CN104711442A - Method for manufacturing hard alloy by 3D printing - Google Patents

Method for manufacturing hard alloy by 3D printing Download PDF

Info

Publication number
CN104711442A
CN104711442A CN201510107078.8A CN201510107078A CN104711442A CN 104711442 A CN104711442 A CN 104711442A CN 201510107078 A CN201510107078 A CN 201510107078A CN 104711442 A CN104711442 A CN 104711442A
Authority
CN
China
Prior art keywords
hard alloy
printing
organic binder
powder
binder bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510107078.8A
Other languages
Chinese (zh)
Other versions
CN104711442B (en
Inventor
林涛
王志
邵慧萍
韩宇超
何新波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201510107078.8A priority Critical patent/CN104711442B/en
Publication of CN104711442A publication Critical patent/CN104711442A/en
Application granted granted Critical
Publication of CN104711442B publication Critical patent/CN104711442B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention relates a method for manufacturing hard alloy by 3D printing. The method comprises the following steps: wet-grinding and mixing of hard alloy raw material powder and an organic binding agent, spray-drying granulation, extrusion into wires, 3D printing formation and dewaxing sintering. The method is used for manufacturing a hard alloy part in a complex shape by virtue of 3D printing formation, so that the application range of the hard alloy is greatly expanded. Compared with an existing 3D printing method, the raw material powder is easy to prepare, formed blank bodies are uniform, and waste of the powder cannot be caused. At the same time, the method is close to a conventional hard alloy production method, so that industrialized production is conveniently realized and the manufacturing cost is relatively low.

Description

A kind of 3D prints the method manufacturing Wimet
Technical field
The invention belongs to 3D printing technique field, be specifically related to 3D and print the method manufacturing Wimet.
Background technology
Wimet is for main component with the carbide of high rigidity refractory metal (wolfram varbide, titanium carbide) powder, with cobalt (Co) or nickel (Ni), molybdenum (Mo) for binding agent, the sintered metal product sintered in vacuum oven or hydrogen reducing furnace.Wimet has that hardness is high, wear-resisting, intensity and a series of premium properties such as toughness is better, heat-resisting, corrosion-resistant, particularly its high rigidity and wear resistance, even if also substantially remain unchanged at the temperature of 500 DEG C, very high hardness is still had, because it has very high hardness and wear resistance 1000 DEG C time.Inserted tool, tool and mould, wear part have a wide range of applications in industries such as automobile, boats and ships, aircraft, motor, electron device, super large-scale integration, precision machine tool, metallurgy, mining, petroleum prospectings, its appearance makes mechanical workout create revolutionary progress, is described as " tooth of industry ".
Because Cemented Carbide Hardness is high, process very difficult, can only adopt grinding, the mode of electromachining carries out, therefore Wimet adopts powder metallurgic method manufacture, is shaped and sintering.But in actual demand, still have the part that some are complex-shaped, adopt die forming difficulty, or cannot die forming be adopted at all, which limits the application of Wimet.Can be used in the method manufacturing complicated shape part, as injection forming, slurry casting, gel casting, all need to manufacture complicated die, improve part manufacturing cost.Further, its part complexity also has limitation.
The appearance of 3D printing technique, provides a kind of effective means for manufacturing complex-shaped part.Compared with traditional manufacturing technology, 3D prints need not mfg. moulding die in advance, need not remove a large amount of materials in the fabrication process, also just need not can obtain complex-shaped the finished product by the technique of complexity, therefore, production on can implementation structure optimization, save material and save the energy.3D printing technique is suitable for new product development, quick-acting single and parts in small batch manufacture, the manufacture of complicated shape part, the design and manufaction etc. of mould, is also suitable for the manufacture of difficult-to-machine material, configuration design inspection, assembly test and rapid reaction engineering.Therefore, 3D printing industry receives to be paid close attention to both at home and abroad more and more widely, will become next tool sunrise industry with broad prospects for development.
In 3D prints, metal-powder directly can print and sinter final part into by precinct laser sintering (SLS) or electron beam selective melting (EBM), to have succeeded application for metal titanium and stainless steel.But for the matrix material that this two kinds of character of Wimet difference is larger, wherein WC belongs to ceramic-like, and fusing point is high; And Co belongs to metal, fusing point is low.Although the temperature that laser reaches is enough to WC to melt, when reaching WC temperature of fusion, Co can evaporate, and solidifies rear alloy structure and cannot meet requirement as Wimet.As sintering temperature controls only make Co melt, because sintering cemented carbide needs to maintain certain hour in liquid phase, this can cause shaped structure to cave in SLS or EBM.And the sintering of Wimet has very high requirement for the control of density and carbon content, and this also cannot realize in SLS or EBM.
In 3D prints, fuse method of piling (FDM) method is one technique the most easily, and along with technical progress, its index such as 3D printing-forming precision and surface smoothness also all reaches higher level.Existing FDM is the organic articles such as formable plastics.
Summary of the invention
For overcoming the deficiency of existing Wimet manufacture method and 3D Method of printing, the invention provides a kind of 3D and printing the method manufacturing Wimet.
Technical scheme of the present invention is to provide a kind of 3D and prints the method manufacturing Wimet, it is characterized in that comprising the steps:
Hard alloy material powder and organic binder bond wet-milling are mixed and obtain slip, the content of described organic binder bond is 40 ~ 55vol.%;
Described slip spray-drying process is obtained granular mixture;
Described compound is squeezed into a material;
Described silk material is loaded 3D printer printing-forming and obtain base substrate;
Described base substrate dewaxing and sintering is obtained end article.
Further, described organic binder bond comprises one or both in paraffin and polyoxyethylene glycol, polyethylene, polypropylene, polyvinyl alcohol.
Further, in described organic binder bond, the ratio of paraffin is 28 ~ 38wt.%.
Compared with existing Wimet manufacture method, such as mold pressing, isostatic pressed, injection forming, extrusion molding, the present invention prints by 3D can manufacture the more complicated hard metal article of shape, has greatly expanded the range of application of existing Wimet.And eliminate Making mold, save manufacturing cost.
Compared with existing Wimet manufacture method, the density of the complicated shape base substrate that the inventive method is shaped is more even, and the dimensional precision of final sintered article is higher.Existing manufacture method is all by die forming, and when powder and contacting dies, because frictional force exists, all for causing the surperficial and inner difference that there is blank density, by the goods of final sintering, this species diversity reflects that contraction is uneven, dimensional precision is low.
Compared with existing 3D Method of printing, the inventive method raw material powder is easily prepared, and can not cause the waste of powder.Particular requirement is not had for raw material powder, directly can use the raw material in existing hard carbide industry.And very high requirement is not had yet for the grain graininess after compound spraying dry and shape, identical with present hard carbide industry.And in existing powder 3D printing technique, in order to meet the conveying of powder, high to the requirement of the granularity of powder, size-grade distribution and shape, manufacture difficulty, cost is high.
In sum, method of the present invention and conventional rigid alloy preparation method close, be convenient to cemented carbide with complicated shape goods and realize suitability for industrialized production, manufacturing cost is lower.
Embodiment
Cemented Carbide Hardness is high, intensity is large, is very important tool die material and high-abrasive material.Traditional Wimet manufacture method is powder metallurgic method, mixes, adds organic binder bond granulation, press forming, degreasing sintered by ceramic phase WC with metallographic phase Co.Once sinter, Wimet has been difficult to processing, usually needs diamond tool grinding and electromachining mode.Therefore, Wimet is shaped and will reaches end article shape and size as far as possible after sintering.
The fuse sedimentation of 3D printing technique, it is equipment and process the most a kind of method in 3D printing technique, by fuse sedimentation for the preparation of cemented carbide with complicated shape, the suitability for industrialized production of complicated shape goods can be realized at lower cost, reach commodity practical.
In existing fuse sedimentation, employing be the silk material of Plastic material.Therefore, in the inventive method, in order to the fuse sedimentation realizing Wimet is shaped, just need to prepare be applicable to fuse sedimentation and silk material containing hard alloy material.
Therefore, in method of the present invention, first cemented carbide powder is mixed with organic binder bond ball milling, during ball milling, add organic solvent.Wherein the content of organic binder bond is 40 ~ 55vol.%, and the content of organic binder bond is very few, is difficult to fusing and gets off, and 3D process cannot be carried out continuously.And the defect such as shaping base substrate mesoporosity is more.When organic binder content is too much, sintering process is shunk large, and be easily out of shape, the density of end article does not reach requirement.
Organic binder bond comprise in paraffin and polyoxyethylene glycol, polyethylene, polypropylene, polyvinyl alcohol one or both.Paraffin melting point is low, and after fusing, viscosity is little, but its intensity is low, and it can not obtain separately the silk material of sufficient intensity as binding agent.These melting points of organic compounds of polyoxyethylene glycol, polyethylene, polypropylene, polyvinyl alcohol are high, and viscosity is large, and after being mixed into powder, viscosity can be larger, is difficult to continuous melting and piles up.Therefore will combinationally use both it.Preferably, in organic binder bond, the ratio of paraffin is 28 ~ 38wt.%.
Add liquid spheres grinding media by when above-mentioned cemented carbide powder and organic binder bond ball milling, such as alcohol, gasoline, dimethylbenzene etc., make all materials mix, and play the effect of protection material.
Liquid spheres grinding media is evaporated by slip spray drying device good for ball milling, and the particle simultaneously making dry materials become larger, make material have good mobility.Then be squeezed into a material with extrusion machine, be piled into Wimet base substrate for 3D printer fuse.Wimet base substrate becomes final hard metal article after dewaxing and sintering.
Below in conjunction with specific embodiment, the present invention is further elaborated.
Embodiment 1
WC powder and Co powder and paraffin, polyethylene are loaded ball milling bucket, the wherein content 55vol.% of organic binder bond in all materials, paraffin and poly weight ratio are 28:72, and add alcohol and carry out ball milling, raw material powder and organic binder bond wet-milling is mixed obtains slip; Described slip spray-drying process is obtained granular mixture; Described compound is squeezed into a material; Described silk material is loaded fuse sedimentation 3D printer printing-forming and obtain base substrate; Described base substrate dewaxing and sintering is obtained end article.
Embodiment 2
WC powder and Co powder and paraffin, polypropylene are loaded ball milling bucket, the wherein content 40vol.% of organic binder bond in all materials, paraffin and poly weight ratio are 38:62, and add alcohol and carry out ball milling, raw material powder and organic binder bond wet-milling is mixed obtains slip; Described slip spray-drying process is obtained granular mixture; Described compound is squeezed into a material; Described silk material is loaded fuse sedimentation 3D printer printing-forming and obtain base substrate; Described base substrate dewaxing and sintering is obtained end article.
Embodiment 3
WC powder and Co powder and paraffin, polyoxyethylene glycol, polyethylene are loaded ball milling bucket, the wherein content 50vol.% of organic binder bond in all materials, paraffin, polyoxyethylene glycol, poly weight ratio are 30:25:45, and add alcohol and carry out ball milling, raw material powder and organic binder bond wet-milling is mixed obtains slip; Described slip spray-drying process is obtained granular mixture; Described compound is squeezed into a material; Described silk material is loaded fuse sedimentation 3D printer printing-forming and obtain base substrate; Described base substrate dewaxing and sintering is obtained end article.
Embodiment 4
WC powder and Co powder and paraffin, polyoxyethylene glycol, polypropylene are loaded ball milling bucket, the wherein content 45vol.% of organic binder bond in all materials, paraffin, polyoxyethylene glycol, polyacrylic weight ratio are 35:25:40, and add alcohol and carry out ball milling, raw material powder and organic binder bond wet-milling is mixed obtains slip; Described slip spray-drying process is obtained granular mixture; Described compound is squeezed into a material; Described silk material is loaded fuse sedimentation 3D printer printing-forming and obtain base substrate; Described base substrate dewaxing and sintering is obtained end article.
Embodiment 5
WC powder and Co powder and paraffin, polyvinyl alcohol, polyethylene are loaded ball milling bucket, the wherein content 45vol.% of organic binder bond in all materials, paraffin, polyvinyl alcohol, poly weight ratio are 35:20:45, and add alcohol and carry out ball milling, raw material powder and organic binder bond wet-milling is mixed obtains slip; Described slip spray-drying process is obtained granular mixture; Described compound is squeezed into a material; Described silk material is loaded fuse sedimentation 3D printer printing-forming and obtain base substrate; Described base substrate dewaxing and sintering is obtained end article.
Further, the inventive method is also suitable for the matrix material of metal, pottery or metal and pottery.Such as, the metallic substance such as stainless steel, titanium alloy, aluminium alloy, the stupalith such as alumina-ceramic, zirconia ceramics, and the ceramic-metal composite such as TiC-Ni/Mo, SiC-Al, can adopt the inventive method to manufacture these complex-shaped, difficult to machine materials easily.

Claims (3)

1. 3D prints the method manufacturing Wimet, it is characterized in that comprising the steps:
Hard alloy material powder and organic binder bond wet-milling are mixed and obtain slip, the content of described organic binder bond is 40 ~ 55vol.%;
Described slip spray-drying process is obtained granular mixture;
Described compound is squeezed into a material;
Described silk material is loaded 3D printer printing-forming and obtain base substrate;
Described base substrate degreasing sintering is obtained end article.
2. 3D prints and manufactures the method for Wimet according to claim 1, it is characterized in that described organic binder bond comprises in paraffin and polyoxyethylene glycol, polyethylene, polypropylene, polyvinyl alcohol one or both.
3. 3D prints the method manufacturing Wimet according to claim 1, it is characterized in that the ratio of paraffin in described organic binder bond is 28 ~ 38wt.%.
CN201510107078.8A 2015-03-11 2015-03-11 A kind of 3D prints the method manufacturing hard alloy Active CN104711442B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510107078.8A CN104711442B (en) 2015-03-11 2015-03-11 A kind of 3D prints the method manufacturing hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510107078.8A CN104711442B (en) 2015-03-11 2015-03-11 A kind of 3D prints the method manufacturing hard alloy

Publications (2)

Publication Number Publication Date
CN104711442A true CN104711442A (en) 2015-06-17
CN104711442B CN104711442B (en) 2016-11-30

Family

ID=53411157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510107078.8A Active CN104711442B (en) 2015-03-11 2015-03-11 A kind of 3D prints the method manufacturing hard alloy

Country Status (1)

Country Link
CN (1) CN104711442B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057669A (en) * 2015-08-17 2015-11-18 王海英 Three-dimensional printing device and composite spraying head thereof
CN105057664A (en) * 2015-08-14 2015-11-18 东莞劲胜精密组件股份有限公司 3D (Three Dimensional) printing powder material and 3D printing method
CN105499570A (en) * 2015-12-25 2016-04-20 吉林大学 3D printing method of metal ceramic functional gradient part in alternating magnetic field
CN105562696A (en) * 2016-01-11 2016-05-11 江西理工大学 Metal 3D printing method
CN105772727A (en) * 2016-04-11 2016-07-20 吉林大学 3D printing forming method for metal material gradient parts
CN105798295A (en) * 2016-03-22 2016-07-27 西安铂力特激光成形技术有限公司 Preparation method for molybdenum and molybdenum alloy part
CN105880583A (en) * 2016-04-18 2016-08-24 四川大学 Composite wire for manufacturing titanium product through 3D printing and preparation method of composite wire
CN106493349A (en) * 2016-02-19 2017-03-15 珠海天威飞马打印耗材有限公司 3 D-printing material, FDM three-dimensional printers and its Method of printing
CN107699283A (en) * 2017-11-03 2018-02-16 河源富马硬质合金股份有限公司 A kind of preparation method of high wax than carbide paraffin raw material
CN108356260A (en) * 2018-04-04 2018-08-03 北京工业大学 A kind of 3D printing manufacturing method of hard alloy special-shaped product
CN108472726A (en) * 2015-12-21 2018-08-31 第六元素公司 The method for manufacturing cemented carbide material
WO2018214612A1 (en) * 2017-05-23 2018-11-29 昆山卡德姆新材料科技有限公司 Feed material for 3d printing, and preparation method and usage thereof
CN110312582A (en) * 2016-12-14 2019-10-08 德仕托金属有限公司 Material system for increasing material manufacturing
CN111360247A (en) * 2020-03-18 2020-07-03 丽水学院 Low-cost titanium-aluminum intermetallic compound indirect 3D printing method
US11465209B2 (en) 2018-05-10 2022-10-11 Stackpole International Powder Metal LLC Binder jetting and supersolidus sintering of ferrous powder metal components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433219B2 (en) * 1998-11-17 2003-08-04 独立行政法人産業技術総合研究所 Manufacturing method of metal or ceramic products
CN1693016A (en) * 2005-03-14 2005-11-09 深圳大学 Quick mfg. method for powder metallurgy formation
CN103769587A (en) * 2013-11-28 2014-05-07 王利民 Method and device for producing metal 3D printing method product
CN103769586A (en) * 2013-11-26 2014-05-07 王利民 Metal 3D printing product production method by means of low-power laser sintering
US20150367375A1 (en) * 2014-06-19 2015-12-24 Autodesk, Inc. Material deposition systems with four or more axes
US20150367571A1 (en) * 2014-06-20 2015-12-24 Yasusi Kanada 3D printing method that enables arraying horizontal filaments without support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433219B2 (en) * 1998-11-17 2003-08-04 独立行政法人産業技術総合研究所 Manufacturing method of metal or ceramic products
CN1693016A (en) * 2005-03-14 2005-11-09 深圳大学 Quick mfg. method for powder metallurgy formation
CN103769586A (en) * 2013-11-26 2014-05-07 王利民 Metal 3D printing product production method by means of low-power laser sintering
CN103769587A (en) * 2013-11-28 2014-05-07 王利民 Method and device for producing metal 3D printing method product
US20150367375A1 (en) * 2014-06-19 2015-12-24 Autodesk, Inc. Material deposition systems with four or more axes
US20150367571A1 (en) * 2014-06-20 2015-12-24 Yasusi Kanada 3D printing method that enables arraying horizontal filaments without support

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王运赣等: "《3D打印技术》", 31 July 2014, 武汉:华中科技大学出版社 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057664A (en) * 2015-08-14 2015-11-18 东莞劲胜精密组件股份有限公司 3D (Three Dimensional) printing powder material and 3D printing method
CN105057664B (en) * 2015-08-14 2017-10-10 东莞劲胜精密组件股份有限公司 A kind of 3D printing powder and 3D printing method
CN105057669B (en) * 2015-08-17 2017-05-03 王海英 Three-dimensional printing device and composite spraying head thereof
CN105057669A (en) * 2015-08-17 2015-11-18 王海英 Three-dimensional printing device and composite spraying head thereof
CN108472726A (en) * 2015-12-21 2018-08-31 第六元素公司 The method for manufacturing cemented carbide material
US10946445B2 (en) 2015-12-21 2021-03-16 Element Six Gmbh Method of manufacturing a cemented carbide material
CN113477921A (en) * 2015-12-21 2021-10-08 第六元素公司 Method for manufacturing hard alloy material
CN105499570A (en) * 2015-12-25 2016-04-20 吉林大学 3D printing method of metal ceramic functional gradient part in alternating magnetic field
CN105562696A (en) * 2016-01-11 2016-05-11 江西理工大学 Metal 3D printing method
CN106493349A (en) * 2016-02-19 2017-03-15 珠海天威飞马打印耗材有限公司 3 D-printing material, FDM three-dimensional printers and its Method of printing
CN105798295A (en) * 2016-03-22 2016-07-27 西安铂力特激光成形技术有限公司 Preparation method for molybdenum and molybdenum alloy part
CN105772727A (en) * 2016-04-11 2016-07-20 吉林大学 3D printing forming method for metal material gradient parts
CN105880583A (en) * 2016-04-18 2016-08-24 四川大学 Composite wire for manufacturing titanium product through 3D printing and preparation method of composite wire
CN110312582A (en) * 2016-12-14 2019-10-08 德仕托金属有限公司 Material system for increasing material manufacturing
JP2019524981A (en) * 2017-05-23 2019-09-05 クンシャン・カドム・ニュー・マテリアル・テクノロジー・カンパニー・リミテッドKunshan Kadam New Material Technology Co., Ltd. 3D printing material and its preparation and use
WO2018214612A1 (en) * 2017-05-23 2018-11-29 昆山卡德姆新材料科技有限公司 Feed material for 3d printing, and preparation method and usage thereof
CN107699283B (en) * 2017-11-03 2020-11-06 河源富马硬质合金股份有限公司 Preparation method of hard alloy paraffin raw material with high wax ratio
CN107699283A (en) * 2017-11-03 2018-02-16 河源富马硬质合金股份有限公司 A kind of preparation method of high wax than carbide paraffin raw material
CN108356260A (en) * 2018-04-04 2018-08-03 北京工业大学 A kind of 3D printing manufacturing method of hard alloy special-shaped product
US11465209B2 (en) 2018-05-10 2022-10-11 Stackpole International Powder Metal LLC Binder jetting and supersolidus sintering of ferrous powder metal components
CN111360247A (en) * 2020-03-18 2020-07-03 丽水学院 Low-cost titanium-aluminum intermetallic compound indirect 3D printing method

Also Published As

Publication number Publication date
CN104711442B (en) 2016-11-30

Similar Documents

Publication Publication Date Title
CN104711442A (en) Method for manufacturing hard alloy by 3D printing
Thompson et al. Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel
KR101806252B1 (en) Three dimensional printing method using metal powder-containing composition
EP2900404B1 (en) Methods of forming a metallic or ceramic article having a novel composition of functionally graded material
Zhang et al. Additive manufacturing of WC-20Co components by 3D gel-printing
CN104907567B (en) A kind of method for preparing high-density complicated shape cemented carbide parts and cutter
US10047216B2 (en) Binder for injection moulding compositions
CN100419105C (en) Metal ceramic material and formation technology
CN104213030B (en) A kind of injection forming alloy powder and the application in automobile gearbox sliding sleeve thereof
CN104946914B (en) A kind of forming method of Metal Substrate functional gradient composite materials
CN102965558B (en) Method for industrial production of high-property ultra-fine crystal extruded bar material
CN103586457B (en) A kind of Powder metallurgy tool
CN104874797A (en) Method for molding hard alloy functionally gradient materials
KR101761649B1 (en) Metal powder-containing composition for three dimensional printing
CN104972129A (en) Method for manufacturing iron-based alloy part
Parenti et al. Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling
KR100650409B1 (en) Manufacturing method of complex-shaped workpiece using powder injection molding and workpiece therefrom
Jucan et al. Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts
CN109926589A (en) The injection moulding method and mold of ultra-fine cemented carbide CNC turning tool
CN113426997A (en) High-specific-gravity tungsten-nickel-iron alloy and laser additive manufacturing method thereof
CN113458387A (en) 3D printing gradient ceramic metal material and preparation method thereof
CN108607989A (en) The ejection forming method of abnormal complex part
CN105316505A (en) Manufacturing method for abrasion-resistant cemented carbide
CN108115141A (en) A kind of ejection forming method of Ultra-fine WC-Co Cemented Carbide
KR100678590B1 (en) Multi-layer material and Munufacturing method therefor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant