CN104696180A - Magnetic field regulation type large-area microcavity discharge plasma micro-thruster for liquid working substances - Google Patents

Magnetic field regulation type large-area microcavity discharge plasma micro-thruster for liquid working substances Download PDF

Info

Publication number
CN104696180A
CN104696180A CN201410837625.3A CN201410837625A CN104696180A CN 104696180 A CN104696180 A CN 104696180A CN 201410837625 A CN201410837625 A CN 201410837625A CN 104696180 A CN104696180 A CN 104696180A
Authority
CN
China
Prior art keywords
discharge
microcavity
rafal
metal sheet
thruster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410837625.3A
Other languages
Chinese (zh)
Other versions
CN104696180B (en
Inventor
王伟宗
姚娜
肖林
魏福智
范达
万晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201410837625.3A priority Critical patent/CN104696180B/en
Publication of CN104696180A publication Critical patent/CN104696180A/en
Application granted granted Critical
Publication of CN104696180B publication Critical patent/CN104696180B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0093Electro-thermal plasma thrusters, i.e. thrusters heating the particles in a plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Electromagnetism (AREA)

Abstract

磁场调控型液相工质大面积微腔放电等离子体微推进器,推进剂工质进给机构将液体推进剂储箱内的液体推进剂扩散进放电微腔中,所述的放电微腔由一个直径不等的孔贯穿金属片和绝缘电介质构成,绝缘电介质夹在相邻两个金属片之间,相邻两个金属片组成一个电极对;放电微腔末端的金属片和绝缘电介质组成拉法尔喷口,其中,绝缘电介质构成拉法尔喷口的收缩段和扩张段,阳极金属片组成拉法尔喷口的喉部,其与位于拉法尔喷口扩张段出口处的阴极金属片组成一个电极对;拉法尔喷口的水平段上至少设置一个电极对,外部电源模块提供周期性交流或者直流高压脉冲电压,并利用导线接至每个电极对上,环形的永磁体套装在上述放电微腔的管壁外侧。

The magnetic field control type liquid-phase working medium large-area microcavity discharge plasma micro-thruster, the propellant working medium feeding mechanism diffuses the liquid propellant in the liquid propellant storage tank into the discharge microcavity, and the discharge microcavity is composed of A hole with different diameters runs through the metal sheet and the insulating dielectric, and the insulating dielectric is sandwiched between two adjacent metal sheets, and the adjacent two metal sheets form an electrode pair; the metal sheet at the end of the discharge microcavity and the insulating dielectric form a pull Farr nozzle, where the insulating dielectric forms the constriction and divergence of the Rafal nozzle, and the anode metal sheet forms the throat of the Rafal nozzle, which forms an electrode with the cathode metal sheet located at the exit of the divergent section of the Rafal nozzle Yes; at least one electrode pair is set on the horizontal section of the Rafal nozzle, the external power supply module provides periodic AC or DC high-voltage pulse voltage, and is connected to each electrode pair with a wire, and the ring-shaped permanent magnet is set in the above discharge microcavity outside of the pipe wall.

Description

磁场调控型液相工质大面积微腔放电等离子体微推进器Large-area microcavity discharge plasma microthruster with magnetic field control type liquid working medium

技术领域technical field

本发明涉及一种基于磁场调制的液相工质大面积微腔放电等离子体空间微推进器,特别适用于空间微小航天器对高集成度、低功耗、精确冲量、高比冲微推进系统的工作需求。The invention relates to a large-area micro-cavity discharge plasma space micro-propulsion based on magnetic field modulation, which is especially suitable for micro-propulsion systems with high integration, low power consumption, precise impulse, and high specific impulse for space micro-spacecraft work needs.

背景技术Background technique

对空间小型化平台微推进技术的迫切需求源于本世纪微纳卫星的蓬勃发展。进入21世纪后,微纳卫星组网技术飞速发展、日益成熟,这使得微纳卫星在能完成传统大卫星功能的同时,更具有周期短、风险低、发射方式灵活、可拓展性强的优点。由于微纳卫星体积小、质量轻、转动惯量小,用于卫星轨道与姿态控制所需推力小,重复性好,要求精度高,一般为毫牛量级,甚至到微牛量级;优异的微推进器还应兼具较宽的推力范围,以适应不同的任务应用需求。同时,微纳卫星编队飞行的目标是维持卫星间的相对位置,而不是保持各卫星的绝对位置,因此需要的最小冲量脉冲非常小,以满足控制系统高精度要求。因此研究适合于微纳卫星轨道保持、轨道机动与姿态控制用的高集成度、低功耗、精确冲量、高比冲的微小推进系统是微纳卫星发展的必然要求和关乎成败的关键环节。The urgent need for micro-propulsion technology for space miniaturized platforms stems from the vigorous development of micro-nano satellites in this century. After entering the 21st century, micro-nano satellite networking technology has developed rapidly and become increasingly mature, which enables micro-nano satellites to perform the functions of traditional large satellites while having the advantages of short cycle, low risk, flexible launch methods, and strong scalability . Due to the small size, light weight and small moment of inertia of the micro-nano satellite, the thrust required for satellite orbit and attitude control is small, the repeatability is good, and the precision is required to be high, generally in the order of millinewtons, or even in the order of micronewtons; excellent Micro propulsion should also have a wide range of thrust to meet the needs of different mission applications. At the same time, the goal of micro-nano-satellite formation flight is to maintain the relative position between satellites, not to maintain the absolute position of each satellite, so the minimum impulse pulse required is very small to meet the high-precision requirements of the control system. Therefore, research on micro-propulsion systems with high integration, low power consumption, precise impulse, and high specific impulse suitable for micro-nano-satellite orbit keeping, orbital maneuvering, and attitude control is an inevitable requirement for the development of micro-nano-satellites and a key link to success or failure.

相比化学微推进,电推进具有低成本、高比冲、推力小、控制精度高等优点,能大大减少推进剂的携带量而增加卫星有效载荷,或不减少推进剂而大大延长卫星的工作寿命,因而成为最具发展潜力的微推进方式之一。微电推进器分为电热式、静电式和电磁式。电热式微推进器无污染,原则上可以使用任何推进剂,成本低,但它的比冲很低,存在泄漏问题。静电式微推进器有场效应静电推进器、胶体微推进器、离子微推进器、霍尔微推进器。但静电式微推进器普遍需要高的工作电压(kV量级)或者较大的电源功率(百瓦量级),超过了微纳卫星的供给能力,也就限制了其在超小型微纳卫星方面的应用。电磁式微推进器如脉冲等离子推进器固有质量较大,也存在羽流污染问题,并且推功比不高。Compared with chemical micro-propulsion, electric propulsion has the advantages of low cost, high specific impulse, small thrust, and high control precision. It can greatly reduce the amount of propellant carried and increase the payload of the satellite, or greatly extend the working life of the satellite without reducing the propellant. , thus becoming one of the most potential micro-propulsion methods. Micro-electric propulsion is divided into electrothermal, electrostatic and electromagnetic. Electrothermal micro-propulsion is non-polluting, in principle, any propellant can be used, and the cost is low, but its specific impulse is very low, and there is a leakage problem. Electrostatic micro-thrusters include field-effect electrostatic thrusters, colloidal micro-thrusters, ion micro-thrusters, and Hall micro-thrusters. However, electrostatic micro-propellers generally require high operating voltage (kV order) or relatively large power supply (hundred-watt order), which exceeds the supply capacity of micro-nano satellites, which limits its application in ultra-small micro-nano satellites. Applications. Electromagnetic micro-thrusters such as pulsed plasma thrusters have a large inherent mass, also have the problem of plume pollution, and the thrust power ratio is not high.

目前为止,质量和功率对推进系统的约束使得微纳卫星的电推进方式主要以电热式为主。传统的电阻加热式微推进系统面临比冲小、加热效率低等突出问题,射频放电电热式微推进又具有能量利用效率低、器壁表面烧蚀大的不足,微电弧发动机的尺寸也无法满足厘米以下的加工需求。这些不利因素限制了上述推进系统在微纳卫星上的应用。相比之下,微腔放电等离子体推进是一种利用微放电技术发展而来的新型电热式微推进技术。微腔放电,是一种新颖的非平衡高气压辉光放电,只需要非常低的电压(几百伏特)或者输入功率(百毫瓦数量级),通过等离子体与中性气体的碰撞以及电场对离子的加速所用,加热工质气体,再通过一定的喷管结构喷出,产生推力,从而为提高推进系统的性能开辟了新的途径。美国伊利诺伊州立大学的电推进实验室和德克萨斯州立大学的计算等离子体实验室最早提出了微腔放电微纳卫星推进器的设计(如图1所示)并在美国空军中心科学研究基金资助下开展了相应的研究工作<R.L.Burtonet al.Development of the MCD thruster for nanosat propulsion,Proceedingsof the 57th Joint Army Navy NASA Air Force Propulsion Meeting,ColoradoSprings,Colorado,2010;M.de Chadenedes et al.Advances in microcavitydischarge thruster technology,Proceedings of the 46thAIAA/ASME/SAE/ASEE Joint Propulsion Conference,Nashville,TN,2010>。目前在研的微腔放电等离子体推进器,存在诸多突出问题,制约了推力、比冲以及能量效率的进一步完善提高:(1)由于微放电腔体大的表面积体积比,大量的电能损失发生在固体器壁和等离子体交接面上的鞘层区域,严重降低推进剂工质加热和推进的能量利用效率。(2)由于等离子体和冷推进剂气流强烈的耦合作用,带电离子主要分布在放电空腔或者喷口内部,真正由带电粒子贡献的推力十分有限。(3)单对电极结构放电面积较小,放电稳定性不高,当推进剂流量较大时电离效率有限,大量气相工质无法有效放电电离加热,导致推进器的工质利用效率较低。(4)气体推进剂对质量流量控制精度的要求较高,同时需要高压储存,会占用微小航天器的体积和质量。基于上述问题,目前微腔放电等离子体微推进器的比冲仅为100-200s、能量效率不足60%,推进控制精度不高。So far, the constraints of mass and power on the propulsion system have made the electric propulsion method of micro-nano satellites mainly electrothermal. The traditional resistance heating micro-propulsion system faces outstanding problems such as small specific impulse and low heating efficiency. The radio-frequency discharge electrothermal micro-propulsion has the disadvantages of low energy utilization efficiency and large ablation of the wall surface, and the size of the micro-arc engine cannot meet the requirements of centimeters processing needs. These unfavorable factors limit the application of the above-mentioned propulsion system on micro-nano satellites. In contrast, microcavity discharge plasma propulsion is a new electrothermal micro-propulsion technology developed from micro-discharge technology. Microcavity discharge is a novel non-equilibrium high-pressure glow discharge, which only requires very low voltage (hundreds of volts) or input power (on the order of hundreds of milliwatts), through the collision of plasma and neutral gas and the electric field It is used for the acceleration of ions, heats the working fluid gas, and then sprays out through a certain nozzle structure to generate thrust, thus opening up a new way to improve the performance of the propulsion system. The Electric Propulsion Laboratory of Illinois State University and the Computational Plasma Laboratory of Texas State University first proposed the design of the micro-cavity discharge micro-nano satellite thruster (as shown in Figure 1) and received the US Air Force Center Scientific Research Fund The corresponding research work was carried out under the support of <R.L.Burton et al. Development of the MCD thruster for nanosat propulsion, Proceedings of the 57th Joint Army Navy NASA Air Force Propulsion Meeting, Colorado Springs, Colorado, 2010; M.de Chadenedes et al. thruster technology, Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Nashville, TN, 2010>. At present, there are many outstanding problems in the micro-cavity discharge plasma thruster, which restricts the further improvement of thrust, specific impulse and energy efficiency: (1) Due to the large surface area to volume ratio of the micro-discharge cavity, a large amount of power loss occurs In the sheath region on the interface between the solid wall and the plasma, the energy utilization efficiency of the heating and propulsion of the propellant working fluid is seriously reduced. (2) Due to the strong coupling between the plasma and the cold propellant gas flow, the charged ions are mainly distributed inside the discharge cavity or nozzle, and the real thrust contributed by the charged particles is very limited. (3) The discharge area of the single-pair electrode structure is small, and the discharge stability is not high. When the propellant flow rate is large, the ionization efficiency is limited, and a large amount of gas-phase working fluid cannot be effectively discharged, ionized and heated, resulting in low working medium utilization efficiency of the propeller. (4) Gas propellants have high requirements on mass flow control accuracy and require high-pressure storage, which will occupy the volume and mass of tiny spacecraft. Based on the above problems, the specific impulse of the current microcavity discharge plasma micro-thruster is only 100-200s, the energy efficiency is less than 60%, and the propulsion control accuracy is not high.

发明内容Contents of the invention

本发明的技术解决问题是:克服传统微腔放电等离子体微推进器比冲下,能量效率低,推进控制精度低的瓶颈,提出一种基于磁场调制的液相工质大面积微腔放电等离子体微推进器,通过多种外部控制条件的综合调控和多种新型部组件的优化配置实现高比冲、长寿命和高控制精度的微纳卫星推进。The technical problem of the present invention is: to overcome the bottlenecks of traditional micro-cavity discharge plasma micro-thrusters such as low specific impulse, low energy efficiency, and low propulsion control precision, and propose a large-area micro-cavity discharge plasma based on magnetic field modulation Body micro propulsion, through the comprehensive regulation of various external control conditions and the optimal configuration of various new components to achieve high specific impulse, long life and high control precision micro-nano satellite propulsion.

本发明的技术解决方案是:磁场调控型液相工质大面积微腔放电等离子体微推进器,包括推进器本体、永磁体和外部电源模块;推进器本体结构包括液体推进剂储箱,推进剂工质进给机构,金属片,电介质以及拉法尔喷管;The technical solution of the present invention is: a magnetic field control type liquid-phase working medium large-area microcavity discharge plasma micro-thruster, including a thruster body, a permanent magnet and an external power supply module; the thruster body structure includes a liquid propellant storage tank, propelling Agent feeding mechanism, sheet metal, dielectric and Rafal nozzle;

推进剂工质进给机构控制工质流量并将液体推进剂储箱内的液体推进剂形成喷雾扩散进放电微腔中,所述的放电微腔由一个直径不等的孔贯穿金属片和绝缘电介质构成,绝缘电介质夹在相邻两个金属片之间,相邻两个金属片组成一个电极对;放电微腔末端的金属片和绝缘电介质组成拉法尔喷口,其中,绝缘电介质构成拉法尔喷口的收缩段和扩张段,阳极金属片组成拉法尔喷口的喉部,其与位于拉法尔喷口扩张段出口处的阴极金属片组成一个电极对;拉法尔喷口的水平段上至少设置一个电极对,外部电源模块提供周期性交流或者直流高压脉冲电压,并利用导线接至每个电极对上,环形的永磁体套装在上述放电微腔的管壁外侧。The propellant working medium feed mechanism controls the flow of the working medium and forms a spray of liquid propellant in the liquid propellant storage tank to spread into the discharge microcavity. The discharge microcavity is formed by a hole with different diameters that penetrates the metal sheet and the insulation. The insulating dielectric is sandwiched between two adjacent metal sheets, and the adjacent two metal sheets form an electrode pair; the metal sheet and the insulating dielectric at the end of the discharge microcavity form a Rafah spout, and the insulating dielectric constitutes a Rafah The shrinkage section and the expansion section of the Rafal nozzle, the throat of the anode metal sheet constitutes the Rafal nozzle, and it forms an electrode pair with the cathode metal sheet located at the outlet of the Rafal nozzle expansion section; on the horizontal section of the Rafal nozzle, at least An electrode pair is set, the external power supply module provides periodic AC or DC high-voltage pulse voltage, and is connected to each electrode pair by a wire, and the ring-shaped permanent magnet is set on the outside of the tube wall of the above-mentioned discharge microcavity.

将上述外部电源模块和推进器本体结构作为一个推进单元,多个相同的推进单元排成点阵,外部套装环形的永磁体组成多腔推进器,永磁体与每个推进单元之间填充绝缘材料。The above-mentioned external power supply module and propeller body structure are used as a propulsion unit, and multiple identical propulsion units are arranged in a lattice, and the external ring-shaped permanent magnets form a multi-cavity propeller, and insulating materials are filled between the permanent magnets and each propulsion unit .

本发明与现有技术相比有益效果为:Compared with the prior art, the present invention has beneficial effects as follows:

(1)采用复式多电极结构表面放电在较低的电源输入功率面密度下获得大面积的放电等离子体,并能够降低放电的高频振荡,提高放电的稳定性,克服推进剂流量较大时大量气相工质无法有效放电电离加热,推进器工质利用效率低的瓶颈;(1) The surface discharge of the compound multi-electrode structure is used to obtain a large-area discharge plasma at a low power input power surface density, and can reduce the high-frequency oscillation of the discharge, improve the stability of the discharge, and overcome the large flow rate of the propellant A large amount of gas-phase working fluid cannot be effectively discharged, ionized and heated, and the bottleneck of low utilization efficiency of the thruster working medium;

(1)采用圆环形永磁体产生的外部轴向磁场调制优化显著降低放电电压并强化电离过程,调控微腔放电等离子体放电输运特性,提高带电粒子对推进性能提高的贡献;(1) The external axial magnetic field modulation optimization generated by the circular permanent magnet can significantly reduce the discharge voltage and strengthen the ionization process, regulate the transport characteristics of the microcavity discharge plasma discharge, and improve the contribution of charged particles to the improvement of propulsion performance;

(2)液体推进剂通过工质进给机构入放电微腔扩散的速度要比气体推进剂慢很多,推进剂流量控制更为容易,能够实现对微纳卫星推进器比冲、推力以及微小冲量更高精度的操作控制;其次,液体推进剂质量密度大,无需高压储箱,可以节省推进器以及微纳卫星的体积和重量;(2) The diffusion speed of liquid propellant into the discharge microcavity through the working fluid feeding mechanism is much slower than that of gas propellant, and the flow control of propellant is easier, which can realize the specific impulse, thrust and micro impulse of micro-nano satellite thrusters Higher-precision operation control; secondly, the liquid propellant has a high mass density and does not require a high-pressure storage tank, which can save the volume and weight of the propeller and the micro-nano satellite;

(3)微腔放电等离子体微型推进器采用MEMS技术加工制造满足微纳卫星对推进系统重量、体积、功率的苛刻要求;(3) The micro-cavity discharge plasma micro-thruster is manufactured with MEMS technology to meet the stringent requirements of micro-nano satellites for propulsion system weight, volume, and power;

(4)工质进给机构使液体推进剂以雾状形式进入放电微腔,由此增大了液体推进剂和放电电极、等离子体的接触面积,更有利于推进剂的加热和提高放电效率。(4) The working medium feeding mechanism makes the liquid propellant enter the discharge microcavity in the form of mist, thereby increasing the contact area between the liquid propellant, the discharge electrode and the plasma, which is more conducive to the heating of the propellant and the improvement of the discharge efficiency .

(5)将同一型号的多个推进器模块集成组合形成多腔推进器,能实现推力在较大范围内的调节,应用于不同推力需求的推进任务,具有推力连续可调得能力。(5) Multiple thruster modules of the same type are integrated and combined to form a multi-cavity thruster, which can realize thrust adjustment in a large range, and is applied to propulsion tasks with different thrust requirements, and has the capability of continuously adjustable thrust.

附图说明Description of drawings

图1传统微腔放电推进器示意图Fig.1 Schematic diagram of traditional microcavity discharge thruster

图2为本发明单个推进单元示意图;Fig. 2 is a schematic diagram of a single propulsion unit of the present invention;

图3a、3b为本发明多腔推进器排列两种示意图。Figures 3a and 3b are two schematic diagrams of the multi-cavity propeller arrangement of the present invention.

具体实施方式Detailed ways

如图2所示,本发明一种磁场调控型液相工质大面积微腔放电等离子体微推进器,包括推进器本体结构、永磁体9和外部电源模块6;推进器本体结构包括液体推进剂储箱8,推进剂工质进给机构7,金属片(阳极1、阴极2),电介质3以及拉法尔喷管4;As shown in Figure 2, a magnetic field control type liquid-phase working medium large-area microcavity discharge plasma micro-thruster of the present invention includes a thruster body structure, a permanent magnet 9 and an external power module 6; the thruster body structure includes a liquid propulsion Agent storage tank 8, propellant working medium feeding mechanism 7, metal sheet (anode 1, cathode 2), dielectric 3 and Rafal nozzle 4;

其中,液体推进剂储箱8内存储有易挥发性的液体推进剂(乙醇、水等),工质进给机构7包括一个控制工质流量的微阀门和将液态工质雾化的毛细管注射雾化器,将液体推进剂扩散进放电微腔并实现喷雾处理。在空间环境下,毛细管注射雾化器将液体工质压入毛细管造成高速射流,将液滴以极细微的颗粒喷射出来形成液雾,可以自动扩散到出口端为真空的电极空间中。所述的放电微腔由一个直径(从几十微米到几百微米)不等的孔贯穿金属片(铜、镍、铂金、钨等)和绝缘电介质3(云母、陶瓷、有机玻璃等)构成,绝缘电介质3夹在相邻两个金属片之间,相邻两个金属片组成一个电极对;电介质3用于防止等放电发生在在除电极腔内电极之间的其它部位。Wherein, the liquid propellant storage tank 8 stores volatile liquid propellants (ethanol, water, etc.), and the working medium feed mechanism 7 includes a micro valve for controlling the flow of the working medium and a capillary injection for atomizing the liquid working medium. Atomizer, which diffuses the liquid propellant into the discharge microcavity and realizes spray treatment. In the space environment, the capillary injection atomizer presses the liquid working medium into the capillary to form a high-speed jet, and ejects the liquid droplets as extremely fine particles to form a liquid mist, which can automatically diffuse into the electrode space where the outlet end is a vacuum. The discharge microcavity is composed of a hole with a diameter (from tens of microns to hundreds of microns) that runs through a metal sheet (copper, nickel, platinum, tungsten, etc.) and an insulating dielectric 3 (mica, ceramics, organic glass, etc.) , the insulating dielectric 3 is sandwiched between two adjacent metal sheets, and the adjacent two metal sheets form an electrode pair; the dielectric 3 is used to prevent the discharge from occurring in other parts between the electrodes in the electrode chamber.

将上述两个金属片及夹在两个金属片之间的绝缘电介质3称为一个放电装置,推进器本体内部多个放电装置平行放置,放电微腔末端的金属片和绝缘电介质组成拉法尔喷口4,其中,绝缘电介质构成拉法尔喷口4的收缩段和扩张段,阳极金属片组成拉法尔喷口4的喉部,其与位于拉法尔喷口4扩张段出口处的阴极金属片组成一个电极对;拉法尔喷口4的水平段上至少设置一个电极对。The above two metal sheets and the insulating dielectric 3 sandwiched between the two metal sheets are called a discharge device. Multiple discharge devices inside the thruster body are placed in parallel, and the metal sheet and the insulating dielectric at the end of the discharge microcavity form a Rafael. Nozzle 4, wherein the insulating dielectric constitutes the constriction and expansion of the Rafal nozzle 4, and the anode metal sheet forms the throat of the Rafal nozzle 4, which is formed with the cathode metal sheet at the exit of the expansion section of the Rafal nozzle 4 One electrode pair; at least one electrode pair is arranged on the horizontal section of the Rafal nozzle 4 .

外部电源模块6将空间航天器太阳能电池转换得到的低压稳恒直流输出转换为周期性交流或者直流高压脉冲电压,并利用导线接至阳极1和阴极2的接线柱上,在两个金属片电极之间放电产生等离子体5,其放电情况与孔径大小、电极间距、气压以及电流大小有关。每个电极对连接的外部电源并联在一起,以相同的幅值和频率由外部触发电路控制放电产生等离子体。由于放电微腔孔径很小,只需较低的电压便可维持两电极之间产生稳定的放电,得到气体温度和电子密度都较高的等离子体,并经过多个电极对单元的放电加热作用,经过末端的拉法尔喷管(具有典型的收缩段、约束段和扩张段),在下游扩张段膨胀后呈现高速流动,借助有效的反作用力实现航天器的推进。多个放电单位平行排布构成推进阵列,实现推力的自动调节控制,环形的永磁体9(磁铁为钕铁硼永磁体,亦可为钐钴磁铁、铝镍钴磁铁铁氧体磁铁等永磁体)套装在上述放电微腔的管壁外侧,产生和气流流向一致的轴向磁场,显著降低放电电压并强化电离过程,调控带电粒子沿着平行轴向运动,从而祈祷调制放电过程和等离子体输运过程的目的。The external power supply module 6 converts the low-voltage stable DC output obtained by the conversion of the spacecraft solar cell into a periodic AC or DC high-voltage pulse voltage, and connects it to the terminals of the anode 1 and the cathode 2 by wires, and connects the two metal sheet electrodes The plasma 5 is generated by the discharge between them, and the discharge condition is related to the size of the aperture, the distance between the electrodes, the air pressure and the magnitude of the current. The external power sources connected to each electrode pair are connected in parallel, and the discharge is controlled by an external trigger circuit with the same amplitude and frequency to generate plasma. Due to the small aperture of the discharge microcavity, only a low voltage is needed to maintain a stable discharge between the two electrodes, and a plasma with a high gas temperature and electron density is obtained, and the unit is heated by the discharge of multiple electrodes. , passing through the end of the Lafal nozzle (with a typical constriction section, confinement section and expansion section), it presents a high-speed flow after expansion in the downstream expansion section, and the propulsion of the spacecraft is achieved with the help of effective reaction force. A plurality of discharge units are arranged in parallel to form a propulsion array to realize automatic adjustment and control of the thrust. The ring-shaped permanent magnet 9 (the magnet is a neodymium-iron-boron permanent magnet, can also be a samarium-cobalt magnet, an alnico magnet, a ferrite magnet, etc.) ) installed on the outside of the tube wall of the above-mentioned discharge microcavity to generate an axial magnetic field consistent with the flow direction of the gas flow, significantly reduce the discharge voltage and strengthen the ionization process, and regulate the movement of charged particles along the parallel axis, so as to modulate the discharge process and plasma output purpose of the shipping process.

如图3所示,将上述外部电源模块6和推进器本体结构及作为一个推进单元10,多个相同的推进单元排成点阵,为了便于控制推进单元的工作,可能的推进单元排列形式包含圆环形和二维矩阵形。外部套装环形的永磁体9组成多腔推进器,永磁体9与每个推进单元之间填充绝缘材料。As shown in Figure 3, the above-mentioned external power supply module 6 and the thruster body structure are used as a propulsion unit 10, and a plurality of identical propulsion units are arranged in a lattice. In order to facilitate the control of the work of the propulsion unit, the possible arrangement of the propulsion units includes Torus and two-dimensional matrix. The outer ring-shaped permanent magnet 9 forms a multi-cavity propeller, and insulating material is filled between the permanent magnet 9 and each propulsion unit.

本发明未详细说明部分属于本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.

Claims (2)

1.磁场调控型液相工质大面积微腔放电等离子体微推进器,其特征在于:包括推进器本体结构、永磁体(9)和外部电源模块(6);推进器本体结构包括液体推进剂储箱(8),推进剂工质进给机构(7),金属片,电介质(3)以及拉法尔喷管(4);其中,在直流放电条件下,金属片分别构成成对存在的阳极(1)、阴极(2);1. The magnetic field control type liquid-phase working medium large-area microcavity discharge plasma micro-thruster is characterized in that: it includes a thruster body structure, a permanent magnet (9) and an external power supply module (6); the thruster body structure includes a liquid propulsion agent storage tank (8), propellant working fluid feeding mechanism (7), metal sheet, dielectric (3) and Rafal nozzle (4); wherein, under DC discharge conditions, the metal sheets respectively form a pair and exist anode (1), cathode (2); 推进剂工质进给机构(7)控制工质流量并将液体推进剂储箱(8)内的液体推进剂扩散进放电微腔中,所述的放电微腔由一个直径不等的孔贯穿金属片和绝缘电介质(3)构成,绝缘电介质夹在相邻两个金属片之间,相邻两个金属片组成一个电极对;放电微腔末端的金属片和绝缘电介质组成拉法尔喷口(4),其中,绝缘电介质构成拉法尔喷口(4)的收缩段和扩张段,阳极金属片组成拉法尔喷口(4)的喉部,其与位于拉法尔喷口(4)扩张段出口处的阴极金属片组成一个电极对;拉法尔喷口(4)的水平段上至少设置一个电极对,外部电源模块(6)提供周期性交流或者直流高压脉冲电压,并利用导线接至每个电极对上,环形的永磁体(9)套装在上述放电微腔的管壁外侧。The propellant working fluid feed mechanism (7) controls the flow of the working fluid and diffuses the liquid propellant in the liquid propellant storage tank (8) into the discharge microcavity, and the discharge microcavity is penetrated by a hole with different diameters The metal sheet and the insulating dielectric (3), the insulating dielectric is sandwiched between two adjacent metal sheets, and the adjacent two metal sheets form an electrode pair; the metal sheet at the end of the discharge microcavity and the insulating dielectric form a Rafal spout ( 4), wherein the insulating dielectric constitutes the contraction section and the expansion section of the Rafal spout (4), and the anode metal sheet forms the throat of the Rafal spout (4), which is located at the outlet of the expansion section of the Rafal spout (4). The cathode metal sheet at the place forms an electrode pair; at least one electrode pair is set on the horizontal section of the Rafael spout (4), and the external power supply module (6) provides periodic AC or DC high-voltage pulse voltage, and is connected to each On the electrode pair, the ring-shaped permanent magnet (9) is sleeved outside the tube wall of the above-mentioned discharge microcavity. 2.根据权利要求1所述的磁场调控型液相工质大面积微腔放电等离子体微推进器,其特征在于:将上述外部电源模块(6)和推进器本体结构作为一个推进单元(10),多个相同的推进单元排成点阵,外部套装环形的永磁体(9)组成多腔推进器,永磁体(9)与每个推进单元之间填充绝缘材料。2. the magnetic field control type liquid-phase working medium large-area microcavity discharge plasma micro-thruster according to claim 1 is characterized in that: the above-mentioned external power supply module (6) and the thruster body structure are used as a propulsion unit (10 ), a plurality of identical propulsion units are arranged in a dot matrix, and an outer ring-shaped permanent magnet (9) forms a multi-cavity propeller, and an insulating material is filled between the permanent magnet (9) and each propulsion unit.
CN201410837625.3A 2014-12-29 2014-12-29 Magnetic field regulation type liquid phase working fluid large area microcavity discharge plasma micro-thruster Active CN104696180B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410837625.3A CN104696180B (en) 2014-12-29 2014-12-29 Magnetic field regulation type liquid phase working fluid large area microcavity discharge plasma micro-thruster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410837625.3A CN104696180B (en) 2014-12-29 2014-12-29 Magnetic field regulation type liquid phase working fluid large area microcavity discharge plasma micro-thruster

Publications (2)

Publication Number Publication Date
CN104696180A true CN104696180A (en) 2015-06-10
CN104696180B CN104696180B (en) 2017-07-28

Family

ID=53343632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410837625.3A Active CN104696180B (en) 2014-12-29 2014-12-29 Magnetic field regulation type liquid phase working fluid large area microcavity discharge plasma micro-thruster

Country Status (1)

Country Link
CN (1) CN104696180B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704903A (en) * 2016-03-16 2016-06-22 北京交通大学 Discharging electrode structure generated by vacuum plasmas based on magnetic field effects
CN106704132A (en) * 2017-01-12 2017-05-24 安徽工程大学 Ferroelectric micro-plasma propeller
CN107061210A (en) * 2017-05-18 2017-08-18 西安交通大学 It is a kind of that the pulsed plasma thruster accelerated is mixed based on electrothermal and electromagnetic
CN107165794A (en) * 2017-06-12 2017-09-15 北京航空航天大学 A kind of adjustable low-power hall thruster with magnetic screening effect in magnetic field
CN107620652A (en) * 2016-10-28 2018-01-23 湖北航天化学技术研究所 A kind of multiple-pulse adjustable thrust Solid propeller
CN107882702A (en) * 2017-10-24 2018-04-06 哈尔滨工业大学 Rafael nozzle formula magnetic confinement hollow cathode
CN107975462A (en) * 2016-10-21 2018-05-01 南京理工大学 Electric heating microthruster
CN108612599A (en) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 A kind of liquid-electricity interblock space thruster
CN109779781A (en) * 2019-03-15 2019-05-21 常熟理工学院 Magnetofluidic Controlled Nozzle for Boosting Thrust of Pulse Detonation Engine
CN110799751A (en) * 2017-05-16 2020-02-14 赛峰飞机发动机公司 Device for regulating the flow of a propellant fluid for an electric thruster
CN111173698A (en) * 2018-11-09 2020-05-19 哈尔滨工业大学 A microwave-enhanced liquid plasma thruster
CN114135457A (en) * 2021-11-30 2022-03-04 中国工程物理研究院电子工程研究所 Ion propeller
CN114337349A (en) * 2021-12-30 2022-04-12 哈尔滨工业大学 A Pulsed Power Source for Simulating the Solar Wind

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449941B1 (en) * 1999-04-28 2002-09-17 Lockheed Martin Corporation Hall effect electric propulsion system
CN102305200A (en) * 2011-07-12 2012-01-04 中北大学 Pulsed plasma thruster with water working medium
CN102878040A (en) * 2011-07-15 2013-01-16 葛泓杉 Magnetically controlled plasma power generation booster
CN104114862A (en) * 2011-12-29 2014-10-22 奥尼拉(国家宇航研究所) Plasma thruster and method for generating a plasma propulsion thrust

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449941B1 (en) * 1999-04-28 2002-09-17 Lockheed Martin Corporation Hall effect electric propulsion system
CN102305200A (en) * 2011-07-12 2012-01-04 中北大学 Pulsed plasma thruster with water working medium
CN102878040A (en) * 2011-07-15 2013-01-16 葛泓杉 Magnetically controlled plasma power generation booster
CN104114862A (en) * 2011-12-29 2014-10-22 奥尼拉(国家宇航研究所) Plasma thruster and method for generating a plasma propulsion thrust

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID L.CARROLL ET AL: "Development of the MCD thruster for nanosat propulsion", 《百度》 *
冯永辉,毛根旺,陈茂林,夏广庆: "微型电推力器的研究与发展", 《科学技术与工程》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704903A (en) * 2016-03-16 2016-06-22 北京交通大学 Discharging electrode structure generated by vacuum plasmas based on magnetic field effects
CN105704903B (en) * 2016-03-16 2019-03-05 北京交通大学 A kind of discharge electrode structure that the vacuum plasma based on magnetic fields generates
CN107975462A (en) * 2016-10-21 2018-05-01 南京理工大学 Electric heating microthruster
CN107620652A (en) * 2016-10-28 2018-01-23 湖北航天化学技术研究所 A kind of multiple-pulse adjustable thrust Solid propeller
CN108612599A (en) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 A kind of liquid-electricity interblock space thruster
CN108612599B (en) * 2016-12-10 2020-09-08 中国科学院大连化学物理研究所 Liquid-electric combined space thruster
CN106704132A (en) * 2017-01-12 2017-05-24 安徽工程大学 Ferroelectric micro-plasma propeller
CN110799751A (en) * 2017-05-16 2020-02-14 赛峰飞机发动机公司 Device for regulating the flow of a propellant fluid for an electric thruster
US12344404B2 (en) 2017-05-16 2025-07-01 Safran Aircraft Engines Device for regulating the rate of flow of propellant fluid for an electric thruster
CN107061210A (en) * 2017-05-18 2017-08-18 西安交通大学 It is a kind of that the pulsed plasma thruster accelerated is mixed based on electrothermal and electromagnetic
CN107165794B (en) * 2017-06-12 2019-10-01 北京航空航天大学 A kind of adjustable low-power hall thruster with magnetic screening effect in magnetic field
CN107165794A (en) * 2017-06-12 2017-09-15 北京航空航天大学 A kind of adjustable low-power hall thruster with magnetic screening effect in magnetic field
CN107882702A (en) * 2017-10-24 2018-04-06 哈尔滨工业大学 Rafael nozzle formula magnetic confinement hollow cathode
CN111173698A (en) * 2018-11-09 2020-05-19 哈尔滨工业大学 A microwave-enhanced liquid plasma thruster
CN109779781B (en) * 2019-03-15 2020-06-02 常熟理工学院 Magnetofluidic Controlled Nozzle for Boosting Thrust of Pulse Detonation Engine
CN109779781A (en) * 2019-03-15 2019-05-21 常熟理工学院 Magnetofluidic Controlled Nozzle for Boosting Thrust of Pulse Detonation Engine
CN114135457A (en) * 2021-11-30 2022-03-04 中国工程物理研究院电子工程研究所 Ion propeller
CN114337349A (en) * 2021-12-30 2022-04-12 哈尔滨工业大学 A Pulsed Power Source for Simulating the Solar Wind
CN114337349B (en) * 2021-12-30 2022-08-26 哈尔滨工业大学 Pulse power source for simulating solar wind

Also Published As

Publication number Publication date
CN104696180B (en) 2017-07-28

Similar Documents

Publication Publication Date Title
CN104696180B (en) Magnetic field regulation type liquid phase working fluid large area microcavity discharge plasma micro-thruster
Levchenko et al. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers
Martinez-Sanchez et al. Spacecraft electric propulsion-an overview
EP2853737B1 (en) Fuel-free spacecraft propelling system based on spatial atomic oxygen
CA2998508C (en) Internal wire-triggered pulsed cathodic arc propulsion system
CN107939625B (en) Reflective Laser-Electromagnetic Field Coupled Thruster
CN111173698B (en) Liquid working medium plasma thruster based on microwave enhancement
US9242747B1 (en) Space thruster using robust microcavity discharge and advanced propellants
CN107651222A (en) Micro cathode Arcjet
US9410539B2 (en) Micro-nozzle thruster
AU2016222291B2 (en) Thruster
WO2010036291A2 (en) Ionic liquid multi-mode propulsion system
CN115163439A (en) Low-power hollow cathode propulsion system
CN107061210B (en) A kind of pulsed plasma thruster accelerated based on electrothermal and electromagnetic mixing
EP2853736B1 (en) Chemical-electromagnetic hybrid propulsion system with variable specific impulse
CN210106081U (en) Solid ablation type magnetic plasma thruster
CN106438251A (en) New Hollow Cathode Thruster
CN107842478A (en) Transmitted Laser-EM Field Coupled Thruster
RU2741401C1 (en) Module with multichannel plasma propulsion system for small spacecraft
CN110131120A (en) Solid ablation type magnetic plasma thruster
CN102146902A (en) A high-frequency high-voltage single-electrode plasma thruster
CN111456921B (en) A microwave-enhanced colloidal thruster
CN109018443B (en) Integrated hybrid drive device of gas injection and electrospray
JP2017002851A (en) Vacuum arc propeller
JP2022547467A (en) Conductive Liquid Propellant Pulsed Plasma Thruster

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant