CN104699132A - 一种水下浮体的安装方法 - Google Patents

一种水下浮体的安装方法 Download PDF

Info

Publication number
CN104699132A
CN104699132A CN201510038980.9A CN201510038980A CN104699132A CN 104699132 A CN104699132 A CN 104699132A CN 201510038980 A CN201510038980 A CN 201510038980A CN 104699132 A CN104699132 A CN 104699132A
Authority
CN
China
Prior art keywords
buoyant body
underwater buoyant
speed
buoyancy
lower water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510038980.9A
Other languages
English (en)
Other versions
CN104699132B (zh
Inventor
赵耀
潘泽华
严俊
李元泰
王宇
张增胤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201510038980.9A priority Critical patent/CN104699132B/zh
Publication of CN104699132A publication Critical patent/CN104699132A/zh
Application granted granted Critical
Publication of CN104699132B publication Critical patent/CN104699132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明公开了一种水下浮体的新型安装方法,将下水过程分为速度调整和自由下水两个阶段,在速度调整阶段,依据建立的不同重力浮力差的下水曲线数据库为指导,通过浮力设定以及不断的监测与反馈调整,使浮体在规定入水距离内到达目标速度,调整重力浮力差为零,进入自由下水阶段;在自由下水阶段,浮体仅在水体阻力作用下作减速运动,最终在速度为零时到达指定深度,完成整个下水过程,本方法具有操作简单、安全可控、成本低廉等优点。

Description

一种水下浮体的安装方法
技术领域
本发明涉及一种水下浮体的安装方法,特别涉及一种大型或超大型耐压水下浮体的安装方法。
背景技术
浮式生产储卸装置(FPSO)是一种重要的海洋油气资源开发设备,由于深水FPSO的支撑结构的水下立管管路长、质量大、受涡激振作用强,为保障主船体结构的强度、刚度及稳定性等结构安全,通常在水下一定深度设置若干水下浮体,用以支撑来自深海海底的管线,减轻深水立管对FPSO的负载作用。水下浮体通常为非耐压结构,因而在下水安装过程中,需要随着入水深度的递增而逐段进行充气增压,以平衡递增的水压,因此整个入水过程是分段进行的。这种分段入水安装方法增加了入水控制点,可及时调节浮体位置和姿态,因而安装过程具有较高的可控性和准确度,但是,分段入水安装方法需要在过程中不断地充气增压、调整姿态,使安装过程过于复杂,安装时间显著延长,造成过高的操作成本和安装风险。特别是随着技术的发展,水下浮体的结构趋于大型化、入水趋于深海化,分段入水安装方法的缺陷日益明显。
针对非耐压水下浮体的缺陷,武汉武船海洋工程船舶设计有限公司公开的实用新型ZL201320416941.4中提出了一种耐压水下浮体,在浮体内部设置了耐压舱,并在非耐压分舱中加入了透气系统和通水系统,使得浮体在下水过程中无需压力调整和姿态调整操作,浮体在牵引系统作用下一次性下水至指定尝试,从而缩短了安装时间,降低了安装成本。但是,上述专利仍然存在明显的缺陷与不足:浮体入水过程受到重力、浮力、牵引力、水体阻力等多个力的作用,其中水体阻力受到风浪影响变化较大,浮体入水过程为变速运动,运动规律难以掌握控制,使牵引设备一次性地将浮体牵引至指定深度并且同时速度为零的控制难度较大,虽然有自动控制系统通过不断的测量、反馈和调整改变浮体的运动状态,但仍然难以达到满意的控制效果,并且控制成本较高。显然,对于耐压水下浮体的安装需要一种操作更简单并且更安全可控的操作方法。
发明内容
本发明旨在克服现有技术的水下浮体安装方法存在的一次性下水的控制难度大、控制成本高、安装风险大等缺陷与不足,提供一种水下浮体的新型安装方法,将下水过程分为速度调整和自由下水两个阶段,在不同重力浮力差的下水曲线数据库的指导下,在速度调整阶段使浮体在规定入水距离内到达目标速度,并调整重力浮力差为零,在自由下水阶段内仅在水体阻力作用下作减速运动,最终在速度为零时到达指定深度,完成整个下水过程,本方法具有操作简单、安全可控、成本低廉等优点。
本发明为实现技术目的采用的技术方案是:一种水下浮体的安装方法,包括以下步骤:
1)建立不同重力浮力差的水下浮体的下水曲线数据库;
2)确定速度调整阶段的下水距离S1和临界速度V,根据浮体的即时安装环境和自身浮力调整能力确定S1,总下水距离S减去S1后得到自由下水阶段的下水距离S2,然后在重力浮力差为零的下水曲线上选取目标点,所述目标点到曲线终点的水平距离等于S2,所述目标点对应的速度即为临界速度V;
3)确定预设重力浮力差C,查找下水曲线数据库,找到预设下水曲线Q,所述预设下水曲线Q上的下水深度等于S1时、下水速度正好等于临界速度V,所述预设下水曲线Q对应的浮体重力浮力差即为预设重力浮力差C;
4)调整水下浮体的浮力,使水下浮体的重力浮力差等于预设重力浮力差C,牵引水下浮体下水进入速度调整阶段;
5)在速度调整阶段,监测系统不断监测水下浮体的实测深度和实测速度并传输至控制系统,控制系统将实测深度和实测速度与预设下水曲线Q进行对比,当实测速度不等于预设下水曲线上对应深度的对应速度时,再次查找下水曲线数据库,找到另一条预设下水曲线Q’,所述预设下水曲线Q’中的下水速度由水下浮体的实测速度降为临界速度V所需的下水深度,正好等于水下浮体的速度调整阶段的剩余深度,所述下水曲线Q’对应的浮力重力差即为新的预设重力浮力差C’,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新设重力浮力差C’,水下浮体继续下水;
6)当水下浮体下降至速度调整阶段的终点时,水下浮体的实测速度正好等于临界速度V,控制系统调整水下浮体的浮力,使得水下浮体的重力浮力差为零,水下浮体进入自由下水阶段;
7)水下浮体在水体阻力作用下减速下水,当速度为零时正好到达指定的下水深度,完成水下浮体安装。
一种水下浮体的安装方法,所述步骤5)还包括步骤5-1)~5-2):
5-1)当水下浮体的实测速度不等于预设下水曲线Q上对应深度的对应速度,并且由于剩余下水深度过短而在下水曲线数据库中不能找到满足要求的新的预设下水曲线Q’时,则增大下水距离S1至S1’,并计算得到新的自由下水阶段的下水距离S2’,再通过重力浮力差为零的下水曲线确定新的临界速度V’;
5-2)再次查找下水曲线数据库,找到另一条预设下水曲线Q”,所述预设下水曲线Q”中的下水速度由水下浮体的实测速度降为临界速度V’所需的下水深度,正好等于水下浮体的下水距离S1’的剩余深度,所述预设下水曲线Q”对应的浮力重力差即为新的预设重力浮力差C”,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新的预设重力浮力差C”,水下浮体继续入水。
一种水下浮体的安装方法,还包括步骤8):8)根据水下浮体结构所允许的最大下水深度和安全系数,确定水下浮体对应下水深度的最大速度,得到水下浮体的安全带曲线,在水下浮体的整个下水过程中,监测系统不断地监测水下浮体的实测深度和实测速度并传输至控制系统,当检测到水下浮体的实测速度大于安全带曲线上对应下水深度的对应速度时,控制系统调整浮力至到最大值,使水下浮体上浮至水面,从步骤4)开始重新安装。
与现有技术相比,本发明的优点在于:
1、本发明的安装方法将下水过程分为速度调整和自由下水两个阶段,并将两个阶段的分界点作为控制点,控制浮体在分界点处的速度等于目标速度,以及控制重力浮力差为零,从而控制浮体的下水速度和下水深度,与一次性下水的方法相比,大大增强了浮体下水的可控性和安全性。
2、本发明的安装方法将下水过程分为速度调整和自由下水两个阶段,理论上而言,浮体在速度调整阶段正常完成后无须进行其他操作便可自由下水,直至预定水深处。与逐段下水相比,本发明的方法在保证安全性和可控性的基础上,简化了下水过程,从而提高了安装效率,间接地降低了安装成本。
3、本发明的安装方法,以不同重力浮力差的下水曲线数据库为指导,通过浮力设定与调整控制下水速度,并通过不断的监测与反馈进行及时的调整,整个下水过程控制精准、安全可靠,能适应各种安装环境和突发情况。
4、本发明的安装方法中设置了最大下水速度限值,确保浮体整个安装过程不会超过预定水深位置,防止出现较大水深造成浮体结构破坏的后果,保障了浮体结构安全。
附图说明
图1是本发明的水下浮体安装方法的示意图。
图2是水下浮体在重力浮力差为零时的下水曲线图;
图3是水下浮体在重力浮力差为10吨时的下水曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图对本发明进行进一步详细说明。
本发明提供的耐压水下浮体的安装方法,将整个下水距离划分为两段,第一阶段为速度调整阶段,第二阶段为自由下水阶段。速度调整阶段的目的是在规定的下水距离内,通过调整水下浮体的重力浮力差,将水下浮体的速度调整为设定目标值,并调整浮体重力浮力差为零。自由下水阶段以速度调整阶段的最后状态开始,期间无须任何操作,水下浮体自由下沉,即在整个自由下水阶段,水下浮体的重力浮力差始终为零,仅在下水阻力的作用下作减速运动,最终停留在预定水深处。
本发明提供的耐压水下浮体的安装方法包括以下步骤1)-7):
1)建立不同重力浮力差的水下浮体的下水曲线数据库。绘制不同重力浮力差(包括重力浮力差为零)的水下浮体下水曲线,例如图1和图2的示例,建立下水曲线数据库,作为控制系统的参考数据库。
2)确定速度调整阶段的下水距离S1和临界速度V。显然,确定S1之后,自由下水阶段的下水距离S2用总下水距离S减去S1即可得到。临界速度V是速度调整阶段的最终下水速度,也是速度调整阶段和自由入水阶段临界点的下水速度。
通常根据浮体的即时安装环境和自身浮力调整能力确定S1,有时还需要通过实验辅助分析。显然,水下浮体在实际工程安装中,速度调整阶段的下水距离S1越小,浮体自由下水的距离S2就越长,安装就更简单、更顺利,因此S1是将水下浮体的下水速度调整为临界速度V的最短下水距离。
确定S1和S2之后,可通过重力浮力差为零的下水曲线得到临界速度V。参见图1,在浮体重力浮力差为零的下水曲线上选取目标点,该目标点到曲线终点的水平距离等于S2,此目标点对应的速度即为临界速度。因为水下浮体以此临界速度为起速度,在自由下水阶段(重力浮力差为零)下水距离等于S2时,速度正好自临界速度V降为零,从而完成下水过程。
3)确定预设重力浮力差C。查找下水曲线数据库,找到一条预设下水曲线Q,该曲线上的下水深度等于S1时下水速度正好等于临界速度V,则该预设下水曲线Q对应的重力浮力差即为预设重力浮力差C。
4)调整水下浮体的浮力,使水下浮体的重力浮力差等于预设重力浮力差C,牵引水下浮体下水进入速度调整阶段。
5)调整预设下水曲线和预设重力浮力差。在速度调整阶段,理论上讲,按照预设的重力浮力差和下水深度S1,浮体在到达临界点时的速度正好达到临界速度。但是,实际安装环境和操作精度的不确定性使得浮体显然不可能完全按照预想那样完成安装,浮体到达临界点的速度可能出现大于或小于目标速度VA。因此需要在速度调整阶段及时进行调整,即根据实测速度和剩余下水深度,重新确定合适的预设下水曲线和预设重力浮力差。
在速度调整阶段,监测系统不断监测水下浮体的实测深度和实测速度并传输至控制系统,控制系统将实测深度和实测速度与预设下水曲线Q进行对比,当实测速度不等于预设下水曲线上对应深度的对应速度时,再次查找下水曲线数据库,找到另一条预设下水曲线Q’,使得该预设下水曲线Q’中的下水速度由水下浮体的实测速度降为临界速度所需的下水深度,正好等于水下浮体的速度调整阶段的剩余深度。该下水曲线Q’对应的浮力重力差即为新的预设重力浮力差C’,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新设重力浮力差C’,水下浮体继续入水。
6)当水下浮体下降至速度调整阶段的终点时,水下浮体的实测速度正好等于临界速度,控制系统调整水下浮体的浮力,使得水下浮体的重力浮力差为零,水下浮体进入自由下水阶段;
7)水下浮体在水体阻力作用下减速下水,当速度为零时正好到达指定的下水深度,完成水下浮体安装。
以下以具体的实施例对本发明的水下浮体安装方法的原理进行进一步详细的说明。
设定有一大型水下浮体的预定工作水深为250米,即预定安装水深为250米,安装初速度V0=14米/秒。首先通过浮体的即时安装环境和自身浮力调整能力并实验辅助分析,确定其安装两阶段的距离S1=80米和S2=170米。然后在重力浮力差为零的下水曲线中找到目标临界点A,读出对应的临界速度VA=8米/秒(如附图2所示)。查找下水曲线数据库,找到如下图3所示的一条曲线,即当水下浮体下水深度为S1=80米时,其下水速度恰好达到VA=8米/秒。此曲线即为预设下水曲线Q,预设下水曲线Q对应的浮体重力浮力差为10吨,即得到预设重力浮力差C=10吨。只要下水曲线数据库足够丰富,从理论上讲一定可以找到这条预设下水曲线Q。
从理论上讲,水下浮体在开始保持重力浮力差为10吨进行下水安装,那么当水下浮体达到80米深度时,浮体的下沉速度应当恰为8米/秒。到达目标临界点A后,调整重力浮力差为零,便可实现浮体的安装要求,到达预定水深处。但是,实际安装环境和操作精度的不确定性使得浮体不可能完全按照预想状态完成安装,因此需要在整个速度调整阶段依据实测数据及时进行调整。
例如:速度调整阶段深度为30米的点B,理想状况下浮体安装至B点时的下水速度VB应为曲线上的对应速度10米/秒,但在实际工程安装时,浮体到达B点时的速度可能大于或小于临界速度V。假定通过监测系统监测到浮体到达SB=30米深度时的速度VB=11米/秒,即实测速度大于预设速度,则可预见浮体若保持此状态继续安装,在到达预定目标临界深度(即80米)时,浮体的下沉速度也将大于临界速度V,显然,此时需要通过增大浮体浮力来减小重力浮力差。因此查找下水曲线数据库,通过速度指针,寻找速度从11米/秒降为8米/秒下沉的距离恰为50米的下水曲线(理论上一定存在),该下水曲线即为新的预设下水曲线Q’,对应的重力浮力差即为新的预设重力浮力差C’,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新设重力浮力差C’,水下浮体继续入水。
同理,当实测速度小于预设速度时,例如监测到浮体到达SB=30米深度时的速度VB’=9米/秒,则需要通过减小浮体浮力来增大重力浮力差。同样,查找下水曲线数据库,通过速度指针,寻找速度从9米/秒降为8米/秒下沉的距离恰为50米的下水曲线,可得到新的预设下水曲线Q’和新的预设重力浮力差C’,调整浮力继续下水。
当然,在浮体下水过程中这种监测—反馈—调整的过程是持续进行的。且下水曲线数据库中的数据越丰富,实际工程安装便会越准确、安全。
本发明提供的水下浮体安装方法,在速度调整阶段内,还可能出现超出浮体自身调整能力范围的情况,即浮体无法通过自身浮力调整使其以目标速度到达目标临界点,此时便要考虑改变预定的目标临界点位置,即增大速度调整阶段的下水距离S1,具体增加值以能够找到新的预设下水曲线Q”为准,并用相同的方法重新确定新的自由下水阶段的下水距离S2’、新的临界速度V’、预设下水曲线Q”、新的预设重力浮力差C”,使浮体按重新拟定的两阶段安装方案进行安装。具体按照以下步骤5-1)-5-2进行:
5-1)当水下浮体的实测速度不等于预设下水曲线Q上对应深度的对应速度,并且由于剩余下水深度过短而在下水曲线数据库中不能找到满足要求的新的预设下水曲线Q’时,则增大速度调整阶段的下水距离S1至S1’,并计算得到新的自由下水阶段的下水距离S2’,再通过重力浮力差为零的下水曲线确定新的临界速度V’;
5-2)再次查找下水曲线数据库,找到另一条预设下水曲线Q”,该预设下水曲线Q”中的下水速度由水下浮体的实测速度降为临界速度V’所需的下水深度,正好等于水下浮体的下水距离S1’的剩余深度,该预设下水曲线Q”对应的浮力重力差即为新的预设重力浮力差C”,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新的预设重力浮力差C”,水下浮体继续入水。
本发明提供的浮体安装方法,为了防止浮体在安装过程中因速度过大导致下水过深,造成浮体结构因过高的水压而破坏的后果,在安装方案确定后,根据水下浮体结构所允许的最大下水深度和安全系数,确定水下浮体对应下水深度的最大速度,得到水下浮体的安全带曲线。在水下浮体的整个下水过程中,监测系统不断地监测水下浮体的实测深度和实测速度并传输至控制系统,当检测到水下浮体的实测速度大于安全带曲线上对应下水深度的最大速度时,表明浮体极可能会下沉到预定水深以下,此时应立即停止安装,于是,控制系统调整浮力至到最大值,使水下浮体上浮至水面,从步骤4)开始重新安装。
最后需要说明的是,本发明的具体实施方式仅仅用以解释本发明而非限制,目的是使本发明的技术方案以及优点得以更清晰的显现。应当理解,本发明侧重于表达一种新型水下浮体的下水安装模式,而不局限于下水操作的细节,凡利用本发明所述的下水模式繁衍出的具体下水安装方法均视为本发明的保护范围。

Claims (3)

1.一种水下浮体的安装方法,其特征在于包括以下步骤:
1)建立不同重力浮力差的水下浮体的下水曲线数据库;
2)确定速度调整阶段的下水距离S1和临界速度V,根据浮体的即时安装环境和自身浮力调整能力确定S1,总下水距离S减去S1后得到自由下水阶段的下水距离S2,然后在重力浮力差为零的下水曲线上选取目标点,所述目标点到曲线终点的水平距离等于S2,所述目标点对应的速度即为临界速度V;
3)确定预设重力浮力差C,查找下水曲线数据库,找到预设下水曲线Q,所述预设下水曲线Q上的下水深度等于S1时、下水速度正好等于临界速度V,所述预设下水曲线Q对应的浮体重力浮力差即为预设重力浮力差C;
4)调整水下浮体的浮力,使水下浮体的重力浮力差等于预设重力浮力差C,牵引水下浮体下水进入速度调整阶段;
5)在速度调整阶段,监测系统不断监测水下浮体的实测深度和实测速度并传输至控制系统,控制系统将实测深度和实测速度与预设下水曲线Q进行对比,当实测速度不等于预设下水曲线上对应深度的对应速度时,再次查找下水曲线数据库,找到另一条预设下水曲线Q’,所述预设下水曲线Q’中的下水速度由水下浮体的实测速度降为临界速度V所需的下水深度,正好等于水下浮体的速度调整阶段的剩余深度,所述下水曲线Q’对应的浮力重力差即为新的预设重力浮力差C’,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新设重力浮力差C’,水下浮体继续下水;
6)当水下浮体下降至速度调整阶段的终点时,水下浮体的实测速度正好等于临界速度V,控制系统调整水下浮体的浮力,使得水下浮体的重力浮力差为零,水下浮体进入自由下水阶段;
7)水下浮体在水体阻力作用下减速下水,当速度为零时正好到达指定的下水深度,水下浮体安装完成。
2.根据权利要求1所述的一种水下浮体的安装方法,其特征在于所述步骤5)还包括步骤5-1)~5-2):
5-1)当水下浮体的实测速度不等于预设下水曲线Q上对应深度的对应速度,并且由于剩余下水深度过短而在下水曲线数据库中不能找到满足要求的新的预设下水曲线Q’时,则增大下水距离S1至S1’,并计算得到新的自由下水阶段的下水距离S2’,再通过重力浮力差为零的下水曲线确定新的临界速度V’;
5-2)再次查找下水曲线数据库,找到另一条预设下水曲线Q”,所述预设下水曲线Q”中的下水速度由水下浮体的实测速度降为临界速度V’所需的下水深度,正好等于水下浮体的下水距离S1’的剩余深度,所述预设下水曲线Q”对应的浮力重力差即为新的预设重力浮力差C”,调整水下浮体的浮力,使得水下浮体的重力浮力差等于新的预设重力浮力差C”,水下浮体继续入水。
3.根据权利要求1所述的一种水下浮体的安装方法,其特征在于还包括步骤8):
8)根据水下浮体结构所允许的最大下水深度和安全系数,确定水下浮体对应下水深度的最大速度,得到水下浮体的安全带曲线,在水下浮体的整个下水过程中,监测系统不断地监测水下浮体的实测深度和实测速度并传输至控制系统,当检测到水下浮体的实测速度大于安全带曲线上对应下水深度的对应速度时,控制系统调整浮力至到最大值,使水下浮体上浮至水面,从步骤4)开始重新安装。
CN201510038980.9A 2015-01-26 2015-01-26 一种水下浮体的安装方法 Active CN104699132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510038980.9A CN104699132B (zh) 2015-01-26 2015-01-26 一种水下浮体的安装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510038980.9A CN104699132B (zh) 2015-01-26 2015-01-26 一种水下浮体的安装方法

Publications (2)

Publication Number Publication Date
CN104699132A true CN104699132A (zh) 2015-06-10
CN104699132B CN104699132B (zh) 2017-02-22

Family

ID=53346358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510038980.9A Active CN104699132B (zh) 2015-01-26 2015-01-26 一种水下浮体的安装方法

Country Status (1)

Country Link
CN (1) CN104699132B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206742B1 (en) * 1997-01-15 2001-03-27 Abb Offshore Technology As Buoyancy device and method for using same
US20040161984A1 (en) * 2003-02-14 2004-08-19 Lima De Almeida Jose Carlos Subsurface buoy and methods of installing, tying and dynamically stabilizing the same
CN101323363A (zh) * 2008-07-30 2008-12-17 哈尔滨工程大学 一种大深度无人潜水器及其深度复合控制方法
US20090103985A1 (en) * 2005-08-25 2009-04-23 Saipem S.A. Installation comprising at least two bottom-surface connections for at least two undersea pipes resting on the sea bottom
CN101850835A (zh) * 2010-04-20 2010-10-06 中国海洋石油总公司 用于深水作业的水中钢结构浮筒的充气方法及装置
CN102417012A (zh) * 2010-09-27 2012-04-18 上海利策科技有限公司 用于与fpso船体连接的浮子系统
CN102963514A (zh) * 2012-11-26 2013-03-13 上海交通大学 便携式水下海洋环境监测滑翔机
CN103359263A (zh) * 2013-03-28 2013-10-23 武汉武船海洋工程船舶设计有限公司 一种压力平衡式浮体及其安装方法
CN203372365U (zh) * 2013-03-28 2014-01-01 武汉武船海洋工程船舶设计有限公司 一种水下浮体
CN103963927A (zh) * 2013-02-05 2014-08-06 青岛海洋地质研究所 潜标液压浮力驱动系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206742B1 (en) * 1997-01-15 2001-03-27 Abb Offshore Technology As Buoyancy device and method for using same
US20040161984A1 (en) * 2003-02-14 2004-08-19 Lima De Almeida Jose Carlos Subsurface buoy and methods of installing, tying and dynamically stabilizing the same
US20090103985A1 (en) * 2005-08-25 2009-04-23 Saipem S.A. Installation comprising at least two bottom-surface connections for at least two undersea pipes resting on the sea bottom
CN101323363A (zh) * 2008-07-30 2008-12-17 哈尔滨工程大学 一种大深度无人潜水器及其深度复合控制方法
CN101850835A (zh) * 2010-04-20 2010-10-06 中国海洋石油总公司 用于深水作业的水中钢结构浮筒的充气方法及装置
CN102417012A (zh) * 2010-09-27 2012-04-18 上海利策科技有限公司 用于与fpso船体连接的浮子系统
CN102963514A (zh) * 2012-11-26 2013-03-13 上海交通大学 便携式水下海洋环境监测滑翔机
CN103963927A (zh) * 2013-02-05 2014-08-06 青岛海洋地质研究所 潜标液压浮力驱动系统
CN103359263A (zh) * 2013-03-28 2013-10-23 武汉武船海洋工程船舶设计有限公司 一种压力平衡式浮体及其安装方法
CN203372365U (zh) * 2013-03-28 2014-01-01 武汉武船海洋工程船舶设计有限公司 一种水下浮体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴家鸣: "FPSO的特点与现状", 《船舶工程》 *
崔维成: "蛟龙号载人潜水器的7000 米级海上试验", 《船舶力学》 *
陆恒,等: "FPSO 水下承载浮体中圆柱壳浮筒结构设计", 《海洋技术学报》 *

Also Published As

Publication number Publication date
CN104699132B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN102943636B (zh) 海洋浮式钻井平台绞车升沉补偿装置
CN103754340B (zh) 一种浮力可调式水下设备辅助安装装置及安装方法
CN204507227U (zh) 一种应用于水下安全防护的可自动升降监测箱
CN104199464B (zh) 一种基于环境估计的实时环境最优艏向船舶动力定位控制方法
CN108120429A (zh) 一种自主水下机器人长期定点剖面测量方法
BRPI0507079A (pt) método para abaixar um objeto até um local de instalação subaquático, e, veìculo submersìvel operável remotamente
WO2012016765A3 (en) A method and a system for controlling movements of a free-hanging tubular
CN104674784B (zh) 超重力条件下的边坡潮汐水位调控装置
US20210214062A1 (en) Dynamic buoyancy control
CN107060662B (zh) 半主动升沉补偿装置控制系统
CN108036019B (zh) 一种空气弹簧隔振平台的高度调平控制系统及方法
CN209366425U (zh) 一种应用于非动力定位船只的水下机器人自动控制系统
CN102910274A (zh) 一种水下浮动平台深度与姿态自动调节装置及方法
CN107688078A (zh) 一种大落差水域水质监测浮标
CN110426954A (zh) 深海起重机主动升沉补偿控制器及控制系统
CN116627043A (zh) 一种联合锚泊系统的区域动力定位控制方法
SE1250952A1 (sv) Förfarande för förankring av farkost samt anordning härför
KR101772840B1 (ko) 수중관측을 위한 탐사동력장치의 운항방법
CN104699132A (zh) 一种水下浮体的安装方法
CN111959727B (zh) 一种可蓄压式深海悬浮定深装置
CN104571127A (zh) 无人直升机前飞速度/垂直速度匹配的巡线飞行控制方法
CN104531925A (zh) 高炉炉顶探尺的双闭环控制方法及系统
CN115268356B (zh) 一种风电筒型基础负压智能控制系统
CN109572964A (zh) 一种应用于非动力定位船只的水下机器人自动控制系统
CN107524660B (zh) 一种大型结构件起竖调直的控制方法及控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant