CN104753351A - Inductive current prediction control method used in non-isolated charging Buck circuit - Google Patents

Inductive current prediction control method used in non-isolated charging Buck circuit Download PDF

Info

Publication number
CN104753351A
CN104753351A CN201510151371.4A CN201510151371A CN104753351A CN 104753351 A CN104753351 A CN 104753351A CN 201510151371 A CN201510151371 A CN 201510151371A CN 104753351 A CN104753351 A CN 104753351A
Authority
CN
China
Prior art keywords
msub
mrow
centerdot
math
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510151371.4A
Other languages
Chinese (zh)
Other versions
CN104753351B (en
Inventor
张琦
刘昭
孙向东
安少亮
任碧莹
张波
赵双双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG YUANJING ENERGY Co Ltd
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201510151371.4A priority Critical patent/CN104753351B/en
Publication of CN104753351A publication Critical patent/CN104753351A/en
Application granted granted Critical
Publication of CN104753351B publication Critical patent/CN104753351B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention discloses an inductive current prediction control method used in a non-isolated charging Buck circuit. The inductive current prediction control method includes: predicting an inductive current value of a next time moment namely nTS time moment through an inductive current value iL(n-1) of a previous time moment namely (n-1)TS time moment; according to power conservation, calculating duty ratio of a switch tube of the nTS time moment according to the predicted inductive current value of the nTS time moment; according to a steady-state expected value, converging a calculation result, directly calculating control duty ratio of corresponding switch tubes according to a prediction value and a steady-state prediction value so as to acquire final duty ratio Dx(n) of the switch tube, and generating PWM (pulse width modulation) waves with the duty ratio to be Dx(n) to control the switch tube to realize control on inductive current of the nTS time moment. The duty ratio is acquired through energy conservation and can be quickly calculated through energy conservation, a given can be quickly tracked, and the given can be quickly tracked when the given changes suddenly, so that dynamic response and control accuracy are improved remarkably.

Description

Inductive current prediction control method for non-isolated charging Buck circuit
Technical Field
The invention belongs to the technical field of power electronic systems and electric automobiles, and particularly relates to an inductive current prediction control method for a non-isolated charging Buck circuit.
Background
The DC-DC converter has the advantages of high conversion efficiency, small volume, high control precision and the like, and is widely applied to various fields. In recent years, along with the rapid development of the electric automobile industry in various countries, the research and development of peripheral products have been receiving great attention. Particularly, how to effectively charge the battery of the electric vehicle becomes a problem of popular research. Moreover, in recent years, batteries of electric automobiles are continuously updated, and the requirements of novel efficient batteries on charging devices become stricter. The Buck circuit is simple to control, occupies a small space and is widely applied to a charging circuit.
At present, a Buck circuit is controlled by control methods such as PI control, repetitive control, fuzzy control and the like. However, most of the methods adopt PI control technology, and the method has the remarkable characteristic that the method does not depend on a model of a converter, and only needs to dynamically adjust the duty ratio of a switching tube according to the error of a control variable to realize the control of output voltage and other parameters. The PI control has the advantages that the control system is simple in design process and good in applicability; the method has the defects that the design of output feedback control is based on the control of target errors instead of model control, the dynamic response characteristic is slow, the control effect is poor, the optimization control cannot be realized, and the requirements of increasingly improved dynamic response and control precision of the switching power supply cannot be met.
Disclosure of Invention
The invention aims to provide an inductive current prediction control method for a non-isolated charging Buck circuit, which solves the problems of slow dynamic response characteristic and poor control precision in the prior art.
The technical scheme adopted by the invention is that the inductive current prediction control method for the non-isolated charging Buck circuit is implemented according to the following steps:
step 1, sampling the voltage value v of a low-voltage source in a Buck circuitLVoltage value v of high voltage sourceH、(n-1)TSValue of the inductance current i at a timeL(n-1)、(n-1)TSDuty ratio D of switch tube in periodbu(n-1),
Wherein, TSOne switching period of the switching tube;
step 2, judging nTSCurrent on time of day inductor is given by iLref(n) whether the value is less than 0, if not, turning to the step 3; if less than 0, nTSDuty ratio D of switch tube in periodx(n) is 0, go to step 9;
step 3, calculating nT through a formula (1)SInstantaneous inductor current prediction value
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
l is an inductance value;
step 4, judgmentIf yes, turning to step 5; if not, nTSDuty ratio D of switch tube in periodx(n) 1, go to step 9;
step 5, mixing nTSGiven value of current i on time inductorLref(n) assigning a value to nTSAverage value of inductor current in cycleNamely:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>Lref</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
the predicted value of the inductive current obtained by the formula (1)Calculating nTSDuty ratio D of switch tube in periodbu(n):
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein D isbt=vL/vH
Step 6, calculating w (n) according to formula (5):
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
judging whether w (n) is equal to or more than 0, if not, turning to the step 7; if yes, go to step 8;
step 7, obtaining an inductive current predicted value according to the formula (1)Calculating nTSDuty ratio D of switch tube in periodbu(n):
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msqrt> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </msqrt> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Step 8, calculating the duty ratio D after median processing according to a formula (7)x(n):
D x ( n ) = 1 2 ( D bu ( n ) + D z ( n ) ) - - - ( 7 )
Wherein,is nTSDuty ratio of the switching tube in steady state in the period;
step 9, generating duty ratio DxAnd (n) controlling the switching tube by the PWM wave.
The present invention is also characterized in that,
the specific process for obtaining the formula (4) in the step 5 is as follows:
nTSincrement delta i of inductive current in switching-on process of switching tube in periodL+Comprises the following steps:
<math> <mrow> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mi>max</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein iLmax(n) is nTSThe maximum value of the inductor current during the period,
average value of current flowing in switching-on process of switch tubeComprises the following steps:
<math> <mrow> <mover> <msub> <mi>i</mi> <mi>on</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
when the switch is on under ideal conditions, vHRelease energy, energy E released by itonComprises the following steps:
<math> <mrow> <msub> <mi>E</mi> <mi>on</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>on</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
vHpart of the energy released is stored in the inductor and appears as the change of the inductor current in the period, and the part of the energy is expressed by delta ELExpressed as:
<math> <mrow> <msub> <mi>&Delta;E</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>L</mi> <mo>[</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
another part appears as v for load consumptionLEnd-charging, energy consumed by load in a single cycle EvLComprises the following steps:
<math> <mrow> <msub> <mi>E</mi> <msub> <mi>v</mi> <mi>L</mi> </msub> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
under ideal conditions, and ignoring various losses, according to the conservation of energy:
Eon=ΔEL+EvL (13)
obtaining the following components:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>v</mi> <mi>H</mi> </msub> <msub> <mi>v</mi> <mi>L</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>v</mi> <mi>H</mi> </msub> <msub> <mi>v</mi> <mi>L</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
when the switch tube is turned off, the inductor supplies power to the load through the diode due to the continuity of the inductor current, so that the current in the inductor naturally drops. The attenuation value of the inductive current in this stageL-Comprises the following steps:
<math> <mrow> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mrow> <mo>-</mo> <mi>v</mi> </mrow> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
at nTSPeriod to (n +1) TSIn the period, the inductor current is controlled by iL(n) conversion to iL(n +1), then (n +1) T is obtained by the formula (8) and the formula (15)SInstantaneous inductor current iL(n+1):
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
Due to the reverse turn-off characteristic of the diode, the inductor current cannot continuously decay to a negative value, iL(n +1) there is a discontinuity, expressed as:
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
converting equation (17) to:
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
when w (n) is more than or equal to 0, substituting the formula (16) into the formula (14) to obtain:
<math> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>T</mi> </mrow> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>L</mi> <mo>[</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
when it is satisfied with
<math> <mrow> <mn>4</mn> <mo>{</mo> <mo>[</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>v</mi> <mi>H</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>[</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>]</mo> <mo>}</mo> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Namely, it is <math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
When, equation (19) has a solution, the solution is:
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> </msqrt> <mo>.</mo> </mrow> </math>
the specific process of obtaining the formula (6) in step 7 is as follows:
when w (n) < 0, iLSubstituting (n +1) into 0 to obtain equation (14):
<math> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
when it is satisfied with
<math> <mrow> <mn>4</mn> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
Namely, it is <math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
When, equation (22) has a solution, the solution is:
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msqrt> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </msqrt> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>.</mo> </mrow> </math>
the Buck circuit in the step 1 comprises a low-voltage source vLLow voltage sourcevLRespectively connected with a high voltage source vHIs connected with the anode of the diode D, and a high-voltage source vHThe anode of the switch tube S is connected with the collector of the switch tube S, and the emitter of the switch tube S is respectively connected with the cathode of the diode D and the inductor L.
The switch tube S is a turn-off power switch device carrying an anti-parallel diode or having an anti-parallel diode characteristic.
The invention has the beneficial effects that:
the method includes the steps of summarizing specific states of the DCM, the CCM, the steady state, the dynamic state and the like, integrally classifying the specific states, obtaining the duty ratio according to energy conservation, converging a calculation result according to a steady expected value, and directly calculating the control duty ratio of a corresponding switching tube according to a predicted value and a steady predicted value so as to obtain the final duty ratio of the switching tube and realize the control of the inductive current.
Secondly, the duty ratio of the switching tube can be rapidly calculated according to the law of energy conservation. When convergence is not added, 1 switching period can track the given value; when convergence is applied, 2 switching cycles can track a given. When the sudden change is given, the given can be quickly tracked, and the dynamic response and the control precision are obviously improved.
Drawings
FIG. 1 is a schematic diagram of a Buck circuit in the present invention;
FIG. 2 is a dynamic waveform diagram of the inductor current of the Buck circuit of the present invention;
FIG. 3 is a diagram of seven operation modes of the Buck circuit inductive current in a single cycle in the invention;
FIG. 4 is a schematic diagram of the switching tube current waveform during a single switching cycle in accordance with the present invention;
FIG. 5 is a flow chart of a method of predictive control of inductor current in accordance with the present invention;
FIG. 6 is a graph of inductor current waveforms at different sample values according to the present invention;
fig. 7 is a waveform diagram of an inductor current in a steady state in the present invention.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
FIG. 1 shows a Buck circuit of the present invention, which includes a low voltage source vL(the low-voltage source is generally a battery or a super capacitor), and the low-voltage source vLRespectively connected with a high voltage source vH(generally, the voltage of a support capacitor connected in parallel with a direct current bus can be regarded as a voltage source in a short time because the voltage of the capacitor cannot be suddenly changed), and the cathode of a diode D are connected, and a high-voltage source v is connectedHThe anode of the switch tube S is connected with the collector of the switch tube S, and the emitter of the switch tube S is respectively connected with the cathode of the diode D and the inductor L.
The switching tube S is a turn-off power switch device carrying an anti-parallel diode or having an anti-parallel diode characteristic.
FIG. 2 shows the dynamic waveform of the inductor current in the Buck circuit, where iL(n) is the moment nT of the switch tube opening action of the inductorS(TSOne switching cycle of the switching tube), TsFor one switching cycle of the switching tube, DbuIs the duty cycle of the switch.
Buck generally describes the steady-state operation mode of a switching circuit in CCM and DCM, and dynamic operation processes of the circuit are omitted in the division, and as shown in FIG. 3, seven operation mode graphs of inductive current in a single period are shown, and the seven operation modes represent the operation modes of the Buck circuit.
During the switching-on process of the switch tube, the current flows through the switch tubeThe current for the shut-off is shown in fig. 4. Wherein Δ iL+Is nTSThe increment of the inductive current in the switching-on process of the switching tube in the period is expressed by a formula (8):
<math> <mrow> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mi>max</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein iLmax(n) is nTSThe maximum value of the inductor current during the period,
average value of current flowing in switching-on process of switch tubeComprises the following steps:
<math> <mrow> <mover> <msub> <mi>i</mi> <mi>on</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
when the switch is on under ideal conditions, vHRelease energy, energy E released by itonComprises the following steps:
<math> <mrow> <msub> <mi>E</mi> <mi>on</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>on</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
vHpart of the energy released is stored in the inductor and appears as the change of the inductor current in the period, and the part of the energy is expressed by delta ELExpressed as:
<math> <mrow> <msub> <mi>&Delta;E</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>L</mi> <mo>[</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
another part appears as v for load consumptionLEnd-charging, energy consumed by load in a single cycle EvLComprises the following steps:
<math> <mrow> <msub> <mi>E</mi> <msub> <mi>v</mi> <mi>L</mi> </msub> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
under ideal conditions, and ignoring various losses, according to the conservation of energy:
Eon=ΔEL+EvL (13)
obtaining the following components:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>v</mi> <mi>H</mi> </msub> <msub> <mi>v</mi> <mi>L</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>v</mi> <mi>H</mi> </msub> <msub> <mi>v</mi> <mi>L</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
when the switch tube is turned off, the inductor supplies power to the load through the diode due to the continuity of the inductor current, so that the current in the inductor naturally drops, and the attenuation value delta i of the inductor current at the stageL-Comprises the following steps:
<math> <mrow> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mrow> <mo>-</mo> <mi>v</mi> </mrow> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
at nTSPeriod to (n +1) TSIn the period, the inductor current is controlled by iL(n) conversion to iL(n +1), then (n +1) T is obtained by the formula (8) and the formula (15)SInstantaneous inductor current iL(n+1):
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
Due to the reverse turn-off characteristic of the diode, the inductor current cannot continuously decay to a negative value, iL(n +1) there is a discontinuity, expressed as:
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
converting equation (17) to:
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
when w (n) is more than or equal to 0, substituting the formula (16) into the formula (14) to obtain:
<math> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>T</mi> </mrow> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>L</mi> <mo>[</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
when it is satisfied with
<math> <mrow> <mn>4</mn> <mo>{</mo> <mo>[</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>v</mi> <mi>H</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>[</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>]</mo> <mo>}</mo> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Namely, it is <math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
When, equation (19) has a solution, the solution is:
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> </msqrt> <mo>.</mo> </mrow> </math>
from equation (21), the equal sign in equation (21) holds when the duty ratio is 1, so equation (19) must have a solution under the condition that the limited duty ratio is less than 1; when the formula (21) is not satisfiedThe given current value can not be realized in a single period, multiple periods are needed to be completed, and the given duty ratio is directly set as an upper limit value.
When w (n) < 0, iLSubstituting (n +1) into 0 to obtain equation (14):
<math> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
when it is satisfied with
<math> <mrow> <mn>4</mn> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
Namely, it is <math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
When, equation (22) has a solution, the solution is:
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msqrt> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </msqrt> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>.</mo> </mrow> </math>
since the average inductance current is constantIf the duty ratio is greater than or equal to 0, the formula (24) shows that the equation (22) has a certain solution, and the duty ratio can be calculated by the formula only if w (n) is less than 0.
Due to the existing digital signalProcessing (DSP) unit delays cannot be avoided, so the duty cycle must be calculated before the start of the cycle, and therefore it is necessary to predict nTSInstantaneous inductor current
The invention relates to an inductive current prediction control method for a non-isolated charging Buck circuit, which is implemented according to the following steps, as shown in FIG. 5:
step 1, sampling the voltage value v of a low-voltage source in a Buck circuitLVoltage value v of high voltage sourceH、(n-1)TSValue of the inductance current i at a timeL(n-1)、(n-1)TSDuty ratio D of switch tube in periodbu(n-1);
Step 2, judging nTSCurrent on time of day inductor is given by iLref(n) whether the value is less than 0, if not, turning to the step 3; if less than 0, nTSDuty ratio D of switch tube in periodx(n) 1, go to step 9;
step 3, calculating nT through a formula (1)SInstantaneous inductor current prediction value
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
l is an inductance value, TSOne switching period of the switching tube;
step 4, judgmentIf yes, turning to step 5; if not, nTSDuty ratio D of switch tube in periodx(n) 1, go to step 9;
step 5, mixing nTSGiven value of current i on time inductorLref(n) assigning a value to nTSAverage value of inductor current in cycleNamely:
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>Lref</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
the predicted value of the inductive current obtained by the formula (1)Substituting into the solution obtained by equation (19) can obtain nTSDuty ratio D of switch tube in periodbu(n):
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein D isbt=vL/vH
Step 6, calculating w (n) according to formula (5):
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
judging whether w (n) is equal to or more than 0, if not, turning to the step 7; if yes, go to step 8;
step 7, obtaining an inductive current predicted value according to the formula (1)Substituting into the solution obtained in equation (23), nT is calculatedSDuty ratio D of switch tube in periodbu(n):
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msqrt> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </msqrt> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
If the initial values of the inductor currents sampled are different, a situation may occur as shown in fig. 6, i.e., a problem of non-convergence of the inductor currents occurs.
Step 8, in order to solve the problem of non-convergence of the inductor currentOnly need to take nTSDuty ratio D of switch tube in periodbu(n) duty ratio D of switching tube at steady state momentzAverage value D of (n)x(n) calculating D according to equation (7)x(n):
D x ( n ) = 1 2 ( D bu ( n ) + D z ( n ) ) - - - ( 7 )
When the switch tube reaches the steady state, the waveform of the inductive current is shown in fig. 7, namely
ΔiL+=-ΔiL-
The following can be obtained: nTSDuty ratio D of switching tube in steady state in periodz(n) is:
D z ( n ) = v L v H ;
step 9, generating duty ratio DxAnd (n) controlling the switching tube by the PWM wave.
The invention obtains the duty ratio through energy conservation, can quickly calculate the duty ratio through the energy conservation, quickly tracks the given value, also can quickly track the given value when giving sudden change, and obviously improves the dynamic response and the control precision.

Claims (5)

1. The method for predicting and controlling the inductive current in the non-isolated charging Buck circuit is characterized by comprising the following steps of:
step 1, sampling the voltage value v of a low-voltage source in a Buck circuitLVoltage value v of high voltage sourceH、(n-1)TSValue of the inductance current i at a timeL(n-1)、(n-1)TSDuty ratio D of switch tube in periodbu(n-1),
Wherein, TSOne switching period of the switching tube;
step 2,Judgment of nTSCurrent on time of day inductor is given by iLref(n) whether the value is less than 0, if not, turning to the step 3; if less than 0, nTSDuty ratio D of switch tube in periodx(n) is 0, go to step 9;
step 3, calculating nT through a formula (1)SInstantaneous inductor current prediction value
<math> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
l is an inductance value;
step 4, judgmentIf yes, turning to step 5; if not, nTSDuty ratio D of switch tube in periodx(n) 1, go to step 9;
step 5, mixing nTSGiven value of current i on time inductorLref(n) assigning a value to nTSAverage value of inductor current in cycleNamely:
<math> <mrow> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>Lref</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
the predicted value of the inductive current obtained by the formula (1)Calculating nTSDuty ratio D of switch tube in periodbu(n):
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein D isbt=vL/vH
Step 6, calculating w (n) according to formula (5):
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
judging whether w (n) is equal to or more than 0, if not, turning to the step 7; if yes, go to step 8;
step 7, obtaining an inductive current predicted value according to the formula (1)Calculating nTSDuty ratio D of switch tube in periodbu(n):
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msqrt> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </msqrt> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Step 8, calculating the duty ratio D after median processing according to a formula (7)x(n):
D x ( n ) = 1 2 ( D bu ( n ) + D z ( n ) ) - - - ( 7 )
Wherein,is nTSDuty ratio of the switching tube in steady state in the period;
step 9, generating duty ratio DxAnd (n) controlling the switching tube by the PWM wave.
2. The method as claimed in claim 1, wherein the specific process of obtaining the formula (4) in the step 5 is as follows:
nTSincrement delta i of inductive current in switching-on process of switching tube in periodL+Comprises the following steps:
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mi>max</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein iLmax(n) is nTSThe maximum value of the inductor current during the period,
average value of current flowing in switching-on process of switch tubeComprises the following steps:
<math> <mrow> <mover> <msub> <mi>i</mi> <mi>on</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
when the switch is on under ideal conditions, vHRelease energy, energy E released by itonComprises the following steps:
<math> <mrow> <msub> <mi>E</mi> <mi>on</mi> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>on</mi> </msub> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
vHpart of the energy released is stored in the inductor and appears as the change of the inductor current in the period, and the part of the energy is expressed by delta ELExpressed as:
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>E</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>L</mi> <mo>[</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
another part appears as v for load consumptionLEnd-charging, energy consumed by load in a single cycle EvLComprises the following steps:
<math> <mrow> <msub> <mi>E</mi> <msub> <mi>v</mi> <mi>L</mi> </msub> </msub> <mo>=</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
under ideal conditions, and ignoring various losses, according to the conservation of energy:
Eon=ΔEL+EvL (13)
obtaining the following components:
<math> <mrow> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>v</mi> <mi>H</mi> </msub> <msub> <mi>v</mi> <mi>L</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>v</mi> <mi>H</mi> </msub> <msub> <mi>v</mi> <mi>L</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
when the switch tube is turned off, the inductor current is continuousThe inductor will supply power to the load through the diode, so the current in the inductor will naturally drop, and the attenuation value of the inductor current at this stage is delta iL-Comprises the following steps:
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
at nTSPeriod to (n +1) TSIn the period, the inductor current is controlled by iL(n) conversion to iL(n +1), then (n +1) T is obtained by the formula (8) and the formula (15)SInstantaneous inductor current iL(n+1):
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mo>+</mo> </mrow> </msub> <mo>+</mo> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
Due to the reverse turn-off characteristic of the diode, the inductor current cannot continuously decay to a negative value, iL(n +1) there is a discontinuity, expressed as:
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
converting equation (17) to:
<math> <mrow> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>w</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
when w (n) is more than or equal to 0, substituting the formula (16) into the formula (14) to obtain:
<math> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>L</mi> <mo>[</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
when it is satisfied with
<math> <mrow> <mn>4</mn> <mo>{</mo> <mo>[</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>v</mi> <mi>H</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>[</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>]</mo> <mo>}</mo> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Namely, it is <math> <mrow> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
When, equation (19) has a solution, the solution is:
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mn>1</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <mo>[</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> </msqrt> <mo>.</mo> </mrow> </math>
3. the method as claimed in claim 2, wherein the specific process of obtaining the formula (6) in the step 7 is as follows:
when w (n) < 0, iLSubstituting (n +1) into 0 to obtain equation (14):
<math> <mrow> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msub> <msup> <mi>D</mi> <mn>2</mn> </msup> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
when it is satisfied with
<math> <mrow> <mn>4</mn> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>&CenterDot;</mo> <msup> <msub> <mi>T</mi> <mi>S</mi> </msub> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
Namely, it is <math> <mrow> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>L</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
When, equation (22) has a solution, the solution is:
<math> <mrow> <msub> <mi>D</mi> <mi>bu</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msqrt> <msub> <mi>D</mi> <mi>bt</mi> </msub> <mo>&CenterDot;</mo> <mo>[</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <msup> <msub> <mi>i</mi> <mi>l</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> </msqrt> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>T</mi> <mi>S</mi> </msub> </mrow> </mfrac> <mo>.</mo> </mrow> </math>
4. the method as claimed in any one of claims 1-3, wherein the Buck circuit in step 1 comprises a low voltage source vLLow voltage source vLRespectively connected with a high voltage source vHIs connected with the anode of the diode D, and a high-voltage source vHThe anode of the switch tube S is connected with the collector of the switch tube S, and the emitter of the switch tube S is respectively connected with the cathode of the diode D and the inductor L.
5. The method as claimed in claim 4, wherein the switch tube S is a turn-off power switch device with an anti-parallel diode or an anti-parallel diode characteristic.
CN201510151371.4A 2015-03-31 2015-03-31 It is a kind of to be used for inductive current forecast Control Algorithm in non-isolated charging Buck circuits Expired - Fee Related CN104753351B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510151371.4A CN104753351B (en) 2015-03-31 2015-03-31 It is a kind of to be used for inductive current forecast Control Algorithm in non-isolated charging Buck circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510151371.4A CN104753351B (en) 2015-03-31 2015-03-31 It is a kind of to be used for inductive current forecast Control Algorithm in non-isolated charging Buck circuits

Publications (2)

Publication Number Publication Date
CN104753351A true CN104753351A (en) 2015-07-01
CN104753351B CN104753351B (en) 2017-03-29

Family

ID=53592586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510151371.4A Expired - Fee Related CN104753351B (en) 2015-03-31 2015-03-31 It is a kind of to be used for inductive current forecast Control Algorithm in non-isolated charging Buck circuits

Country Status (1)

Country Link
CN (1) CN104753351B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391299A (en) * 2015-12-24 2016-03-09 西安理工大学 Single strategy model prediction control method of Buck converter
CN109245531A (en) * 2018-10-29 2019-01-18 合肥鑫晟光电科技有限公司 Duty ratio determines method, apparatus, pulse-width signal generation method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003608A1 (en) * 1987-10-15 1989-04-20 Ascom Hasler Ag Process and device for preventing interference of transients in a buck cell
CN103051186A (en) * 2012-12-29 2013-04-17 东南大学 Fast transient response digital switch converter and control method of fast transient response digital switch converter
CN103391002A (en) * 2012-05-11 2013-11-13 英特赛尔美国有限公司 System and method of predictive current feedback for switched mode regulators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003608A1 (en) * 1987-10-15 1989-04-20 Ascom Hasler Ag Process and device for preventing interference of transients in a buck cell
CN103391002A (en) * 2012-05-11 2013-11-13 英特赛尔美国有限公司 System and method of predictive current feedback for switched mode regulators
CN103051186A (en) * 2012-12-29 2013-04-17 东南大学 Fast transient response digital switch converter and control method of fast transient response digital switch converter

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINGQUAN CHEN;ET AL: "Predictive digital current programmed control", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
YE-THEN CHANG;ET AL: "Novel on-line parameter tuning technique for predictive current mode control operating in boundary conduction mode", 《2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION》 *
YUNG-CHIEN CHANG;ET AL: "Predictive digital current mode controlled DC-DC converter with duty calibration technique", 《FUTURE ENERGY ELECTRONICS CONFERENCE (IFEEC), 2013 1ST INTERNATIONAL》 *
刘吉星等: "Buck功率因数校正电路预测平均电流控制研究", 《通信电源技术》 *
闵闰等: "Boost型DC/DC变换器的预测无差拍控制器设计", 《电力电子技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391299A (en) * 2015-12-24 2016-03-09 西安理工大学 Single strategy model prediction control method of Buck converter
CN105391299B (en) * 2015-12-24 2019-02-01 西安理工大学 Buck converter pure strategy model predictive control method
CN109245531A (en) * 2018-10-29 2019-01-18 合肥鑫晟光电科技有限公司 Duty ratio determines method, apparatus, pulse-width signal generation method and device

Also Published As

Publication number Publication date
CN104753351B (en) 2017-03-29

Similar Documents

Publication Publication Date Title
CN104753350B (en) A kind of prediction for inductive current in booster circuit restrains control method
CN106208698B (en) The four switch Buck-Boost converter circuits equipped with Sofe Switch and its control method
CN104578802A (en) Optimal current waveform controlling method for current type two-way DC-DC convertor
TW201444254A (en) Efficient control circuit for buck-boost converters and control method thereof
CN111200365B (en) Control method and control circuit of flyback converter
CN113193748B (en) TCM control-based optimization method for interleaved Buck/Boost converters
CN103296883A (en) Method and device for controlling direct-current-to-direct-current converter wide in input voltage and load range
CN113135109A (en) Topological structure of high-power charging device of electric automobile
CN114499171A (en) Multi-mode voltage conversion circuit, multi-mode voltage conversion device, multi-mode voltage conversion control method, and storage medium
CN106253666A (en) Single-inductance double-output switch converters method for controlling frequency conversion and control device thereof
CN104753351B (en) It is a kind of to be used for inductive current forecast Control Algorithm in non-isolated charging Buck circuits
Liu et al. A Multi-Frequency PCCM ZVS Modulation Scheme for Optimizing Overall Efficiency of Four-Switch Buck–Boost Converter With Wide Input and Output Voltage Ranges
CN114448248A (en) Control circuit of coupling inductor interleaved parallel four-switch buck-boost bidirectional converter
CN106972751B (en) Double-tube Z-source direct-current voltage converter
CN110611425B (en) Current sharing method based on series-parallel Boost converter
Zarandi et al. A High-Voltage Gain DC/DC Resonant SC Converter for High-Power and Wide Input Voltage and Load Variation Ranges Applications
CN116979789A (en) Secondary peak current fixed frequency control method for four-switch buck-boost converter
CN103441668A (en) High-gain boost DC-DC converter allowing pseudo continuous work
CN203434859U (en) Pseudo continuous work high-gain boost DC-DC converter
Liu et al. Design and Simulation of a PFM-PWM Hybrid Controller for DCDC Converter with CLLC Topology
CN115664169A (en) Quasi-peak current control method for bidirectional four-switch Buck-Boost
Liu et al. 1kW Bidirectional 48V-12V DCDC Converter Design Based on Full Bridge CLLC Topology and FDP Controlling Method for Electric Vehicles Application
CN111711359B (en) MPC control method of two-stage Boost converter suitable for direct-current micro-grid
CN110957908B (en) Bidirectional DC-DC soft switching circuit and wide-range soft switching control method
Cao et al. A high efficiency DC-DC converter based on bidirectional half-bridge

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Sun Zhiqiang

Inventor before: Zhang Qi

Inventor before: Liu Zhao

Inventor before: Sun Xiangdong

Inventor before: An Shaoliang

Inventor before: Ren Biying

Inventor before: Zhang Bo

Inventor before: Zhao Shuangshuang

CB03 Change of inventor or designer information
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170608

Address after: 510660 No. 4 construction road, Guangzhou, Guangdong, Tianhe District

Patentee after: Sun Zhiqiang

Address before: 710048 Shaanxi city of Xi'an Province Jinhua Road No. 5

Patentee before: Xi'an University of Technology

TR01 Transfer of patent right

Effective date of registration: 20171117

Address after: Tianhe District Huali road Guangzhou City, Guangdong province 510000 25 1507 by 11 real

Patentee after: Guangzhou national Obsidian Technology Co., Ltd.

Address before: 510660 No. 4 construction road, Guangzhou, Guangdong, Tianhe District

Patentee before: Sun Zhiqiang

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190121

Address after: Room 401, 686 Yuejiang Middle Road, Haizhu District, Guangzhou City, Guangdong Province

Patentee after: GUANGDONG YUANJING ENERGY CO., LTD.

Address before: Room 11, 1507, No. 25, Huali Road, Tianhe District, Guangzhou City, Guangdong Province

Patentee before: Guangzhou national Obsidian Technology Co., Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

Termination date: 20200331

CF01 Termination of patent right due to non-payment of annual fee