CN104715155B - 双摆头结构铣床刀尖点频响的快速计算方法 - Google Patents

双摆头结构铣床刀尖点频响的快速计算方法 Download PDF

Info

Publication number
CN104715155B
CN104715155B CN201510131176.5A CN201510131176A CN104715155B CN 104715155 B CN104715155 B CN 104715155B CN 201510131176 A CN201510131176 A CN 201510131176A CN 104715155 B CN104715155 B CN 104715155B
Authority
CN
China
Prior art keywords
frequency response
point
directions
knife
shank end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510131176.5A
Other languages
English (en)
Other versions
CN104715155A (zh
Inventor
张俊
赵万华
谢振南
王俊娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201510131176.5A priority Critical patent/CN104715155B/zh
Publication of CN104715155A publication Critical patent/CN104715155A/zh
Application granted granted Critical
Publication of CN104715155B publication Critical patent/CN104715155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Numerical Control (AREA)

Abstract

本发明公布了一种双摆头结构铣床刀尖点频响的快速计算方法,解决了因双摆头姿态变化导致的刀尖点频响快速计算的问题,其关键之处在于基于有向传递函数建立了转动状态的刀柄端频响的计算模型,结合转动状态的刀柄端频响的计算模型得到转摆动状态的刀柄端频响的计算模型,通过频响耦合子结构法实现了双摆头不同姿态下的刀尖点频响快速计算。本发明中所述的计算方法能够在少量实验的情况下比较准确的计算双摆头结构铣床不同姿态下的刀尖点频响,为实现多轴加工过程中的稳定切削提供了基础。

Description

双摆头结构铣床刀尖点频响的快速计算方法
技术领域:
本发明属于机械加工技术领域,具体涉及一种双摆头结构铣床刀尖点频响的快速计算方法。
背景技术:
双摆头结构同时具有摆动和转动两个自由度,是五轴机床采用的一种常见形式,相比单摆头而言,更容实现刀具加工倾角,曲面加工能力更强,非常适合飞机、船舶等领域一些大型复杂曲面零件的加工。然而,时刻变化的双摆头姿态极大地影响了整个主轴系统的结构形式,两个旋转轴的联动使系统刚度发生了变化,并将导致刀尖点频响发生变化。因而此时若采用同样的切削参数可能更易引起系统颤振,它不仅破坏工件的表面质量,而且还加剧刀具的磨损,严重时甚至使切削无法进行。
在实际工程中为避免颤振发生的一个有效方法是借助于该机床的切削稳定性极限图(俗称“叶瓣图”)来选择合适的切削参数,刀尖点频响函数是构造该图的基础。
目前国内外比较成熟的一种快速计算机床刀尖点频响的方法为频响耦合子结构法,该方法将机床整机分为三个子结构:机床-主轴,刀柄和刀具。其中机床-主轴响应采用锤击法获取,而刀柄和刀具的悬伸部分则采用铁木辛可梁模型求解,最后两部分响应进行耦合得到刀尖点总响应。
该方法的提出解决了刀具、刀柄频繁变换后整机频响特性需重新测试的不足之处,为机床切削稳定性极限图的快速构建提供了新的思路。目前该方法及其改进策略均只适用于三轴机床,对于具有双摆头结构的机床而言,由于双摆头姿态的不断变化导致该方法失效。
发明内容:
本发明的目的在于克服上述现有技术的缺点,提供了一种双摆头结构铣床刀尖点频响的快速计算方法。该方法通过建立转动状态的刀柄端频响的计算模型,并与摆动状态的刀柄端频响的计算模型结合得到转摆动状态的刀柄端频响的计算模型,实现不同转摆动姿态下刀柄端频响的快速计算,进而利用子结构耦合法快速计算刀尖点频响。
为达到上述目的,本发明采用了以下的技术方案予以实现:
双摆头结构铣床刀尖点频响的快速计算方法,包括以下步骤:
步骤一:建立转动状态的刀柄端频响的计算模型
根据有向传递函数的概念推导由两正交方向频响求解任意方向的计算公式,并基于一阶差分合成法得到转动状态的刀柄端频响计算模型;
步骤二:建立转摆动状态的刀柄端频响的计算模型
定义三个不同的双摆头姿态,根据转动状态的刀柄端频响计算模型和摆动状态的刀柄端频响计算模型对此三个姿态进行变换,推导出转摆动状态的刀柄端频响的计算模型;
步骤三:进行刀尖点频响快速计算
用实验的方法得到机床刀柄端在三个不同姿态处的频响矩阵,根据转摆动状态的刀柄端频响的计算模型得到任意转摆动姿态下的刀柄端频响后,通过频响耦合子结构法计算该姿态下的任意刀柄-刀具组合下的刀尖点频响。
本发明进一步的改进在于,步骤一中,两正交方向是指α和β两个方向,α方向定义为刀柄端平面内和摆轴轴线平行的方向,β方向定义为刀柄端平面内和α方向垂直的方向。
本发明进一步的改进在于,步骤一中,由两正交方向频响求解任意方向频响的计算公式,其中,对于原点频响如式(1)所示,对于跨点频响如式(2)所示:
其中:H是位移/力的频响函数;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响,aα表示α方向的跨点频响,bβ表示β方向的跨点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
本发明进一步的改进在于,步骤一中,应用一阶差分合成法即得到转动状态的刀柄端转角频响的表达式,如式(3-6)所示:
其中:H、L、N和P分别是位移/力、位移/弯矩、转角/力和转角/弯矩的频响函数;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响,aα表示α方向的跨点频响,bβ表示β方向的跨点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
本发明进一步的改进在于,步骤一中,转动状态的刀柄端频响计算模型为:双摆头转角为时,刀柄端α方向的频响矩阵如式(7)所示,刀柄端β方向的频响矩阵如式(8)所示:
其中:H、L、N和P分别是位移/力、位移/弯矩、转角/力和转角/弯矩的频响函数,R为由H、L、N和P组成的频响函数矩阵;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
本发明进一步的改进在于,步骤二中,三个不同姿态分别指 或者或者其中,θ为双摆头的摆角。
本发明进一步的改进在于,步骤二中,转摆动状态中摆角为θ以及转角为时的刀柄端频响的计算模型为式(9-11):
其中:f和f分别为是转动状态的刀柄端α方向和β方向频响计算模型的函数表达形式,括号内的频响矩阵和角度值为输入,等号左边的量为输出;f和f分别为是摆动状态的刀柄端α方向和β方向频响计算模型的函数表达形式,括号内的频响矩阵和角度值为输入,等号左边的量为输出。
本发明进一步的改进在于,步骤三中,用实验方法获得刀柄端频响矩阵的方法为一阶差分合成法,即用一阶差分法计算频响L和N,用合成法计算P;频响耦合子结构法的计算中刀具和刀柄耦合做刚性连接处理,刀具和刀柄的频响用铁木辛柯梁建模得到。
与现有技术相比,本发明的有益效果体现在:
本发明主要针双摆头结构铣床,推导了转动状态的机床刀柄端频响的计算模型,并与摆动状态的刀柄端频响的计算模型结合得到转摆动状态的刀柄端频响的计算模型,实现不同转摆动姿态下刀柄端频响的快速计算,进而实现了不同摆动姿态下刀尖点频响的快速计算。基于此方法可以在少量实验下较准确的快速计算双摆头结构铣床的刀尖点频响,进而实现机床的切削稳定性极限图的快速生成,为曲面零件加工时工艺参数的合理选取提供理论依据。
附图说明:
图1为五轴铣床双摆头结构示意图;
图2为转动模型示意图;
图3为转摆动模型示意图;
图4为摆角θ=-30°,转角时机床刀尖点频响的测试曲线和计算曲线,其中:(a)α方向,(b)β方向;
图5为摆角θ=-60°,转角时机床刀尖点频响的测试曲线和计算曲线,其中:(a)α方向,(b)β方向。
具体实施方式:
下面结合附图和实施例对本发明做进一步详细描述。
步骤一:建立转动状态的刀柄端频响的计算模型
根据有向传递函数的概念推导由两正交方向频响求解任意方向的计算公式,并基于一阶差分合成法得到转动状态的刀柄端频响计算模型;
两正交方向是指α和β两个方向,α方向定义为垂直于刀柄轴线的平面内和摆轴轴线平行的方向,β方向定义为垂直于刀柄轴线的内和α方向垂直的方向。对于刀柄端,则α和β所在平面在刀柄端面,对于刀尖点,则α和β所在平面在刀具末端平面,如图1所示。
双摆头转角为时的α和β方向频响和转角为0°时的α和β方向频响之间的关系如图2所示。由于双摆头相比于Z轴和机床整体质量和刚度都非常小,因此忽略双摆头转动过程中其相对于转轴的不对称性对刀柄端频响的影响。由两正交方向频响求解任意方向频响的计算公式即可由转角为0°时的α和β方向频响得到转角为时的α和β方向频响。对于原点频响如式(1)所示,对于跨点频响如式(2)所示:
其中:H是位移/力的频响函数;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响,aα表示α方向的跨点频响,bβ表示β方向的跨点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
应用一阶差分合成法即得到转动状态的刀柄端转角频响的表达式,如式(3-6)所示:
其中:H、L、N和P分别是位移/力、位移/弯矩、转角/力和转角/弯矩的频响函数。下角标αα表示α方向的原点频响,ββ表示β方向的原点频响,aα表示α方向的跨点频响,bβ表示β方向的跨点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
转动状态的刀柄端频响计算模型为:双摆头转角为时,刀柄端α方向的频响矩阵如式(7)所示,刀柄端β方向的频响矩阵如式(8)所示:
其中:R为由H、L、N和P组成的频响函数矩阵;
步骤二:建立转摆动状态的刀柄端频响的计算模型
定义三个不同的双摆头姿态,根据转动状态的刀柄端频响计算模型和摆动状态的刀柄端频响计算模型对此三个姿态进行变换,推导出转摆动状态的刀柄端频响的计算模型;
三个不同姿态分别指如图3所示,其中,θ为双摆头的摆角,P2也可以为P3也可以为
转摆动状态中摆角为θ以及转角为时的刀柄端频响的计算模型为式(9-11):
其中:f和f分别为是转动状态的刀柄端α方向和β方向频响计算模型的函数表达形式,括号内的频响矩阵和角度值为输入,等号左边的量为输出;f和f分别为是摆动状态的刀柄端α方向和β方向频响计算模型的函数表达形式,括号内的频响矩阵和角度值为输入,等号左边的量为输出。
转摆动状态(摆角为θ,转角为)的刀柄端频响的计算模型的具体建模过程(见图3)为:
第一步,利用转动状态的刀柄端频响的计算模型由姿态P1(0°,0°)的刀柄端频响计算姿态的刀柄端频响,计算公式如式(9)所示;
第二步,利用摆动状态的刀柄端频响的计算模型由姿态P2(-90°,0°)和P3(-90°,-90°)的刀柄端频响计算姿态的刀柄端频响,计算公式如式(10)所示。需要注意的是从姿态P2到P3的运动虽然符合摆动模型,但是运动平面和β方向垂直,因此刀柄端α方向频响的计算需要用f函数,刀柄端β方向频响的计算需要用f函数;
第三步,利用摆动状态的刀柄端频响的计算模型由姿态的刀柄端频响计算姿态的刀柄端频响,计算公式如式(11)所示。
步骤三:进行刀尖点频响快速计算
用实验的方法得到机床刀柄端在三个不同姿态处的频响矩阵,根据转摆动状态的刀柄端频响的计算模型得到任意转摆动姿态下的刀柄端频响后,通过频响耦合子结构法计算该姿态下的任意刀柄-刀具组合下的刀尖点频响。
用实验方法获得刀柄端频响矩阵的方法为一阶差分合成法,即用一阶差分法计算频响L和N,用合成法计算P。频响耦合子结构法的计算中刀具和刀柄耦合做刚性连接处理,刀具和刀柄的频响用铁木辛柯梁建模得到。
以双摆头结构铣床为对象,进行锤击实验说明本方法的使用步骤。
第一步,将测试刀柄装夹在主轴上,在双摆头三个姿态(0°,0°)、(-90°,0°)和(-90°,-90°)下用锤击实验分别测试刀柄端在α和β两个方向上的原点频响和跨点频响。原点频响的力锤敲击点和位移拾取点(加速度传感器布置点)均在刀柄末端,跨点频响的力锤敲击点在刀柄末端,位移拾取点在距离刀柄末端S距离处,这里S=30cm。
第二步,用一阶差分合成法计算每个测试姿态下的各个方向的频响矩阵。假设相同姿态下某一方向(α或β)的原点频响为H11,跨点频响为H1a1,则其转角频响的计算公式如式(12-13)所示:
其中:S=30cm。下角标11表示原点频响,1a1表示跨点频响。
由此可以得到三个测试位置各个方向的频响矩阵
第三步,将测试刀柄从主轴上取下,将刀具装夹到预测刀柄上,刀具夹持长度为30cm。将刀具-预测刀柄装配体装夹到机床主轴上,改变双摆头姿态,用锤击实验测试不同姿态下刀尖点频响,力锤敲击点和位移拾取点均在刀具末端。这里测试两个转摆动状态下的刀尖点频响以验证转摆动状态的刀柄端频响的计算模型的准确性,两个转摆动状态分别为(-30°,-30°)和(-60°,-30°)。
第四步,运用转摆动状态的刀柄端频响的计算模型计算双摆头不同转摆动姿态下的刀柄端频响矩阵,计算公式为式(9-11)。这里计算和实验对应的两个不同转摆动姿态(-30°,-30°)和(-60°,-30°)的刀柄端频响矩阵。
第五步,运用频响耦合子结构法得到不同姿态下的刀尖点计算频响。具体步骤为首先用逆子结构法将刀柄悬伸部分剔除,得到机床-主轴-刀柄法兰部分的频响矩阵,其次用理论方法得到悬伸刀柄-刀具装配体的频响矩阵,最后将机床-主轴-刀柄法兰和悬伸刀柄-刀具两个结构的频响矩阵耦合,得到机床刀尖点频响。其中刀柄和刀具均用铁木辛可梁建模求解频响矩阵。
图4-5为两个不同转摆动姿态下机床刀尖点的测试频响和计算频响的对比图,其中横坐标为频率,纵坐标为频响实部和虚部值,红色曲线表示测试频响曲线,蓝色曲线表示计算频响曲线。从图中可以看出,虽然每个姿态下频响的计算精度有一定的变化,本方法对双摆头转摆动中两个姿态下的刀尖点频响的计算比较准确。
本发明公布的刀尖点频响的快速计算方法以双摆头结构铣床为实施对象,解决了现存频响子结构耦合法只能适用于三轴铣床的局限。以上显示和描述本发明的基本原理及主要特征,本领域的技术人员应该了解,本发明不受上述实例的限制,凡是根据本发明的内容,按照本发明的方法,做一些改进和变化的,都落入本发明保护的范围。

Claims (8)

1.双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,包括以下步骤:
步骤一:建立转动状态的刀柄端频响的计算模型
根据有向传递函数的概念推导由两正交方向频响求解任意方向的计算公式,并基于一阶差分合成法得到转动状态的刀柄端频响计算模型;
步骤二:建立转摆动状态的刀柄端频响的计算模型
定义三个不同的双摆头姿态,根据转动状态的刀柄端频响计算模型和摆动状态的刀柄端频响计算模型对此三个姿态进行变换,推导出转摆动状态的刀柄端频响的计算模型;
步骤三:进行刀尖点频响快速计算
用实验的方法得到机床刀柄端在三个不同姿态处的频响矩阵,根据转摆动状态的刀柄端频响的计算模型得到任意转摆动姿态下的刀柄端频响后,通过频响耦合子结构法计算该姿态下的任意刀柄-刀具组合下的刀尖点频响。
2.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤一中,两正交方向是指α和β两个方向,α方向定义为刀柄端平面内和摆轴轴线平行的方向,β方向定义为刀柄端平面内和α方向垂直的方向。
3.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤一中,由两正交方向频响求解任意方向频响的计算公式,其中,对于原点频响如式(1)所示,对于跨点频响如式(2)所示:
其中:H是位移/力的频响函数;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响,aα表示α方向的跨点频响,bβ表示β方向的跨点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
4.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤一中,应用一阶差分合成法即得到转动状态的刀柄端转角频响的表达式,如式(3)-(6)所示:
其中:H、L、N和P分别是位移/力、位移/弯矩、转角/力和转角/弯矩的频响函数;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响,aα表示α方向的跨点频响,bβ表示β方向的跨点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为S是原点频响测量点和跨点频响测量点之间的距离,用于计算位移/弯矩频响函数L和转角/力频响函数N。
5.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤一中,转动状态的刀柄端频响计算模型为:双摆头转角为时,刀柄端α方向的频响矩阵如式(7)所示,刀柄端β方向的频响矩阵如式(8)所示:
其中:H、L、N和P分别是位移/力、位移/弯矩、转角/力和转角/弯矩的频响函数,R为由H、L、N和P组成的频响函数矩阵;下角标αα表示α方向的原点频响,ββ表示β方向的原点频响;下角标小括号中第一个数值表示摆轴的摆角,第二个数值表示转轴的转角,转动状态下摆角为0,转角为
6.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤二中,三个不同姿态分别指P1,其中θ=0°,P2,其中θ=-90°,或者θ=90°,P3,其中θ=-90°,或者θ=-90°,其中,θ、分别为双摆头的摆角和转角。
7.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤二中,转摆动状态中摆角为θ以及转角为时的刀柄端频响的计算模型为式(9)-(11):
其中:f和f分别为是转动状态的刀柄端α方向和β方向频响计算模型的函数表达形式,括号内的频响矩阵和角度值为输入,等号左边的量为输出;f和f分别为是摆动状态的刀柄端α方向和β方向频响计算模型的函数表达形式,括号内的频响矩阵和角度值为输入,等号左边的量为输出。
8.根据权利要求1所述的双摆头结构铣床刀尖点频响的快速计算方法,其特征在于,步骤三中,用实验方法获得刀柄端频响矩阵的方法为一阶差分合成法,即用一阶差分法计算频响L和N,用合成法计算P;频响耦合子结构法的计算中刀具和刀柄耦合做刚性连接处理,刀具和刀柄的频响用铁木辛柯梁建模得到。
CN201510131176.5A 2015-03-24 2015-03-24 双摆头结构铣床刀尖点频响的快速计算方法 Active CN104715155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510131176.5A CN104715155B (zh) 2015-03-24 2015-03-24 双摆头结构铣床刀尖点频响的快速计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510131176.5A CN104715155B (zh) 2015-03-24 2015-03-24 双摆头结构铣床刀尖点频响的快速计算方法

Publications (2)

Publication Number Publication Date
CN104715155A CN104715155A (zh) 2015-06-17
CN104715155B true CN104715155B (zh) 2017-12-08

Family

ID=53414478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510131176.5A Active CN104715155B (zh) 2015-03-24 2015-03-24 双摆头结构铣床刀尖点频响的快速计算方法

Country Status (1)

Country Link
CN (1) CN104715155B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127758A (zh) * 2015-10-15 2015-12-09 山东理工大学 机床用多轴复合装置
CN109375578B (zh) * 2018-10-31 2020-06-16 湖南工学院 一种机油泵壳体内深孔高效加工控制方法
CN113485247B (zh) * 2021-07-13 2022-07-12 西安交通大学 一种基于递推最小二乘法的铣削力在线识别方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689229A (zh) * 2012-05-04 2012-09-26 华中科技大学 基于响应耦合的刀尖点频响函数获取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021468A1 (de) * 2004-04-30 2005-11-24 Kuka Roboter Gmbh Verfahren zum Steuern einer Maschine, insbesondere eines Industrieroboters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689229A (zh) * 2012-05-04 2012-09-26 华中科技大学 基于响应耦合的刀尖点频响函数获取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
龙门铣床双摆头动力学特性实验研究;陈甜甜;《机床与液压》;20131031;第41卷(第19期);第7-11页 *

Also Published As

Publication number Publication date
CN104715155A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN105425727B (zh) 五轴侧铣加工刀具路径光顺方法
CN104715155B (zh) 双摆头结构铣床刀尖点频响的快速计算方法
CN105159228B (zh) 五轴联动数控机床实现rtcp功能的五轴标定方法
CN105108215B (zh) 一种自由曲面微细铣削让刀误差预测及补偿方法
CN105234743A (zh) 一种五轴加工中心刀具变形误差补偿方法
CN104613897B (zh) 汽车外覆盖件模具自由曲面自适应采样装置及测量方法
WO2020051818A1 (zh) 一种面向切削稳定性预报的跨轴跨点模态测试与参数辨识方法
CN110161965B (zh) 一种大型航天机匣斜孔的在机测量方法
CN103218475A (zh) 一种基于在机测评的复杂空间型面误差反馈补偿方法
CN111843613B (zh) 一种五轴龙门摆头空间轴线误差值测定方法
CN108268745A (zh) 一种基于rcsa的二叉树机器人铣削系统频响预测方法
CN106873522A (zh) 一种非轴对称扫掠曲面的数控车削刀具轨迹规划方法
CN110989490B (zh) 一种基于轮廓误差的工件最优安装位置的获取方法
CN103324140A (zh) 五轴加工中通用刀具扫描体的生成方法
CN201833217U (zh) 一种三维定位器
CN110362039B (zh) 一种五轴加工工件摆放姿态优化方法
CN104536383A (zh) 整体锻造整体数控加工方法
CN107065765A (zh) 基于刀具轴线运动模型的切屑厚度计算方法
Yu et al. Post-processing algorithm of a five-axis machine tool with dual rotary tables based on the TCS method
CN113985813A (zh) 一种基于在机检测的机床原点误差补偿方法
CN109866224A (zh) 一种机器人雅可比矩阵计算方法、装置及存储介质
CN109408936B (zh) 滑翔天线罩深盲型腔加工及在线测量方法
CN104732088B (zh) 单摆头结构铣床刀尖点频响的快速计算方法
CN107273606A (zh) 五轴机床在线测量倾斜轴孔的方法
CN102411335B (zh) 一种五轴数控机床内雕加工路径的生成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant