct-current electronic load three-closed-loop control method for limiting rail voltage
CN115951577B (en) * 2022-12-03 2025-04-15 西北工业大学 A method for optimizing parameters of power systems based on chaotic predator optimization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176474A (en) * 2007-01-17 2008-07-31 Tokyo Metropolitan Univ Solar power system
CN101795101A (en) * 2010-04-08 2010-08-04 北京交通大学 Maximum power point tracking (MPPT) control device of photovoltaic generating system
CN102566646A (en) * 2012-01-13 2012-07-11 冶金自动化研究设计院 Maximum power point tracking method under partial shade condition of photovoltaic system
CN102902298A (en) * 2012-09-11 2013-01-30 山东鲁亿通智能电气股份有限公司 Photovoltaic array maximum power point tracking (MPPT) controller based on segmented model and controlling method
US20130197834A1 (en) * 2012-01-31 2013-08-01 Abb Oy Method and arrangement in connection with photovoltaic power generator composed of series-connected photovoltaic modules
CN103257667A (en) * 2012-12-11 2013-08-21 苏州大学 Maximum power point tracking technology of photovoltaic system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176474A (en) * 2007-01-17 2008-07-31 Tokyo Metropolitan Univ Solar power system
CN101795101A (en) * 2010-04-08 2010-08-04 北京交通大学 Maximum power point tracking (MPPT) control device of photovoltaic generating system
CN102566646A (en) * 2012-01-13 2012-07-11 冶金自动化研究设计院 Maximum power point tracking method under partial shade condition of photovoltaic system
US20130197834A1 (en) * 2012-01-31 2013-08-01 Abb Oy Method and arrangement in connection with photovoltaic power generator composed of series-connected photovoltaic modules
CN102902298A (en) * 2012-09-11 2013-01-30 山东鲁亿通智能电气股份有限公司 Photovoltaic array maximum power point tracking (MPPT) controller based on segmented model and controlling method
CN103257667A (en) * 2012-12-11 2013-08-21 苏州大学 Maximum power point tracking technology of photovoltaic system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐巍: ""基于幂函数载波的混沌优化方法及其应用"", 《控制与决策》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306398B6 (en) * 2015-09-13 2017-01-04 BEL s.r.o. The method of determining the maximum output that can be taken from a photovoltaic panel
CN112148059A (en) * 2020-10-12 2020-12-29 四川科陆新能电气有限公司 MPPT maximum power tracking method for photovoltaic power station
CN112148059B (en) * 2020-10-12 2022-07-05 四川科陆新能电气有限公司 MPPT maximum power tracking method for photovoltaic power station

Also Published As

Publication number Publication date
CN104765403B (en) 2016-06-29
CN103995558A (en) 2014-08-20
CN103995558B (en) 2015-07-29

Similar Documents

Publication Publication Date Title
CN104765403B (en) Maximum power point of photovoltaic array tracking based on chaos optimization search
CN101783621B (en) Global maximum power point tracking method of photovoltaic generating system and system device
CN103019294B (en) Maximum power point tracking (MPPT) method of self-adaption disturbance frequency and step
CN105955394B (en) The photovoltaic system MPPT methods of observation algorithm are disturbed based on ant group optimization and variable step
CN102594211A (en) Optimizing method and tracking device for output power of partially shielded photovoltaic power generation system
CN104778352A (en) Seven-parameter photovoltaic cell output characteristic modeling method based on STFT (Short Time Fourier Transform) operator
CN107168447B (en) A kind of photovoltaic DC-to-AC converter multi-peak MPPT methods based on improvement conductance increment method
CN106125817B (en) A kind of photovoltaic MPPT methods based on photovoltaic cell four parameter model
CN108958350A (en) Maximum power point of photovoltaic array track algorithm based on parameter optimization
CN107479618A (en) Multi-peak MPPT algorithm based on ant group algorithm and conductance increment method
CN103995560B (en) Photovoltaic array multi-peak maximum power point tracking method
CN108107967A (en) A kind of maximum power of photovoltaic cell point tracking method
CN105259972B (en) A jumping strategy-based maximum power point tracking method for multi-peak photovoltaic arrays
CN102841628A (en) Rapid high-precision photovoltaic array maximum power point tracking control method
CN111694395B (en) Photovoltaic maximum power point tracking method based on volt-ampere characteristic equation and dichotomy method
CN110515418B (en) A method for determining the global maximum power point of a photovoltaic system and a tracking method
CN107544610A (en) A kind of photovoltaic MPPT control method based on MPP voltage regulations and gradient search
CN106681424B (en) A kind of solar energy power generating MPPT control systems and control method
CN105159388B (en) Maximum power point tracking method for photovoltaic microgrid system
CN105068591B (en) Maximum power point tracing method under a kind of photovoltaic array partial occlusion
CN105045332B (en) A MPPT control method suitable for photovoltaic cells
CN104866002B (en) A kind of mixed type maximum power point-tracing control method based on Beta parameter
Murtaza et al. Optimization of the perturb and observe maximum power point tracker for a distributed photovoltaic system
CN105242742B (en) Single-stage photovoltaic power generation system maximum power tracing method based on monkey group&#39;s algorithm
CN109725674A (en) An Optimization Algorithm for Maximum Power Tracking of Photovoltaic System Based on SA+PSO Hybrid Algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160629

Termination date: 20170408