CN104749148A - 一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法 - Google Patents

一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法 Download PDF

Info

Publication number
CN104749148A
CN104749148A CN201510118279.8A CN201510118279A CN104749148A CN 104749148 A CN104749148 A CN 104749148A CN 201510118279 A CN201510118279 A CN 201510118279A CN 104749148 A CN104749148 A CN 104749148A
Authority
CN
China
Prior art keywords
biomacromolecule
fluorescence
solution
conformation
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510118279.8A
Other languages
English (en)
Other versions
CN104749148B (zh
Inventor
展永
邢成芬
袁宏博
安海龙
李瑞华
牛瑞民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201510118279.8A priority Critical patent/CN104749148B/zh
Publication of CN104749148A publication Critical patent/CN104749148A/zh
Application granted granted Critical
Publication of CN104749148B publication Critical patent/CN104749148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法。生物大分子构象转变时,表面所带的疏水基团、电荷等性质也发生改变,使得其与氧化石墨烯的组装方式不同,通过共轭聚合物和生物大分子标记的荧光分子FRET效率不同,从而判断生物大分子所处的构象状态。FRET效率较低时,说明生物大分子与石墨烯之间的结合紧密,不能有效地能量转移,说明生物大分子所处的构象状态表面带有较多的疏水基团以及较少的负电荷;FRET效率提高时,则相反。同时,基于底物分子特异性与生物大分子相结合,本发明还可特异性检测诱导生物大分子构象转变的底物分子。另外,在紫外灯下可以直接通过颜色变化判断生物大分子的构象变化。

Description

一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法
技术领域
本发明属于生物传感及分析领域,具体涉及一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法。
背景技术
蛋白质、核酸等生物大分子在生物体内起着重要作用,每一种大分子都有着自己特有的三维结构,并且在执行功能时构象会发生特异性的变化。因此,检测生物大分子的构象变化对理解其功能起着重要作用。钙调蛋白(Calmodulin,CaM)是一种钙离子结合蛋白,由148个氨基酸组成的单条多肽,相对分子质量为16.7kDa。在生物体内,CaM参与众多钙离子依赖的信号传导,通过与靶蛋白(蛋白激酶、离子通道等)相结合,激活靶蛋白,从而调控生命体的代谢过程。CaM的两个球形的末端(N-和C-末端)各含有两个“EF-hand”,作为钙离子结合的模体,中间由一段长而富有柔性的结构相连。与钙结合后,CaM的构象由“闭合状态”转变为“打开状态”,中间的柔性连接变为一段长而僵硬的中心螺旋,从而导致CaM的表面暴露出更多疏水基团以及负电荷的减少。这种活性的Ca2+/CaM复合物进而识别激活多种靶蛋白。因此,在Ca2+介导的信号传导中,CaM的构象变化起着重要作用。除CaM外,生物体内还有众多生物大分子的构象变化对其功能起着重要作用。尽管目前存在多种技术检测蛋白质的构象变化,例如:核磁共振、X-射线晶体技术、单分子光谱技术等,但是这些方法都需要昂贵的设备、复杂操作过程以及经验丰富的实验者,从而导致不能广泛应用。
发明内容
本发明的目的是提供一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法。
本发明所提供的基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法,包括:基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化辅助检测方法和基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法。
上述基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化辅助检测方法,包括下述:
a)、将标记有荧光分子的生物大分子溶于检测缓冲液中,得到空白溶液;向多个所述空白溶液中的每一个空白溶液中加入该生物大分子特异性的底物,得到多个底物含量不同的生物大分子-底物溶液,孵育后,得到多个标准溶液;
b)、分别向所述空白溶液和所述多个标准溶液中的每一个标准溶液中加入相同量的氧化石墨烯,得到含氧化石墨烯的空白溶液和多个含氧化石墨烯的标准溶液,孵育后,再分别加入相同量的共轭聚合物,孵育后,得到空白样品和多个标准样品;
c)、在紫外灯下分别观察所述空白样品和所述多个标准样品中的每一个标准样品的颜色,得到生物大分子构象与颜色的对应关系;
d)、将标记有荧光分子的构象待测的生物大分子用所述检测缓冲液配置成待测溶液,所述待测溶液中的生物大分子的含量与所述a)中所述空白溶液中的生物大分子的含量相等;向所述待测溶液中加入氧化石墨烯,孵育后,再加入所述共轭聚合物,孵育后,得到待测样品,所述待测样品中氧化石墨烯的含量与所述b)中所述多个标准样品中的每一个标准样品中的氧化石墨烯的含量相等,所述待测样品中所述共轭聚合物的含量与所述b)中所述多个标准样品中的每一个标准样品中的所述共轭聚合物的含量相等;
e、在紫外灯下观察所述待测样品的颜色,根据步骤c)中所述生物大分子构象与颜色的对应关系,辅助判断所述待测样品中所述生物大分子的构象。
上述方法所述a)中,所述检测缓冲液可为HEPES缓冲液、Tris缓冲液、PB缓冲液或PBS缓冲液,具体可为20mM,pH 7.4的HEPES缓冲液。
所述荧光分子为能量受体。
所述荧光分子可为化学荧光素分子,如绿色荧光蛋白(GFP)、黄色荧光蛋白(YFP)、青色荧光蛋白(CFP)以及它们的各种突变体,具体可为增强型绿色荧光蛋白(EGFP)。
所述空白溶液中,所述生物大分子的摩尔浓度为0.5-5.0μM。
所述生物大分子-底物溶液中,所述底物的摩尔浓度为大于0到5.0mM,具体可为:10-3mM、10-2mM、0.1mM、0.3mM、0.5mM、0.8mM、1.0mM或5.0mM。
所述孵育的温度为室温(20-25℃),时间为5-30min。
所述b)中,所述含氧化石墨烯的空白溶液和含氧化石墨烯的标准溶液中,氧化石墨烯的质量浓度均为5.0-50.0μg/mL。
所述b)中,所述共轭聚合物为式Ⅰ所示的共轭聚合物:
上述式Ⅰ中,n大于8小于等于50,x=2-12,B为卤素且选自下述任意一种:Br、Cl、I和F。
具体地,所述式Ⅰ所示化合物为式Ⅱ所示化合物(poly[(9,9-bis(6′-N,N,N-trimethylammonium)hexyl)-fluorenylene phenylene dibromide,n=20-40,PFP):
所述空白样品和所述多个标准样品中,所述共轭聚合物的摩尔浓度均为3.0-20.0μM。
上述方法所述c)中,所述紫外灯为360nm的紫外灯。
所述生物大分子为蛋白质分子。
所述生物大分子具体可为钙调蛋白(CaM)。
当所述生物大分子为钙调蛋白(CaM)时,所述底物为钙离子。
当所述生物大分子为钙调蛋白(CaM),所述荧光分子为EGFP,所述共轭聚合物为PFP时,所述c)中,所述空白样品(即钙调蛋白未与钙结合其构象为闭合状态)在360nm紫外灯下为绿色,在所述空白样品中加入能使所述空白样品中钙调蛋白的构象全部转变为打开状态的底物得到的标准溶液在360nm紫外灯下为蓝色。
进一步地,上述方法在通过颜色变化无法判断生物大分子的构象时还进一步包括下述:
f)采集所述空白样品的荧光发射光谱,计算所述空白样品的荧光发射光谱上,两个不同的发射波长处的荧光强度比值;分别采集所述多个标准样品中的每一个标准样品的荧光发射光谱,计算每一个标准样品的荧光发射光谱上,所述两个不同的发射波长处的荧光强度比值,从而得到生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系;
g)采集所述待测样品的荧光光谱,计算所述待测样品的荧光光谱上所述两个不同的发射波长处的荧光强度比值,根据所述f)中的所述生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系,判断所述构象待测的生物大分子的构象状态。
上述方法所述f)中,所述荧光发射光谱的条件为:激发光波长为325nm-400nm,荧光波长为400nm-700nm。
当所述生物大分子为钙调蛋白(CaM),所述荧光分子为EGFP,所述共轭聚合物为PFP时,所述f)中所述荧光发射光谱的条件为:激发光波长为375nm,荧光波长为400nm-700nm;
所述f)中所述两个不同的发射波长处的荧光强度比值为波长510nm处的荧光强度与波长420nm处的荧光强度的比值,即I510/I420
所述g)中,待测样品的I510/I420值越小,说明待测样品中与钙离子结合的钙调蛋白越多,所述钙调蛋白越接近于打开状态(即CaM/Ca2+复合体构象状态)。
上述基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法,包括下述:
1)将标记有荧光分子的生物大分子溶于检测缓冲液中,得到空白溶液;向多个所述空白溶液中的每一个空白溶液中加入该生物大分子特异性的底物,得到多个底物含量不同的生物大分子-底物溶液,孵育后,得到多个标准溶液;
2)分别向所述空白溶液和所述多个标准溶液中的每一个标准溶液中加入相同量的氧化石墨烯,得到含氧化石墨烯的空白溶液和多个含氧化石墨烯的标准溶液,孵育后,再分别加入相同量的共轭聚合物,孵育后,得到空白样品和多个标准样品;
3)采集所述空白样品的荧光发射光谱,计算所述空白样品的荧光发射光谱上,两个不同的发射波长处的荧光强度比值;分别采集所述多个标准样品中的每一个标准样品的荧光发射光谱,计算每一个标准样品的荧光发射光谱上,所述两个不同的发射波长处的荧光强度比值,从而得到生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系;
4)将标记有荧光分子的构象待测的生物大分子用所述检测缓冲液配置成待测溶液,所述待测溶液中的生物大分子的含量与所述1中所述空白溶液中的生物大分子的含量相等;向所述待测溶液中加入氧化石墨烯,孵育后,再加入与所述共轭聚合物,孵育后,得到待测样品,所述待测样品中氧化石墨烯的含量与所述2中所述多个标准样品中的每一个标准样品中的氧化石墨烯的含量相等,所述待测样品中所述共轭聚合物的含量与所述2中所述多个标准样品中的每一个标准样品中的所述共轭聚合物的含量相等;
5)采集所述待测样品的荧光光谱,计算所述待测样品的荧光光谱上所述两个不同的发射波长处的荧光强度比值,根据所述3中的所述生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系,判断所述构象待测的生物大分子的构象状态。
氧化石墨烯(Graphene oxide,GO)是石墨粉末经化学氧化及剥离后的产物,其独特的蜂巢碳原子结构可以通过疏水作用、静电相互作用等多种非共价键与生物大分子相结合。而且GO具有良好的水溶性、惊人的荧光淬灭效应、独特的光电性质。
水溶性阳离子共轭聚合物(Water-soluble cationic conjugated polymers,CCPs)具有强大的光捕获效应和信号放大效应,可以通过强烈的π-π相互作用与GO相结合,致使CCPs的荧光几乎被GO完全淬灭。
本发明基于氧化石墨烯和水溶性阳离子共轭聚合物形成的复合材料,通过CCP与生物大分子标记荧光分子之间的荧光共振能量转移(FRET)强度检测生物大分子的构象变化。
本发明利用生物大分子和GO之间通过疏水以及静电相互作用进行组装,避免了共价连接等复杂的化学程序,可以快速、简便的应用于生物传感,特别是蛋白大分子构象变化的检测,检测灵敏度高、肉眼可视。
与传统的蛋白质构象检测方法相比,本发明处理快速、简便、肉眼可视,高灵敏度和特异性;与各种先进的系统相比,本发明无需复杂的仪器设备,样品处理简单,成本低。
除此之外,本发明还具有以下几个优点:第一,生物大分子与GO之间通过疏水、静电等非共价键相互作用进行组装,避免了共价连接等复杂的化学程序;第二,共轭聚合物的信号放大效应使得生物大分子的构象变化转换为检测方便的荧光信号,并且在365nm紫外灯下达到肉眼可视;第三,基于氧化石墨烯具有巨大的比表面和共轭π结构及共轭聚合物的信号放大效应使得该方法具有较高的灵敏度。例如,对于本发明所用的钙调蛋白,首先,EGFP-CaM和GO之间的组装受Ca2+定量地、可逆地调控;其次,这种氧化石墨烯和共轭聚合物复合材料不仅可以检测钙调蛋白的构象变化,还可以检测Ca2+/CaM与靶肽结合后的构象变化;最后,基于CaM对Ca2+特异性的结合,本发明还可以选择性的检测Ca2+;因此,本发明在生物传感,特别是蛋白大分子构象变化方面具有应用价值。
附图说明
图1为本发明实施例1中氧化石墨烯和共轭聚合物复合材料与不同构象钙调蛋白组装后的荧光光谱。a为含有石墨烯的条件下的荧光光谱图;b为不含石墨烯的条件下的荧光光谱图;c为不同程度诱导的蛋白构象变化的FRET效率比值;d为在365nm紫外灯下蛋白构象变化前后的颜色变化(其中,左图为绿色,右图为蓝色)。
图2为本发明对Ca2+特异的选择性。
图3为不同构象状态的钙调蛋白与石墨烯的组装。a为未结合Ca2+的钙调蛋白与石墨烯的组装;b为结合Ca2+后的钙调蛋白与石墨烯的组装;c为扫描电子显微镜下不同构象状态的钙调蛋白与石墨烯的组装对比(其中,左图为未结合Ca2+的钙调蛋白与石墨烯的组装,右图为结合Ca2+后的钙调蛋白与石墨烯的组装)。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、生物材料等,如无特殊说明,均可从商业途径得到。
下述实施例中所使用的氧化石墨烯是通过包括下述步骤的方法制备得到的:
Hummers法制备氧化石墨烯:
首先将230mL的98%浓硫酸加入到2000mL的烧杯中。将烧杯放入冰水浴中,使其中的液体冷却至0℃左右,然后开启搅拌,初始低速搅拌,而后加快至中速,继续搅拌30min;
将30g高锰酸钾分次加入到烧杯中,把烧杯转移至水浴中,设定温度35±3℃,继续搅拌30min;
再加入460mL水,反应体系的温度升高至98℃;继续搅拌15min后,加入温水使溶液稀释至1400mL,为除去溶液中未反应的KMnO4,加入适量的H2O2(一般将H2O2浓度配置为5%,加入稍微过量的H2O2,通过过滤洗涤可将其除去)至金黄色颗粒出现,以上过程都需在98℃水浴中进行;
趁热减压过滤反应溶液,取下滤饼后将其移入烧杯中,将烧杯置于98℃水浴中,加入5%体积分数的稀盐酸1000mL搅拌洗涤滤饼。稀盐酸洗一次之后,再温水洗两次得到氧化石墨烯产物。
下述实施例中所使用的PFP(n=20-40)是按照包括下述步骤的方法制备得到的:
9,9-二(6-溴己基)-2,7-二溴芴(1)的制备:
1,6-二溴己烷(7.5mL,50mmol),20mLKOH(50%)溶液,溴化四丁基铵(0.33g,1mmol)依次加入到反应瓶中,升温至75℃,然后加入2,7-二溴芴(1.62g 5mmol)继续反应15min。冷却至室温后,用二氯甲烷萃取,有机层分别用1M HCl和饱和食盐水洗涤,然后用无水硫酸镁干燥,除去溶剂二氯甲烷后减压蒸掉1,6-二溴己烷,粗产物用硅胶柱色谱纯化,石油醚:氯仿(9:1)作为展开剂,得到白色固体;
9,9-二(6-(N,N,N-三甲基铵基)己基)-2,7-二溴芴(2):9,9-二(6-溴己基)-2,7-二溴芴(1)(390mg,0.6mmol)加入到反应瓶中,然后加入4mL 25%三甲胺甲醇溶液和10mL THF,加热回流三天;减压除去溶剂和剩余的三甲胺得到含少量杂志的粗产物,然后用石油醚洗涤粗品得到白色固体产物;
聚芴PFP:氮气保护下,将9,9-二(6-(N,N,N-三甲基铵基)己基)-2,7-二溴芴(2)(180mg,0.24mmol)和2,2-二甲基-1,3-丙二醇-1,4-苯二硼酸酯(80.5mg,0.27mmol)加入到4mL THF中,溶解后加入2mL碳酸钾溶液(2.0M)和钯催化剂Pd(dppf)Cl2(6mg),混合液升温至90℃反应两天。反应液冷却至室温后,将溶剂减压除去,用少量DMSO溶解剩余物并滴加到大量丙酮中沉淀,离心。把得到的粗产品用渗析袋渗析三天(M=3500g.mol-1)得到产物。
实施例1、检测氧化石墨烯和共轭聚合物复合材料与不同构象钙调蛋白组装后的荧光光谱
(a)将5.0μL(40.0μM)EGFP-CaM(标记有绿色荧光蛋白的钙调蛋白)溶于200μL的HEPES缓冲液中,得到溶液1;
(b)分别将5.0μL(40.0μM)EGFP-CaM溶于200μL含有不同浓度的Ca2+(10-3mM、10-2mM、0.1mM、0.3mM、0.5mM、0.8mM、1.0mM、5.0mM)的HEPES缓冲液中,得到EGFP-CaM/Ca2+复合体含量不同的一系列溶液2;
(c)分别将10.0μL的氧化石墨烯(0.5mg/mL)加入到所述溶液1和所述溶液2中,使其与CaM发生组装;
(d)在(c)的基础上,再分别向所述溶液1和所述溶液2中加入15.0μL的共轭聚合物PFP(1.0mM),得到样品1和样品2;
(e)用荧光分光光度计或多功能酶标仪读取上述制备完成的样品1和样品2的荧光光谱,激发光为375nm,发射光谱为400–700nm;
(f)计算步骤(e)中样品1在510nm和420nm的荧光强度比值(简写为I510/I420),计算步骤(e)中样品2在510nm和420nm的荧光强度比值,根据比值大小判断CaM所处的构象状态,比值越小说明处于CaM/Ca2+复合体构象状态的CaM越多。
图1为本发明实施例1中氧化石墨烯和共轭聚合物复合材料与不同构象钙调蛋白组装后的荧光光谱。a为含有石墨烯的条件下的荧光光谱图;b为不含石墨烯的条件下的荧光光谱图;c为不同程度诱导的蛋白构象变化的FRET效率比值;d为在365nm紫外灯下蛋白构象变化前后的颜色变化。
由图1a可知,加入氧化石墨烯和共轭聚合物复合材料后,可以通过计算I510/I420比值来判断钙调蛋白的状态,I510/I420比值越小说明处于CaM/Ca2+复合体构象状态(打开状态)的CaM越多,反之,则处于闭合状态的CaM越多。
由图1c可知,在氧化石墨烯和共轭聚合物复合材料存在下,随着钙离子浓度的增大,I510/I420比值减小,说明处于CaM/Ca2+复合体构象状态(打开状态)的CaM增多,当钙离子浓度为5.0mM时,I510/I420比值接近于0,说明此时溶液中的CaM几乎全部以CaM/Ca2+复合体构象状态存在。
实施例2、通过肉眼可见的颜色变化直接判断钙调蛋白的构象变化。
在365nm的紫外灯下直接观察实施例1中制备完成的样品。所述样品1呈绿色,所述样品2(Ca2+为5.0mM)呈蓝色。
这是因为:由于不同构象的CaM与GO的结合状态不同,导致共轭聚合物PFP与EGFP的FRET效率不同,因此,由肉眼观察到的溶液的颜色即可判断CaM所处的状态,即呈绿色的溶液中的CaM处于闭合状态,呈蓝色的溶液中的CaM处于CaM/Ca2+复合体构象状态(打开状态)。
实施例3、检测本发明对Ca2+特异的选择性。
将不同的二价阳离子(Ca2+、Ba2+、Sr2+、Mg2+和Zn2+)与EGFP-CaM混合,室温下孵育10min,根据实施例1加入氧化石墨烯和共轭聚合物复合材料。
用荧光分光光度计或多功能酶标仪读取上述制备完成的样品的荧光光谱,激发光为375nm,发射光谱为400–700nm,并计算波长在510nm和420nm的荧光强度比值(结果如图2所示)。
由图2可以看出:只有Ca2+的加入使得I510/I420比值接近于零,其他离子的加入未引起I510/I420比值的变化(即加入其他离子的体系中,I510/I420比值与空白接近,几乎没有变化),可见CaM选择性地与Ca2+结合,而不能结合别的离子(如Ba2+,Sr2+,Mg2+,Zn2+)。
实施例4、观察EGFP-CaM/EGFP-CaM/Ca2+与GO的组装。
将EGFP-CaM和EGFP-CaM/Ca2+与GO孵育后,8000r,4℃,离心15min。去上清,加入ddH2O重新悬浮。
取2μL滴到载玻片上,选用60×的相差显微镜观察,荧光场用EGFP的滤光片观察。
描电子显微镜的观察,首先需要将样品冷冻干燥,然后再做喷金处理,最后观察组装体的微观结构。
图3为不同构象状态的钙调蛋白与石墨烯的组装。a为未结合Ca2+的钙调蛋白与石墨烯的组装;b为结合Ca2+后的钙调蛋白与石墨烯的组装;c为扫描电子显微镜下不同构象状态的钙调蛋白与石墨烯的组装对比(其中,左图为未结合Ca2+的钙调蛋白与石墨烯的组装,右图为结合Ca2+后的钙调蛋白与石墨烯的组装)。
由图3可知:钙调蛋白结合钙离子后由“闭合状态”转变为“打开状态”的构象,中间的柔性连接变为一段长而僵硬的中心螺旋,从而导致CaM表面暴露出更多的疏水基团以及负电荷的减少。使得GO表面通过疏水等非共价相互作用吸附更多的EGFP-CaM/Ca2+复合体,即荧光增强。并且通过扫描电子显微镜可以观察到EGFP-CaM/Ca2+复合体的吸附使得石墨烯表面变得褶皱、粗糙、不规则等。
实施例5、Ca2+可逆地调控CaM与GO的组装
通过不断滴加EGTA(乙二醇二乙醚二胺四乙酸)和Ca2+,实时控制检测体系中的钙离子浓度,从而可逆、定量地调控CaM与GO之间的组装。
随着EGTA的不断加入,即Ca2+的不断减少,共轭聚合物和EGFP之间的(荧光共振能量转移)FRET效率逐渐增强,说明CaM从由“打开状态”转变为“闭合状态”构象。反之,随着Ca2+的不断加入,FRET效率逐渐减弱。
实施例6、利用氧化石墨烯和共轭聚合物复合材料检测CaM与靶蛋白的作用。
CaM在结合Ca2+后会进一步与靶蛋白相结合,并激活下游的代谢反应。
CaM/Ca2+与靶蛋白的结合使得CaM转变为一种结实的球状构象。
在EGFP-CaM的末端连接一段CaM的靶肽M13,起到模拟体内CaM与靶蛋白结合的作用。
通过氧化石墨烯和共轭聚合物复合材料与EGFP-CaM-M13之间的FRET比值,判断EGFP-CaM-M13的构象状态,比值越低,说明越多EGFP-CaM-M13的结合了Ca2+,形成了结实的球状结构。

Claims (10)

1.一种生物大分子构象变化辅助检测方法,包括下述:
a)、将标记有荧光分子的生物大分子溶于检测缓冲液中,得到空白溶液;向多个所述空白溶液中的每一个空白溶液中加入该生物大分子特异性的底物,得到多个底物含量不同的生物大分子-底物溶液,孵育后,得到多个标准溶液;
b)、分别向所述空白溶液和所述多个标准溶液中的每一个标准溶液中加入相同量的氧化石墨烯,得到含氧化石墨烯的空白溶液和多个含氧化石墨烯的标准溶液,孵育后,再分别加入相同量的共轭聚合物,孵育后,得到空白样品和多个标准样品;
c)、在紫外灯下分别观察所述空白样品和所述多个标准样品中的每一个标准样品的颜色,得到生物大分子构象与颜色的对应关系;
d)、将标记有荧光分子的构象待测的生物大分子用所述检测缓冲液配置成待测溶液,所述待测溶液中的生物大分子的含量与所述a)中所述空白溶液中的生物大分子的含量相等;向所述待测溶液中加入氧化石墨烯,孵育后,再加入所述共轭聚合物,孵育后,得到待测样品,所述待测样品中氧化石墨烯的含量与所述b)中所述多个标准样品中的每一个标准样品中的氧化石墨烯的含量相等,所述待测样品中所述共轭聚合物的含量与所述b)中所述多个标准样品中的每一个标准样品中的所述共轭聚合物的含量相等;
e、在紫外灯下观察所述待测样品的颜色,根据步骤c)中所述生物大分子构象与颜色的对应关系,辅助判断所述待测样品中所述生物大分子的构象。
2.根据权利要求1所述的方法,其特征在于:所述方法在通过颜色变化无法判断生物大分子的构象时还进一步包括下述:
f)采集所述空白样品的荧光发射光谱,计算所述空白样品的荧光发射光谱上,两个不同的发射波长处的荧光强度比值;分别采集所述多个标准样品中的每一个标准样品的荧光发射光谱,计算每一个标准样品的荧光发射光谱上,所述两个不同的发射波长处的荧光强度比值,从而得到生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系;
g)采集所述待测样品的荧光光谱,计算所述待测样品的荧光光谱上所述两个不同的发射波长处的荧光强度比值,根据所述f)中的所述生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系,判断所述构象待测的生物大分子的构象状态。
3.一种生物大分子构象变化检测方法,包括下述:
1)将标记有荧光分子的生物大分子溶于检测缓冲液中,得到空白溶液;向多个所述空白溶液中的每一个空白溶液中加入该生物大分子特异性的底物,得到多个底物含量不同的生物大分子-底物溶液,孵育后,得到多个标准溶液;
2)分别向所述空白溶液和所述多个标准溶液中的每一个标准溶液中加入相同量的氧化石墨烯,得到含氧化石墨烯的空白溶液和多个含氧化石墨烯的标准溶液,孵育后,再分别加入相同量的共轭聚合物,孵育后,得到空白样品和多个标准样品;
3)采集所述空白样品的荧光发射光谱,计算所述空白样品的荧光发射光谱上,两个不同的发射波长处的荧光强度比值;分别采集所述多个标准样品中的每一个标准样品的荧光发射光谱,计算每一个标准样品的荧光发射光谱上,所述两个不同的发射波长处的荧光强度比值,从而得到生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系;
4)将标记有荧光分子的构象待测的生物大分子用所述检测缓冲液配置成待测溶液,所述待测溶液中的生物大分子的含量与所述1中所述空白溶液中的生物大分子的含量相等;向所述待测溶液中加入氧化石墨烯,孵育后,再加入与所述共轭聚合物,孵育后,得到待测样品,所述待测样品中氧化石墨烯的含量与所述2中所述多个标准样品中的每一个标准样品中的氧化石墨烯的含量相等,所述待测样品中所述共轭聚合物的含量与所述2中所述多个标准样品中的每一个标准样品中的所述共轭聚合物的含量相等;
5)采集所述待测样品的荧光光谱,计算所述待测样品的荧光光谱上所述两个不同的发射波长处的荧光强度比值,根据所述3中的所述生物大分子构象与所述两个不同的发射波长处的荧光强度比值的对应关系,判断所述构象待测的生物大分子的构象状态。
4.根据权利要求1或3所述的方法,其特征在于:所述生物大分子为蛋白质分子。
5.根据权利要求1或3所述的方法,其特征在于:所述生物大分子为钙调蛋白;所述底物为钙离子。
6.根据权利要求1或3所述的方法,其特征在于:所述检测缓冲液为HEPES缓冲液、Tris缓冲液、PB缓冲液或PBS缓冲液;
所述荧光分子为化学荧光素分子。
7.根据权利要求1或3所述的方法,其特征在于:所述荧光分子选自下述任意一种:绿色荧光蛋白、黄色荧光蛋白、青色荧光蛋白以及它们的各种突变体。
8.根据权利要求1或3所述的方法,其特征在于:所述共轭聚合物为式Ⅰ所示的共轭聚合物:
式Ⅰ中,n大于8小于等于50,x=2-12,B为卤素。
9.根据权利要求2或3所述的方法,其特征在于:所述荧光发射光谱的条件为:激发光波长为325nm-400nm,荧光波长为400nm-700nm。
10.根据权利要求2或3所述的方法,其特征在于:所述生物大分子为钙调蛋白,所述荧光分子为增强型绿色荧光蛋白,所述共轭聚合物为PFP,所述两个不同的发射波长处的荧光强度比值为波长510nm处的荧光强度与波长420nm处的荧光强度的比值。
CN201510118279.8A 2015-03-18 2015-03-18 一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法 Active CN104749148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510118279.8A CN104749148B (zh) 2015-03-18 2015-03-18 一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510118279.8A CN104749148B (zh) 2015-03-18 2015-03-18 一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法

Publications (2)

Publication Number Publication Date
CN104749148A true CN104749148A (zh) 2015-07-01
CN104749148B CN104749148B (zh) 2017-08-04

Family

ID=53589156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510118279.8A Active CN104749148B (zh) 2015-03-18 2015-03-18 一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法

Country Status (1)

Country Link
CN (1) CN104749148B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053874A (zh) * 2018-07-13 2018-12-21 河北工业大学 钙调蛋白特异性结合靶肽修饰的还原型氧化石墨烯纳米粒子的制备方法和应用
CN111272945A (zh) * 2020-02-28 2020-06-12 中国科学院海洋研究所 一种d-氨基酸检测试剂盒及其检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207823A (ja) * 2004-01-21 2005-08-04 Olympus Corp 蛍光分光分析の方法
US20090035800A1 (en) * 2004-12-24 2009-02-05 Aartsma T J Novel Use of Fluorescence Resonance Energy Transfer
CN101434984A (zh) * 2007-11-13 2009-05-20 中国科学院上海应用物理研究所 一种检测DNA的i-motif构象的光学方法
WO2010059505A1 (en) * 2008-11-12 2010-05-27 Zornes David A Perpendicular suspension of one planer two dimensional (2d) graphene sheet stack by aligning its six-member carbon atoms within the hexagonal centerpoint holes of a second graphene sheet stack that occupy the same three dimensional (3d) space

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207823A (ja) * 2004-01-21 2005-08-04 Olympus Corp 蛍光分光分析の方法
US20090035800A1 (en) * 2004-12-24 2009-02-05 Aartsma T J Novel Use of Fluorescence Resonance Energy Transfer
CN101434984A (zh) * 2007-11-13 2009-05-20 中国科学院上海应用物理研究所 一种检测DNA的i-motif构象的光学方法
WO2010059505A1 (en) * 2008-11-12 2010-05-27 Zornes David A Perpendicular suspension of one planer two dimensional (2d) graphene sheet stack by aligning its six-member carbon atoms within the hexagonal centerpoint holes of a second graphene sheet stack that occupy the same three dimensional (3d) space

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YING WANG.ET AL: "Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
张江艳等: "基于共轭聚合物的基因突变及甲基化检测研究", 《国化学会第三届全国生物物理化学会议暨国际华人生物物理化学发展论坛论文摘要集》 *
汪凌云等: "基于荧光共轭聚电解质的生物分子检测", 《化学进展》 *
苗丽坤等: "基于荧光共轭聚合物的金属离子检测", 《化学进展》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053874A (zh) * 2018-07-13 2018-12-21 河北工业大学 钙调蛋白特异性结合靶肽修饰的还原型氧化石墨烯纳米粒子的制备方法和应用
CN109053874B (zh) * 2018-07-13 2021-08-24 河北工业大学 钙调蛋白特异性结合靶肽修饰的还原型氧化石墨烯纳米粒子的制备方法和应用
CN111272945A (zh) * 2020-02-28 2020-06-12 中国科学院海洋研究所 一种d-氨基酸检测试剂盒及其检测方法

Also Published As

Publication number Publication date
CN104749148B (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
Ma et al. A novel AIE chemosensor based on quinoline functionalized Pillar [5] arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN−
US9376717B2 (en) Compositions and methods for multiplex biomarker profiling
Lee et al. A new naphthalimide derivative as a selective fluorescent and colorimetric sensor for fluoride, cyanide and CO2
Cao et al. Large red-shifted fluorescent emission via intermolecular π–π stacking in 4-ethynyl-1, 8-naphthalimide-based supramolecular assemblies
Han et al. Water-stable Eu6-cluster-based fcu-MOF with exposed vinyl groups for ratiometric and fluorescent visual sensing of hydrogen sulfide
Sutariya et al. Fluorescence switch on–off–on receptor constructed of quinoline allied calix [4] arene for selective recognition of Cu 2+ from blood serum and F− from industrial waste water
CN109187472B (zh) 一种基于主客体自组装的超分子传感器及其制备和应用
Du et al. Highly hydrophilic, two-photon fluorescent terpyridine derivatives containing quaternary ammonium for specific recognizing ribosome RNA in living cells
Zhao et al. Molecular design for novel sensing materials with self-screening interference effect (SSIE): reversible recognizing Cu2+ in aqueous and biologic samples
Yu et al. Amino-functionalized single-lanthanide metal–organic framework as a ratiometric fluorescent sensor for quantitative visual detection of fluoride ions
CN105924410A (zh) 一种聚集诱导发光的配体及配合物
Ma et al. 2D Cd-MOF and its mixed-matrix membranes for luminescence sensing antibiotics in various aqueous systems and visible fingerprint identifying
Jin et al. A novel terbium (III) and aptamer-based probe for label-free detection of three fluoroquinolones in honey and water samples
Wang et al. A novel fluorescent chemosensor for detection of Zn (II) ions based on dansyl-appended dipeptide in two different living cells
Lakshmi et al. Recent advances in fluorescence chemosensors for ammonia sensing in the solution and vapor phases
Song et al. Lanthanide doped metal-organic frameworks as a ratiometric fluorescence biosensor for visual and ultrasensitive detection of serotonin
CN104749148A (zh) 一种基于氧化石墨烯和共轭聚合物复合材料的生物大分子构象变化检测方法
CN106905958B (zh) 一种基于反式七元瓜环的荧光探针、制备方法及应用
Zalmi et al. Aggregation induced emissive luminogens for sensing of toxic elements
CN105492575B (zh) 作为生物标记物的电中性金属配合物
Wei et al. Photonic barcodes combining branched hybridization chain reaction for multiplex quantification of bladder cancer MicroRNAs
Yang et al. Synthesis of multi-emission MOF composites for multi-dimensional sensing application
Orojloo et al. A novel receptor for detection of Zn 2+ metal ion and F−, H 2 PO 4− and AcO− anions in aqueous media: a DFT study
Niu et al. A novel “turn-on” fluorescent sensor based on Tetraphenylethylene-planarized bis-Schiff base for dual-state TFA detection
Sharma et al. Sensing in aqueous medium: mechanism and its application in the field of molecular recognition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant