CN104713689A - Gas leakage detection method of permeable bipolar plate in proton exchange membrane fuel cell stack - Google Patents
Gas leakage detection method of permeable bipolar plate in proton exchange membrane fuel cell stack Download PDFInfo
- Publication number
- CN104713689A CN104713689A CN201310691208.8A CN201310691208A CN104713689A CN 104713689 A CN104713689 A CN 104713689A CN 201310691208 A CN201310691208 A CN 201310691208A CN 104713689 A CN104713689 A CN 104713689A
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- permeable
- gas
- proton exchange
- detection method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 38
- 238000001514 detection method Methods 0.000 title claims description 13
- 239000012528 membrane Substances 0.000 title abstract description 9
- 239000007800 oxidant agent Substances 0.000 claims abstract description 40
- 230000001590 oxidative effect Effects 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 25
- 239000002826 coolant Substances 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 239000011261 inert gas Substances 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 3
- 239000002737 fuel gas Substances 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims 2
- 238000003487 electrochemical reaction Methods 0.000 claims 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- 229910052786 argon Inorganic materials 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000001307 helium Substances 0.000 claims 1
- 229910052734 helium Inorganic materials 0.000 claims 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 230000004888 barrier function Effects 0.000 abstract description 10
- 238000007599 discharging Methods 0.000 abstract 1
- 230000035699 permeability Effects 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Fuel Cell (AREA)
Abstract
质子交换膜燃料电池电堆中的透水双极板具有透水、阻气功能,可在排出燃料电池生成水的同时,保证氧化剂腔气体不窜入水腔;然而在燃料电池运行过程中,若操作条件控制不当或双极板出现损坏、密封失效等故障时,透水双极板可能会出现漏气现象,即丧失原有阻气功能。本发明涉及一种针对多节透水板燃料电池电堆中丧失阻气功能的透水双极板的检测方法,在无需对电堆进行完全拆卸的条件下,迅速查找出丧失阻气功能的双极板以便对其进行处理,保证氧化剂气体的高利用率,同时避免了对电堆进行完全拆卸及拆卸过程中对其他组件造成不必要的影响,提高工作效率。The water-permeable bipolar plate in the proton exchange membrane fuel cell stack has the functions of water permeability and gas barrier, which can ensure that the gas in the oxidant chamber does not enter the water chamber while discharging the water generated by the fuel cell; however, during the operation of the fuel cell, if the operating conditions When the control is improper or the bipolar plate is damaged, the seal fails and other faults, the permeable bipolar plate may leak air, that is, lose the original gas barrier function. The invention relates to a method for detecting the water-permeable bipolar plate that has lost the gas-blocking function in a multi-section water-permeable-plate fuel cell stack, and can quickly find out the bipolar plate that has lost the gas-blocking function without completely disassembling the stack The plate is used to process it, ensuring high utilization of the oxidant gas, and avoiding unnecessary impact on other components during the complete disassembly of the stack and improving work efficiency.
Description
技术领域technical field
本发明涉及燃料电池漏气检测方法,尤其适用于质子交换膜燃料电池电堆中透水双极板漏气检测的方法。The invention relates to a method for detecting air leakage of a fuel cell, and is particularly suitable for the method for detecting air leakage of a water-permeable bipolar plate in a proton exchange membrane fuel cell stack.
背景技术Background technique
质子交换膜燃料电池是一种通过膜电极上的电催化反应将燃料与氧化剂中的化学能直接高效地转化为电能的发电装置。双极板是质子交换膜燃料电池电堆中的重要组件,具有流体分配、导电、冷却、分隔燃料和氧化剂等功能。常见的双极板(传统双极板)共有三腔:燃料腔、氧化剂腔、冷却剂腔,三腔之间保持分隔,流体在三腔中互不流通,膜电极组件(MEA)的电化学生成水进入氧化剂腔中后,直接被气流或在重力作用下被带出电池。A proton exchange membrane fuel cell is a power generation device that directly and efficiently converts the chemical energy in fuel and oxidant into electrical energy through the electrocatalytic reaction on the membrane electrode. The bipolar plate is an important component in the proton exchange membrane fuel cell stack, which has functions such as fluid distribution, conduction, cooling, and separation of fuel and oxidant. Common bipolar plates (traditional bipolar plates) have a total of three chambers: fuel chamber, oxidant chamber, and coolant chamber. The three chambers are kept separated, and the fluids do not flow through each other in the three chambers. The electrochemistry of the membrane electrode assembly (MEA) After the produced water enters the oxidant chamber, it is carried out of the cell directly by the air flow or by gravity.
近年来出现了一种新型透水双极板(CN 1179428C,CN101501909A),其燃料腔与氧化剂腔保持隔绝,但氧化剂腔与冷却剂腔间存在透水板(或称为“多孔性水传输板”)。这种透水双极板除具有上述传统双极板功能外,还具有透水阻气功能。所谓的透水阻气是指燃料电池运行过程中,氧化剂腔内的生成水能够借助于氧化剂腔和冷却剂腔之间的压力差直接透过双极板的透水板进入冷却剂腔,然后随着冷却剂排出电池,但氧化剂腔中的气体却不会透过透水板进入冷却剂腔。透水双极板这种独特的透水阻气功能极大减轻了氧化剂腔内气体的流速要求,提高了电池的水管理能力,并且保证了氧化剂的高利用率。In recent years, a new type of water-permeable bipolar plate (CN 1179428C, CN101501909A) has appeared. The fuel chamber and the oxidant chamber are kept isolated, but there is a water-permeable plate (or "porous water transfer plate") between the oxidant chamber and the coolant chamber. . In addition to the functions of the above-mentioned traditional bipolar plates, the water-permeable bipolar plate also has the function of water-permeable and gas-blocking. The so-called water-permeable gas barrier means that during the operation of the fuel cell, the generated water in the oxidant chamber can directly pass through the water-permeable plate of the bipolar plate and enter the coolant chamber by means of the pressure difference between the oxidant chamber and the coolant chamber. The coolant exits the cell, but the gas in the oxidant chamber does not pass through the permeable plate into the coolant chamber. The unique water-permeable and gas-blocking function of the water-permeable bipolar plate greatly reduces the flow rate requirements of the gas in the oxidant chamber, improves the water management capability of the battery, and ensures a high utilization rate of the oxidant.
然而,透水双极板燃料电池在运行过程中,需要保持透水板前后两腔(氧化剂腔与冷却剂腔)的压力差在一定范围内,若操作条件控制不当一旦超出这个范围,透水板便出现漏气,失去原有阻气功能;另外,若透水板损坏、或密封出现问题,也会使得透水板漏气。这时需要查找出丧失阻气功能的双极板,以便对其进行处理。通常的做法是将电池完全拆解,对每一片双极板进行单独测漏,直至查出故障双极板。这种方法费时费力,而且在电池拆解过程中,不可避免触碰其它部件,如MEA、胶线等,有可能导致这些部件损坏。However, during the operation of the water-permeable bipolar plate fuel cell, it is necessary to keep the pressure difference between the two chambers (oxidant chamber and coolant chamber) before and after the water-permeable plate within a certain range. If the air leaks, the original air-blocking function will be lost; in addition, if the permeable plate is damaged or there is a problem with the sealing, it will also cause the permeable plate to leak air. At this time, it is necessary to find out the bipolar plate that has lost the gas barrier function in order to deal with it. The usual practice is to completely disassemble the battery and conduct a separate leak test on each bipolar plate until the faulty bipolar plate is found. This method is time-consuming and labor-intensive, and in the process of battery disassembly, it is inevitable to touch other components, such as MEA, glue lines, etc., which may cause damage to these components.
发明内容Contents of the invention
本发明旨在克服上述现有技术的缺点和不足,提供一种针对多节透水板质子交换膜燃料电池电堆中丧失阻气功能的透水双极板的检测方法,用以在燃料电池电堆组装完成后,无需对电堆进行完全拆卸的情况下,迅速查找出丧失阻气功能的双极板,详细方法如下:The present invention aims to overcome the shortcomings and deficiencies of the above-mentioned prior art, and provides a detection method for the water-permeable bipolar plate that loses the gas barrier function in the multi-section water-permeable plate proton exchange membrane fuel cell stack, which is used in the fuel cell stack After the assembly is completed, without completely disassembling the stack, quickly find the bipolar plate that has lost the gas barrier function. The detailed method is as follows:
(1)保证初始状态时电堆中各节单池均无电压值或电压值均明显低于开路水平(如使用对燃料腔和氧化剂腔通入氮气吹扫、或放电等手段)。(1) Ensure that in the initial state, each cell in the stack has no voltage value or the voltage value is significantly lower than the open circuit level (for example, use nitrogen to purge the fuel chamber and oxidant chamber, or discharge).
(2)将待测电池燃料腔、氧化剂腔分别通入一定压力的燃料(如氢气)和惰性气体(如氮气),通入惰性气体目的为防止外部空气进入氧化剂腔,干扰测试结果。(2) The fuel chamber and oxidant chamber of the battery to be tested are respectively fed with fuel (such as hydrogen) and inert gas (such as nitrogen) at a certain pressure. The purpose of feeding inert gas is to prevent external air from entering the oxidant chamber and disturbing the test results.
(3)将待测电池冷却剂腔通入一定压力的氧化剂(如空气)一段时间。(3) Let the coolant cavity of the battery under test flow into the oxidizer (such as air) at a certain pressure for a period of time.
(4)观察并记录电池中各节单池电压值出现时间或达到正常开路的时间:对于发生漏气的透水板,空气进入冷却剂腔后迅速漏至氧化剂腔,与氧化剂腔内催化剂发生电化学反应,导致此节电池开路电路迅速上升;对于不漏气的透水板,尽管空气不能够由冷却剂腔直接进入氧化剂腔,但由于各单池氧化剂腔呈连通状态,故漏气透水板氧化剂腔内的空气也会逐渐扩散至正常透水板氧化剂腔,导致其对应开路电压也逐渐上升,但开始上升及达到开路电压所用时间均低于漏气透水板所对应电池。因此,通过检测各电池电压开始上升的起始时间和达到开路电压时间,便可确定丧失阻气功能双极板的具体位置。(4) Observe and record the time when the voltage value of each single cell in the battery appears or reaches the normal open circuit time: for the permeable plate with air leakage, the air enters the coolant chamber and quickly leaks into the oxidant chamber, and generates electricity with the catalyst in the oxidizer chamber. The chemical reaction causes the open circuit of this battery to rise rapidly; for the air-tight permeable plate, although the air cannot directly enter the oxidant chamber from the coolant chamber, because the oxidant chambers of each single cell are connected, the oxidant of the air-leakage permeable plate The air in the cavity will also gradually diffuse into the oxidant cavity of the normal permeable plate, causing the corresponding open circuit voltage to gradually increase, but the time it takes to start rising and reach the open circuit voltage is lower than that of the battery corresponding to the leaky permeable plate. Therefore, by detecting the starting time when the voltage of each battery starts to rise and the time when the voltage reaches the open circuit voltage, the specific position of the bipolar plate that loses the gas barrier function can be determined.
本发明所述丧失阻气功能的透水双极板的检测方法中,需通入具有一定压力的燃料、惰性气体及氧化剂。所述一定压力,是指燃料、惰性气体压力尽可能保持一致,防止电池MEA因两侧压力差过大而损坏;同时应保证惰性气体、氧化剂间压力差(绝对值)不高于透水板所能承受的最大压差,超过此最大压差,正常透水板也将发生漏气现象,严重时极板会因压差过大而彻底损坏。In the detection method of the water-permeable bipolar plate that has lost the gas barrier function of the present invention, fuel, inert gas and oxidant with a certain pressure need to be introduced. The certain pressure refers to keeping the pressure of fuel and inert gas as consistent as possible to prevent the battery MEA from being damaged due to excessive pressure difference on both sides; The maximum pressure difference that can be tolerated exceeds this maximum pressure difference, and the normal permeable plate will also leak air. In severe cases, the plate will be completely damaged due to excessive pressure difference.
本发明的优点:应用本发明对多节透水板燃料电池电堆中的漏气双极板进行检测,可以在无需对电堆进行完全拆卸的条件下,迅速查找出丧失阻气功能的双极板,以便对其进行处理,保证氧化剂或燃料的高利用率,同时避免对电堆进行完全拆卸及拆卸过程中对其他组件造成不必要的影响,提高工作效率。The advantages of the present invention: the application of the present invention to detect the gas leaking bipolar plates in the multi-section permeable plate fuel cell stack can quickly find out the bipolar plates that have lost the gas barrier function without completely disassembling the stack Plate, in order to process it, ensure high utilization of oxidant or fuel, and avoid unnecessary impact on other components during the complete disassembly of the stack and improve work efficiency.
附图说明:Description of drawings:
图1实施例中冷却剂腔通入空气5s时电堆电压分布情况;In the embodiment of Fig. 1, the stack voltage distribution situation when the coolant cavity is fed into the air for 5s;
图2实施例中冷却剂腔通入空气20s时电堆电压分布情况。In the embodiment of Fig. 2, the voltage distribution of the stack when the coolant cavity is filled with air for 20s.
具体实施方式Detailed ways
为使熟悉该项技艺人士了解本发明的目的、特征及功效,由下述具体实施例,对本发明详加说明。In order to make those skilled in the art understand the purpose, features and effects of the present invention, the present invention will be described in detail by the following specific examples.
实施例:Example:
本实施例中透水双极板质子交换膜燃料电池电堆,由6节单池串联而成,其氧化剂腔生成水需通过透水板导入冷却剂腔中。此透水板耐压1.0bar,即当氧化剂腔与冷却剂腔间的流体压力差高于1.0bar时透水板丧失阻气功能。正常情况下,透水板氧化剂腔与水腔气压差在1.0bar范围内时,氧化剂不会漏入水腔,但现在存在明显的漏气现象,需要确定是哪块双极板漏气,进而采取相应的修理策略。In this embodiment, the permeable bipolar plate proton exchange membrane fuel cell stack is composed of 6 single cells connected in series, and the water generated in the oxidant chamber needs to be introduced into the coolant chamber through the water permeable plate. The water-permeable plate has a pressure resistance of 1.0 bar, that is, when the fluid pressure difference between the oxidant chamber and the coolant chamber is higher than 1.0 bar, the water-permeable plate loses its gas-blocking function. Under normal circumstances, when the air pressure difference between the oxidant chamber and the water chamber of the permeable plate is within 1.0 bar, the oxidant will not leak into the water chamber, but now there is an obvious air leakage phenomenon, and it is necessary to determine which bipolar plate is leaking, and then take corresponding measures. repair strategy.
针对以上情况,应用如下检测方法:In view of the above situation, the following detection method is applied:
将待检测的电堆各节单池电压巡检线路接好,此时电堆中各节单池均无电压值;向电堆氧化剂腔中通入0.5bar的氮气,同时向燃料剂腔中通入0.5bar的氢气;然后向冷却剂腔中通入0.5bar的空气,观察电堆中各节单池的电压值变化。图1、图2分别为通入空气5s、20s后各节单池电压分布情况。从图1可以看到,通入空气5s时,第5节单池电压值达到0.75V,其它节暂无电压,说明此节单池所用的氧化剂腔侧双极板存在漏气;从图2可看到,随着空气的继续通入,第5节电压继续升高,20s时达到0.91V,基本达到开路电压水平,与此同时第4、6节均出现电压,电压值分别为0.22V、0.15V,这并不是由于第4、6节所用透水板漏气,而是由于第5节氧化剂腔空气逐渐扩散至第4、6节氧化剂腔所致,因为第4、6节电压出现时间明显晚于第5节。因此根据以上结果可知:第5节电池所用的氧化剂腔侧双极板即为丧失了阻气功能的双极板。Connect the voltage inspection circuit of each cell of the stack to be tested. At this time, each cell in the stack has no voltage value; feed 0.5bar nitrogen into the oxidant chamber of the stack, and at the same time, inject nitrogen into the fuel chamber Introduce 0.5 bar of hydrogen; then introduce 0.5 bar of air into the coolant cavity, and observe the voltage value change of each cell in the stack. Figure 1 and Figure 2 show the voltage distribution of each cell after 5s and 20s of air flow respectively. It can be seen from Figure 1 that when the air is fed for 5 seconds, the voltage value of the fifth single cell reaches 0.75V, and the other nodes have no voltage for the time being, indicating that there is air leakage in the bipolar plate on the side of the oxidant chamber used in this single cell; from Figure 2 It can be seen that as the air continues to flow in, the voltage of section 5 continues to rise, and reaches 0.91V in 20s, basically reaching the open circuit voltage level. At the same time, voltages appear in sections 4 and 6, and the voltage values are 0.22V respectively. , 0.15V, this is not due to air leakage from the water-permeable panels used in Sections 4 and 6, but due to the gradual diffusion of air from the oxidant chamber in Section 5 to the oxidant chamber in Section 4 and 6, because the voltage in Section 4 and 6 occurs when the Significantly later than v5. Therefore, according to the above results, it can be known that the bipolar plate on the side of the oxidant chamber used in the fifth battery is the bipolar plate that has lost the gas barrier function.
若需再次进行确认,可停止向冷却剂腔通入空气,在保持氧化剂腔通入氮气情况下,利用电阻器使电池放电,直至各单池开路电压恢降至0V(或≤0.6V),然后重复上述检测过程即可。If you need to confirm again, you can stop feeding air into the coolant chamber, and use a resistor to discharge the battery while maintaining the nitrogen gas in the oxidant chamber until the open circuit voltage of each single cell returns to 0V (or ≤0.6V). Then repeat the above detection process.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310691208.8A CN104713689A (en) | 2013-12-13 | 2013-12-13 | Gas leakage detection method of permeable bipolar plate in proton exchange membrane fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310691208.8A CN104713689A (en) | 2013-12-13 | 2013-12-13 | Gas leakage detection method of permeable bipolar plate in proton exchange membrane fuel cell stack |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104713689A true CN104713689A (en) | 2015-06-17 |
Family
ID=53413208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310691208.8A Pending CN104713689A (en) | 2013-12-13 | 2013-12-13 | Gas leakage detection method of permeable bipolar plate in proton exchange membrane fuel cell stack |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104713689A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109167088A (en) * | 2018-09-04 | 2019-01-08 | 新源动力股份有限公司 | Leakage detection method for bipolar plate in fuel cell stack |
CN109253850A (en) * | 2018-11-27 | 2019-01-22 | 安徽明天氢能科技股份有限公司 | A kind of fuel battery double plates water cavity device for detecting sealability and its detection method |
CN109932132A (en) * | 2017-12-15 | 2019-06-25 | 中国科学院大连化学物理研究所 | A test leak detection device and application of a fuel cell membrane electrode |
CN110336058A (en) * | 2019-07-26 | 2019-10-15 | 武汉众宇动力系统科技有限公司 | A fuel cell stack detection method and detection device |
CN111157198A (en) * | 2019-12-31 | 2020-05-15 | 上海神力科技有限公司 | Method for detecting membrane electrode series leakage and bipolar plate series leakage in fuel cell stack |
CN111261907A (en) * | 2018-12-03 | 2020-06-09 | 中国科学院大连化学物理研究所 | A fuel cell system with water pressure regulating function |
CN111342077A (en) * | 2018-11-30 | 2020-06-26 | 中国科学院大连化学物理研究所 | Method for storing water-permeable bipolar plate proton exchange membrane fuel cell |
CN111982420A (en) * | 2020-08-18 | 2020-11-24 | 氢岛新能源科技(厦门)有限公司 | Fuel cell stack differential pressure type air leakage testing device and testing method |
CN112164813A (en) * | 2020-09-25 | 2021-01-01 | 中国科学院大连化学物理研究所 | A device for online measurement of air leakage of permeable bipolar plates |
CN113063556A (en) * | 2021-04-21 | 2021-07-02 | 上海神力科技有限公司 | Leakage detection method for bipolar plate in fuel cell stack |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475651B1 (en) * | 2000-07-31 | 2002-11-05 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells |
US6638650B1 (en) * | 2000-09-29 | 2003-10-28 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells and fuel cell stacks |
US20050003245A1 (en) * | 2000-12-06 | 2005-01-06 | Arno Mattejat | Method for recognition of a leak in a fuel cell |
JP2007200864A (en) * | 2006-01-27 | 2007-08-09 | Samsung Sdi Co Ltd | Bipolar plates and fuel cells |
CN201218769Y (en) * | 2008-04-22 | 2009-04-08 | 汉能科技有限公司 | A fuel cell membrane electrode leak detector |
CN101697005A (en) * | 2009-10-27 | 2010-04-21 | 新源动力股份有限公司 | Method for rapidly detecting hydrogen and oxygen series of fuel cell stack |
CN101740793A (en) * | 2008-11-11 | 2010-06-16 | 南亚电路板股份有限公司 | Fuel cell system and method for detecting hydrogen leakage of fuel cell |
CN102222796A (en) * | 2010-04-16 | 2011-10-19 | 中国科学院大连化学物理研究所 | Proton exchange membrane fuel cell structure for measuring oxygen concentration distribution |
CN103163470A (en) * | 2011-12-19 | 2013-06-19 | 中国科学院大连化学物理研究所 | Reliability detection method of integrated generative fuel battery pack |
-
2013
- 2013-12-13 CN CN201310691208.8A patent/CN104713689A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475651B1 (en) * | 2000-07-31 | 2002-11-05 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells |
US6638650B1 (en) * | 2000-09-29 | 2003-10-28 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells and fuel cell stacks |
US20050003245A1 (en) * | 2000-12-06 | 2005-01-06 | Arno Mattejat | Method for recognition of a leak in a fuel cell |
JP2007200864A (en) * | 2006-01-27 | 2007-08-09 | Samsung Sdi Co Ltd | Bipolar plates and fuel cells |
CN201218769Y (en) * | 2008-04-22 | 2009-04-08 | 汉能科技有限公司 | A fuel cell membrane electrode leak detector |
CN101740793A (en) * | 2008-11-11 | 2010-06-16 | 南亚电路板股份有限公司 | Fuel cell system and method for detecting hydrogen leakage of fuel cell |
CN101697005A (en) * | 2009-10-27 | 2010-04-21 | 新源动力股份有限公司 | Method for rapidly detecting hydrogen and oxygen series of fuel cell stack |
CN102222796A (en) * | 2010-04-16 | 2011-10-19 | 中国科学院大连化学物理研究所 | Proton exchange membrane fuel cell structure for measuring oxygen concentration distribution |
CN103163470A (en) * | 2011-12-19 | 2013-06-19 | 中国科学院大连化学物理研究所 | Reliability detection method of integrated generative fuel battery pack |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109932132A (en) * | 2017-12-15 | 2019-06-25 | 中国科学院大连化学物理研究所 | A test leak detection device and application of a fuel cell membrane electrode |
CN109932132B (en) * | 2017-12-15 | 2021-06-08 | 中国科学院大连化学物理研究所 | A test leak detection device and application of a fuel cell membrane electrode |
CN109167088A (en) * | 2018-09-04 | 2019-01-08 | 新源动力股份有限公司 | Leakage detection method for bipolar plate in fuel cell stack |
CN109253850A (en) * | 2018-11-27 | 2019-01-22 | 安徽明天氢能科技股份有限公司 | A kind of fuel battery double plates water cavity device for detecting sealability and its detection method |
CN109253850B (en) * | 2018-11-27 | 2023-09-19 | 安徽明天氢能科技股份有限公司 | Fuel cell bipolar plate water cavity tightness detection device |
CN111342077A (en) * | 2018-11-30 | 2020-06-26 | 中国科学院大连化学物理研究所 | Method for storing water-permeable bipolar plate proton exchange membrane fuel cell |
CN111342077B (en) * | 2018-11-30 | 2021-04-02 | 中国科学院大连化学物理研究所 | A kind of preservation method of permeable bipolar plate proton exchange membrane fuel cell |
CN111261907A (en) * | 2018-12-03 | 2020-06-09 | 中国科学院大连化学物理研究所 | A fuel cell system with water pressure regulating function |
CN110336058A (en) * | 2019-07-26 | 2019-10-15 | 武汉众宇动力系统科技有限公司 | A fuel cell stack detection method and detection device |
CN110336058B (en) * | 2019-07-26 | 2020-10-02 | 武汉众宇动力系统科技有限公司 | A fuel cell stack detection method and detection device |
CN111157198B (en) * | 2019-12-31 | 2022-04-01 | 上海神力科技有限公司 | Method for detecting membrane electrode series leakage and bipolar plate series leakage in fuel cell stack |
CN111157198A (en) * | 2019-12-31 | 2020-05-15 | 上海神力科技有限公司 | Method for detecting membrane electrode series leakage and bipolar plate series leakage in fuel cell stack |
CN111982420A (en) * | 2020-08-18 | 2020-11-24 | 氢岛新能源科技(厦门)有限公司 | Fuel cell stack differential pressure type air leakage testing device and testing method |
CN112164813B (en) * | 2020-09-25 | 2021-09-24 | 中国科学院大连化学物理研究所 | A device and method for online measurement of air leakage of permeable bipolar plate |
CN112164813A (en) * | 2020-09-25 | 2021-01-01 | 中国科学院大连化学物理研究所 | A device for online measurement of air leakage of permeable bipolar plates |
CN113063556A (en) * | 2021-04-21 | 2021-07-02 | 上海神力科技有限公司 | Leakage detection method for bipolar plate in fuel cell stack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104713689A (en) | Gas leakage detection method of permeable bipolar plate in proton exchange membrane fuel cell stack | |
CN101697005B (en) | A rapid detection method for fuel cell stack hydrogen-oxygen cross-gas | |
CN103900773B (en) | A fuel cell stack online gas tightness detection device and method | |
CN103063375A (en) | An online test method for studying the assembly force and sealing performance of fuel cell stacks | |
CN102165637B (en) | Fuel cell system and method of detecting abnormality of fuel cell system | |
CN109990952A (en) | A kind of fuel cell pile membrane electrode string leak detection system and method | |
CN108075156B (en) | Membrane electrode air leakage position detection device and searching method | |
CN113063556B (en) | Leakage detection method for bipolar plate in fuel cell stack | |
CN103163470B (en) | Reliability detection method of integrated generative fuel battery pack | |
CN102087161A (en) | A fuel cell bipolar plate water cavity air tightness detection device and detection method | |
CN111157198B (en) | Method for detecting membrane electrode series leakage and bipolar plate series leakage in fuel cell stack | |
KR100940233B1 (en) | Apparatus for detecting leak in fuel cells | |
CN109883625A (en) | A kind of fuel cell leaks hunting and running-in testing method | |
KR20160016967A (en) | Health monitoring of an electrochemical cell stack | |
CN111982420B (en) | Fuel cell stack differential pressure type air leakage testing device and testing method | |
CN203178047U (en) | Rapid air tightness detection device for fuel cell stack | |
CN113394432A (en) | Method for detecting leakage position in cooling liquid flow field of fuel cell stack | |
CN115046705A (en) | Hydrogen fuel single cell air leakage testing equipment | |
US6874352B2 (en) | Method and apparatus for locating internal transfer leaks within fuel cell stacks | |
CN114512694A (en) | A detection method and maintenance method of bipolar plate leakage in a fuel cell stack | |
JP6160476B2 (en) | Fuel cell gas leak inspection system | |
JP2007042406A (en) | Method for detecting crack in fuel cell separator and method for manufacturing fuel cell stack | |
JP2005524951A (en) | PEM fuel cell gas leak detection method | |
CN216869899U (en) | A fuel cell metal bipolar plate water cavity pressure tolerance testing tool | |
JP2009259519A (en) | Fuel cell system and cross leak detecting method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150617 |