CN104696029A - Organic Rankine cycle system and method for switching operation modes thereof - Google Patents

Organic Rankine cycle system and method for switching operation modes thereof Download PDF

Info

Publication number
CN104696029A
CN104696029A CN201310722415.5A CN201310722415A CN104696029A CN 104696029 A CN104696029 A CN 104696029A CN 201310722415 A CN201310722415 A CN 201310722415A CN 104696029 A CN104696029 A CN 104696029A
Authority
CN
China
Prior art keywords
value
rankine cycle
organic rankine
cycle system
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310722415.5A
Other languages
Chinese (zh)
Other versions
CN104696029B (en
Inventor
徐菘蔚
郭启荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN104696029A publication Critical patent/CN104696029A/en
Application granted granted Critical
Publication of CN104696029B publication Critical patent/CN104696029B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

An organic Rankine cycle system and a method for switching an operation mode thereof. The switching method comprises the step of judging whether an actual pressure value of a working fluid of the organic Rankine cycle system before entering the inlet of the expander is larger than or equal to a critical pressure value of the working fluid. If yes, the organic Rankine cycle system is operated in a transcritical operation mode. If not, the organic Rankine cycle system is operated in the primary critical operation mode.

Description

有机朗肯循环系统及其运转模式的切换方法Organic Rankine Cycle System and Its Operation Mode Switching Method

技术领域technical field

本发明关于一种有机朗肯循环系统,特别是一种有机朗肯循环系统及其次临界运转模式和穿临界运转模式的切换方法。The present invention relates to an organic Rankine cycle system, in particular to an organic Rankine cycle system and a switching method between a subcritical operation mode and a transcritical operation mode.

背景技术Background technique

有机朗肯循环(Organic Rankine Cycle,ORC)使用在常压时低沸点的有机物质为工作流体,为目前中低温热能发电技术中效率最高且最经济实惠。有机朗肯循环依内部循环工作流体操作于临界点下或上区分为次临界循环(Sub-critical cycle)系统或穿临界循环(Transcritical cycle)系统。一般而言,穿临界循环系统具有较高的系统热效率和热源取热率,因此在相同冷热源条件下其发电量较大。Organic Rankine Cycle (ORC) uses organic substances with a low boiling point at normal pressure as the working fluid, which is the most efficient and economical among current medium and low temperature thermal power generation technologies. The organic Rankine cycle is divided into a sub-critical cycle system or a transcritical cycle system according to the internal circulating working fluid operating below or above the critical point. Generally speaking, the transcritical cycle system has higher system thermal efficiency and heat extraction rate of heat source, so it generates more electricity under the same cold and heat source conditions.

应用于穿临界有机朗肯循环系统的热源多样化且范围宽广,包含中低温废热、地热、温泉、太阳热能等变动型热源。然而,由于上述变动型热源的温度和单位时间内的供应量具有周期性、间歇性或不定期性的变异,故若穿临界有机朗肯循环面对上述变动型热源时,则有可能因热源的条件变动至穿临界有机朗肯循环运转的条件外而导致有机朗肯循环系统停机,进而局限有机朗肯循环系统的使用率。如此一来,将会降低有机朗肯循环系统的累积发电量,因此,如何提升有机朗肯循环系统面对变动型热源时的发电量,进而提升其经济效益将是研发人员应解决的问题之一。The heat sources applied to transcritical organic Rankine cycle systems are diverse and wide-ranging, including variable heat sources such as medium and low temperature waste heat, geothermal heat, hot springs, and solar thermal energy. However, since the temperature of the above-mentioned variable heat source and the supply amount per unit time have periodic, intermittent or irregular variations, if the transcritical ORC faces the above-mentioned variable heat source, it may be caused by the heat source The condition of the organic rankine cycle changes beyond the operation condition of the transcritical organic rankine cycle, which leads to the shutdown of the organic rankine cycle system, thereby limiting the utilization rate of the organic rankine cycle system. In this way, the cumulative power generation of the organic Rankine cycle system will be reduced. Therefore, how to increase the power generation of the organic Rankine cycle system in the face of variable heat sources, thereby improving its economic benefits, will be one of the problems that researchers should solve one.

发明内容Contents of the invention

本发明在于提供一种有机朗肯循环系统及其次临界运转模式和穿临界运转模式的切换方法,借以提升有机朗肯循环系统面对变动型热源时的可操作范围。The present invention provides an organic Rankine cycle system and a method for switching between a subcritical operation mode and a transcritical operation mode, so as to improve the operable range of the organic Rankine cycle system when facing a variable heat source.

为达到上述目的,本发明提供一种有机朗肯循环系统的运转模式的切换方法,包含下列步骤:判断一有机朗肯循环系统的一工作流体进入一膨胀机入口前的一实际压力值是否大于等于工作流体的一临界压力值:若是,则令有机朗肯循环系统以一穿临界运转模式运转。若否,则令有机朗肯循环系统以一次临界运转模式运转。In order to achieve the above object, the present invention provides a method for switching the operating mode of an organic Rankine cycle system, comprising the following steps: judging whether an actual pressure value of a working fluid of an organic Rankine cycle system before entering an expander inlet is greater than Equal to a critical pressure value of the working fluid: if yes, make the organic Rankine cycle system operate in a critical operation mode. If not, the organic Rankine cycle system is operated in a primary critical operation mode.

上述的有机朗肯循环系统的运转模式的切换方法,其中该穿临界运转模式的操作流程包含下列步骤:查找一超临界工作流体压力温度数据库,以获得该实际压力值所对应的一工作温度范围;以及判断该工作流体进入该膨胀机入口前的一实际温度值与该工作温度范围的关系:若该实际温度值低于该工作温度范围的下限值,则调降驱动该工作流体的一泵的一输出频率值或一输出流量值;若该实际温度值落于该工作温度范围内,则维持该泵的该输出频率值或该输出流量值;以及若该实际温度值高于该工作温度范围的上限值,则调升该泵的该输出频率值或该输出流量值。In the method for switching the operation mode of the above-mentioned organic Rankine cycle system, the operation process of the transcritical operation mode includes the following steps: searching a supercritical working fluid pressure and temperature database to obtain an operating temperature range corresponding to the actual pressure value and judging the relationship between an actual temperature value before the working fluid enters the expander inlet and the working temperature range: if the actual temperature value is lower than the lower limit of the working temperature range, then lower a driving force of the working fluid An output frequency value or an output flow value of the pump; if the actual temperature value falls within the working temperature range, maintain the output frequency value or the output flow value of the pump; and if the actual temperature value is higher than the working temperature If the upper limit of the temperature range is not reached, then increase the output frequency value or the output flow value of the pump.

上述的有机朗肯循环系统的运转模式的切换方法,其中于若该实际温度值低于该工作温度范围的下限值,则调降该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值低于该临界压力值时,则令该有机朗肯循环系统的运转模式由该穿临界运转模式切换至该次临界运转模式。The method for switching the operation mode of the above-mentioned organic Rankine cycle system, wherein if the actual temperature value is lower than the lower limit value of the working temperature range, the step of lowering the output frequency value or the output flow value of the pump , further comprising switching the operation mode of the organic Rankine cycle system from the transcritical operation mode to the subcritical operation mode if the actual pressure value before entering the expander inlet is lower than the critical pressure value.

上述的有机朗肯循环系统的运转模式的切换方法,其中该穿临界运转模式的操作流程中,于若该实际温度值高于该工作温度范围的上限值,则调升该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值高于该有机朗肯循环系统的容许最大压力值时,则令该有机朗肯循环系统停止运转。The above-mentioned method for switching the operation mode of the organic Rankine cycle system, wherein in the operation process of the transcritical operation mode, if the actual temperature value is higher than the upper limit value of the working temperature range, the output of the pump is increased After the step of determining the frequency value or the output flow value, it also includes that if the actual pressure value before entering the expander inlet is higher than the allowable maximum pressure value of the organic Rankine cycle system, then the organic Rankine cycle system is stopped. .

上述的有机朗肯循环系统的运转模式的切换方法,其中该穿临界运转模式的操作流程中,该超临界工作流体压力温度数据库具有多组压力与工作温度范围数据,每一组压力与工作温度范围数据具有一个压力值与对应的一个工作温度范围。In the method for switching the operation mode of the above-mentioned organic Rankine cycle system, in the operation process of the transcritical operation mode, the supercritical working fluid pressure temperature database has multiple sets of pressure and working temperature range data, and each set of pressure and working temperature Range data has a pressure value and a corresponding operating temperature range.

上述的有机朗肯循环系统的运转模式的切换方法,其中该次临界运转模式的操作流程包含下列步骤:依据该实际压力值与该实际温度值计算出该工作流体的一实际过热度值;以及判断该工作流体进入该膨胀机入口前的该实际过热度值与一预设过热度范围的关系:若该实际过热度值小于该预设过热度范围的下限值,则调降该泵的该输出频率值或该输出流量值;若该实际过热度值落于该预设过热度范围内,则维持驱动该泵的该输出频率值或该输出流量值;以及若该实际过热度值大于该预设过热度范围的上限值,则调升该泵的该输出频率值或该输出流量值。In the above-mentioned method for switching the operation mode of the ORC system, the operation process of the subcritical operation mode includes the following steps: calculating an actual superheat value of the working fluid according to the actual pressure value and the actual temperature value; and Judging the relationship between the actual superheat value before the working fluid enters the expander inlet and a preset superheat range: if the actual superheat value is less than the lower limit of the preset superheat range, lower the pump’s The output frequency value or the output flow value; if the actual superheat value falls within the preset superheat range, maintain the output frequency value or the output flow value for driving the pump; and if the actual superheat value is greater than The upper limit value of the preset superheat range increases the output frequency value or the output flow value of the pump.

上述的有机朗肯循环系统的运转模式的切换方法,其中其中该次临界运转模式的操作流程中,于若该实际过热度值小于该预设过热度范围的下限值,则调降该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值低于该有机朗肯循环系统的容许最小压力值时,则令该有机朗肯循环系统停止运转。The above-mentioned method for switching the operation mode of the organic Rankine cycle system, wherein in the operation process of the subcritical operation mode, if the actual superheat value is less than the lower limit value of the preset superheat range, the pump is lowered After the step of the output frequency value or the output flow value, if the actual pressure value before entering the expander inlet is lower than the allowable minimum pressure value of the organic Rankine cycle system, making the organic Rankine cycle The system stops functioning.

上述的有机朗肯循环系统的运转模式的切换方法,其中于若该实际过热度值大于该预设过热度范围的上限值,则调升该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值高于该临界压力值时,则令该有机朗肯循环系统的运转模式由该次临界运转模式切换至该穿临界运转模式。In the method for switching the operation mode of the above-mentioned organic Rankine cycle system, if the actual superheat value is greater than the upper limit value of the preset superheat range, the output frequency value or the output flow value of the pump is increased After the step, if the actual pressure value before entering the expander inlet is higher than the critical pressure value, switching the operation mode of the organic Rankine cycle system from the subcritical operation mode to the transcritical operation mode.

上述的有机朗肯循环系统的运转模式的切换方法,其中该泵为变流量泵或定流量泵搭配变频马达。The method for switching the operation mode of the above-mentioned organic Rankine cycle system, wherein the pump is a variable flow pump or a constant flow pump with a variable frequency motor.

上述的有机朗肯循环系统的运转模式的切换方法,其中该膨胀机为涡轮机、螺旋式膨胀机、涡卷式膨胀机、容积式膨胀机或往复式膨胀机。The method for switching the operation mode of the above-mentioned organic Rankine cycle system, wherein the expander is a turbine, a screw expander, a scroll expander, a positive displacement expander or a reciprocating expander.

上述的有机朗肯循环系统的运转模式的切换方法,其中供应该有机朗肯循环系统的一热源或一冷源的温度或流量变动时,若该有机朗肯循环系统于该穿临界运转模式下,则执行判断该工作流体进入该膨胀机入口前的一实际温度值是否落于一工作温度范围内的步骤,若该有机朗肯循环系统于该次临界运转模式下,则执行判断该工作流体进入该膨胀机入口前的一实际过热度值是否落于一预设过热度范围内的步骤。The method for switching the operation mode of the above-mentioned organic Rankine cycle system, wherein when the temperature or flow rate of a heat source or a cold source supplied to the organic Rankine cycle system changes, if the organic Rankine cycle system is in the transcritical operation mode , then execute the step of judging whether an actual temperature value of the working fluid before entering the expander inlet falls within a working temperature range; A step of whether an actual superheat value before entering the expander inlet falls within a preset superheat range.

为达到上述目的,本发明提供一种有机朗肯循环系统,包含一热源热交换器、一膨胀机、一冷凝器、一泵、一压力感测器及一控制元件。膨胀机通过管路与热源热交换器相连。冷凝器通过管路与膨胀机相连。泵通过管路与冷凝器和热源热交换器相连。泵用以驱动一工作流体由泵依序流过热源热交换器、膨胀机及冷凝器而构成一有机朗肯循环。工作流体具有一临界压力值。压力感测器用以检测工作流体在膨胀机入口的一实际压力值。控制元件用以判断工作流体的实际压力值与临界压力值间的关系。若工作流体的实际压力值大于临界压力值,则控制元件控制有机朗肯循环以一穿临界运转模式运转。若工作流体的实际压力值小于临界压力值,则控制元件控制有机朗肯循环以一次临界运转模式运转。To achieve the above object, the present invention provides an organic Rankine cycle system, which includes a heat source heat exchanger, an expander, a condenser, a pump, a pressure sensor and a control element. The expander is connected with the heat source heat exchanger through pipelines. The condenser is connected to the expander through pipelines. The pump is connected with the condenser and the heat source heat exchanger through pipelines. The pump is used to drive a working fluid to flow sequentially through the heat source heat exchanger, expander and condenser to form an organic Rankine cycle. The working fluid has a critical pressure value. The pressure sensor is used to detect an actual pressure value of the working fluid at the inlet of the expander. The control element is used to judge the relationship between the actual pressure value of the working fluid and the critical pressure value. If the actual pressure value of the working fluid is greater than the critical pressure value, the control element controls the organic Rankine cycle to operate in a transcritical operation mode. If the actual pressure value of the working fluid is less than the critical pressure value, the control element controls the organic Rankine cycle to operate in the primary critical operation mode.

上述的有机朗肯循环系统,其中还包含一温度感测器,用以检测该工作流体进入膨胀机入口前的一实际温度值,该控制元件内存有一超临界工作流体压力温度数据库,该超临界工作流体压力温度数据库具有多组压力与工作温度范围数据,每一组压力与工作温度范围数据具有一压力值及对应的一工作温度范围,该有机朗肯循环系统于该穿临界运转模式下时,若该实际温度值大于该工作温度范围的上限值,则该控制元件提高该泵的一输出频率值或一输出流量值,若实际温度值小于该工作温度范围的下限值,则该控制元件降低该泵的该输出频率值或该输出流量值。The above-mentioned organic Rankine cycle system also includes a temperature sensor, which is used to detect an actual temperature value of the working fluid before entering the inlet of the expander, and the control element stores a supercritical working fluid pressure temperature database, and the supercritical The working fluid pressure temperature database has multiple sets of pressure and working temperature range data, and each set of pressure and working temperature range data has a pressure value and a corresponding working temperature range. When the organic Rankine cycle system is in the transcritical operation mode , if the actual temperature value is greater than the upper limit value of the working temperature range, the control element increases an output frequency value or an output flow value of the pump; if the actual temperature value is less than the lower limit value of the working temperature range, the The control element reduces the output frequency value or the output flow value of the pump.

上述的有机朗肯循环系统,其中于该穿临界运转模式下,若该实际压力值大于该有机朗肯循环系统的容许最大压力值,则该控制元件令该有机朗肯循环系统停止运转,若该实际压力值小于该临界压力值,则该控制元件令该有机朗肯循环系统由该穿临界运转模式切换至该次临界运转模式。The above-mentioned organic Rankine cycle system, wherein in the transcritical operation mode, if the actual pressure value is greater than the allowable maximum pressure value of the organic Rankine cycle system, the control element stops the operation of the organic Rankine cycle system, if When the actual pressure value is less than the critical pressure value, the control element switches the organic Rankine cycle system from the transcritical operation mode to the subcritical operation mode.

上述的有机朗肯循环系统,其中该控制元件内存有一过热度计算模组,该控制元件的该过热度计算模组依据该实际压力值与该实际温度值计算出该工作流体的一实际过热度值,该有机朗肯循环于该次临界运转模式下时,若该实际过热度值小于一预设过热度范围的下限值,则调降该泵的该输出频率值或该输出流量值,若该实际过热度值大于一预设过热度范围的上限值,则调高该泵的该输出频率值或该输出流量值。In the organic Rankine cycle system described above, the control element stores a superheat calculation module, and the superheat calculation module of the control element calculates an actual superheat of the working fluid based on the actual pressure value and the actual temperature value value, when the organic Rankine cycle is in the subcritical operation mode, if the actual superheat value is less than a lower limit value of a preset superheat range, the output frequency value or the output flow value of the pump is lowered, If the actual superheat value is greater than the upper limit of a preset superheat range, then increase the output frequency value or the output flow value of the pump.

上述的有机朗肯循环系统,其中于该次临界运转模式下,若该实际压力值小于该有机朗肯循环系统的容许最小压力值,则该控制元件令该有机朗肯循环系统停止运转,若该实际压力值大于该临界压力值,则该控制元件令该有机朗肯循环系统由该次临界运转模式切换至该穿临界运转模式。The above-mentioned organic Rankine cycle system, wherein in the subcritical operation mode, if the actual pressure value is less than the allowable minimum pressure value of the organic Rankine cycle system, the control element stops the operation of the organic Rankine cycle system, if When the actual pressure value is greater than the critical pressure value, the control element switches the organic Rankine cycle system from the subcritical operation mode to the transcritical operation mode.

上述的有机朗肯循环系统,其中该工作流体为一有机冷媒,该有机冷媒为选自由HFCs、混合冷媒、HCs、FCs所构成的群组的其中之一。In the organic Rankine cycle system mentioned above, the working fluid is an organic refrigerant, and the organic refrigerant is one selected from the group consisting of HFCs, mixed refrigerants, HCs, and FCs.

上述的有机朗肯循环系统,其中该泵为变流量泵或定流量泵搭配变频马达。In the organic Rankine cycle system mentioned above, the pump is a variable flow pump or a constant flow pump with a variable frequency motor.

上述的有机朗肯循环系统,其中该膨胀机为涡轮机、螺旋式膨胀机、涡卷式膨胀机、容积式膨胀机或往复式膨胀机。The organic Rankine cycle system above, wherein the expander is a turbine, a screw expander, a scroll expander, a positive displacement expander or a reciprocating expander.

上述的有机朗肯循环系统,其中还包含一发电机,与该膨胀机相连,将该膨胀机的旋转动能转换为电能输出。The above-mentioned organic Rankine cycle system also includes a generator connected with the expander to convert the rotational kinetic energy of the expander into electrical energy for output.

根据上述本发明所揭露的有机朗肯循环系统及其次临界运转模式和穿临界运转模式的切换方法,通过压力条件来切换有机朗肯循环系统的运转模式,使得工作流体的条件变动时,有机朗肯循环系统能够持续调整至合适运转模式,以求能够提升有机朗肯循环系统的可操作范围和使用率而增加其累积发电量,进而提升有机朗肯循环系统的经济效益。According to the organic Rankine cycle system and its subcritical operation mode and transcritical operation mode switching method disclosed in the present invention, the operation mode of the organic Rankine cycle system is switched through pressure conditions, so that when the condition of the working fluid changes, the organic Rankine cycle The Ken cycle system can be continuously adjusted to an appropriate operation mode in order to improve the operable range and utilization rate of the organic Rankine cycle system and increase its cumulative power generation, thereby improving the economic benefits of the organic Rankine cycle system.

以上关于本发明内容的说明及以下实施方式的说明用以示范与解释本发明的原理,并且提供本发明的专利申请范围更进一步的解释。The above descriptions about the contents of the present invention and the following descriptions of the embodiments are used to demonstrate and explain the principles of the present invention, and provide further explanations of the patent application scope of the present invention.

附图说明Description of drawings

图1为根据本发明一实施例的有机朗肯循环系统的系统示意图;Fig. 1 is a system schematic diagram of an organic Rankine cycle system according to an embodiment of the present invention;

图2为图1的有机朗肯循环系统于穿临界运转模式下的温度-熵性能示意图;2 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of FIG. 1 in a transcritical operation mode;

图3为图1的有机朗肯循环系统于次临界运转模式下的温度-熵性能示意图;3 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of FIG. 1 in a subcritical operation mode;

图4为图1的有机朗肯循环系统的次临界运转模式和穿临界运转模式的切换方法的流程图;Fig. 4 is the flowchart of the switching method of subcritical operation mode and transcritical operation mode of the organic Rankine cycle system of Fig. 1;

图5为图1的有机朗肯循环系统于穿临界运转模式的操作流程图;Fig. 5 is the operation flowchart of the organic Rankine cycle system of Fig. 1 in the transcritical operation mode;

图6与图7为图1的供应有机朗肯循环系统的热源温度变动的温度-熵性能示意图;6 and 7 are schematic diagrams of the temperature-entropy performance of the temperature variation of the heat source supplying the organic Rankine cycle system of FIG. 1;

图8为图1的有机朗肯循环系统于次临界运转模式的操作流程图。FIG. 8 is a flowchart of the operation of the ORC system in FIG. 1 in a subcritical operation mode.

其中,附图标记:Among them, reference signs:

具体实施方式Detailed ways

请参照图1至图3。图1为根据本发明一实施例的有机朗肯循环系统的系统示意图。图2为图1的有机朗肯循环系统于穿临界运转模式下的温度-熵性能示意图。图3为图1的有机朗肯循环系统于次临界运转模式下的温度-熵性能示意图。Please refer to Figure 1 to Figure 3. FIG. 1 is a system diagram of an organic Rankine cycle system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system in FIG. 1 in a transcritical operation mode. FIG. 3 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of FIG. 1 in a subcritical operation mode.

如图1所示,本实施例的可操作于次临界和穿临界状态的有机朗肯循环系统10包含一热源热交换器100、一膨胀机200、一冷凝器300、一泵400、一压力感测器510、一温度感测器520、一发电机600及一控制元件700。As shown in Figure 1, the organic Rankine cycle system 10 operable in the subcritical and transcritical states of the present embodiment comprises a heat source heat exchanger 100, an expander 200, a condenser 300, a pump 400, a pressure A sensor 510 , a temperature sensor 520 , a generator 600 and a control element 700 .

热源热交换器100用以供一外界热源流入。热源与有机朗肯循环系统10进行热交换,以提供有机朗肯循环系统10热能。热源例如为中低温废热、地热、温泉、太阳热能等。膨胀机200用以释放流体压力。冷凝器300用以供一外界冷源流入,冷源与有机朗肯循环系统10进行热交换,将有机朗肯循环系统10的热能带走。冷源例如为水冷式冷却水塔、气冷式冷却器、河水、海水、或其他低温流体。泵400用以驱动有机朗肯循环系统10的工作流体流动,并用以调整工作流体压力。The heat source heat exchanger 100 is used for an external heat source to flow in. The heat source exchanges heat with the organic Rankine cycle system 10 to provide heat energy for the organic Rankine cycle system 10 . The heat source is, for example, medium and low temperature waste heat, geothermal heat, hot spring, solar thermal energy and the like. The expander 200 is used to release fluid pressure. The condenser 300 is used for an external cold source to flow in, and the cold source exchanges heat with the ORC system 10 to take away the heat energy of the ORC system 10 . The cold source is, for example, a water-cooled cooling tower, an air-cooled cooler, river water, sea water, or other low-temperature fluids. The pump 400 is used to drive the flow of the working fluid of the ORC system 10 and to adjust the pressure of the working fluid.

热源热交换器100、膨胀机200、冷凝器300及泵400间通过管路彼此相连,且泵400用以驱动一工作流体由泵400依序流过热源热交换器100、膨胀机200及冷凝器300而构成一有机朗肯循环,以将热能转换成机械能。工作流体具有一临界压力值PC(如图2与图3所示)。若工作流体流过热源热交换器100后进入膨胀机200入口前的实际压力值大于临界压力值PC,则代表工作流体在单一时间点仅具有单相。若工作流体流过热源热交换器100后进入膨胀机200入口前的实际压力值低于临界压力值PC,则代表工作流体在单一时间点具有双相以上。工作流体为一有机冷媒。本实施例以R-134a有机冷媒为例,但并不以此为限,有机冷媒也可以为选自由HFCs(如:R134a,R245fa,R32,R23,R41,R125,R152a,R236fa等)、混合冷媒(如:R404A,R407C,R507A,R410A等)、HCs(如:R116,R218,RC318,n-pentane等)、FCs(如:butane,isobutene,propane,methane等)所构成的群组的其中之一。此外,泵400为变流量泵或定流量泵搭配变频马达。膨胀机200为涡轮机、螺旋式膨胀机200、涡卷式膨胀机200、容积式膨胀机200或往复式膨胀机200等。The heat source heat exchanger 100, the expander 200, the condenser 300, and the pump 400 are connected to each other through pipelines, and the pump 400 is used to drive a working fluid to flow through the heat source heat exchanger 100, the expander 200, and the condenser sequentially from the pump 400. The device 300 constitutes an organic Rankine cycle to convert thermal energy into mechanical energy. The working fluid has a critical pressure value PC (as shown in FIG. 2 and FIG. 3 ). If the actual pressure value of the working fluid before entering the inlet of the expander 200 after passing through the heat source heat exchanger 100 is greater than the critical pressure value PC, it means that the working fluid has only a single phase at a single time point. If the actual pressure value of the working fluid before entering the inlet of the expander 200 after passing through the heat source heat exchanger 100 is lower than the critical pressure value PC, it means that the working fluid has more than two phases at a single time point. The working fluid is an organic refrigerant. This embodiment takes R-134a organic refrigerant as an example, but it is not limited thereto. The organic refrigerant can also be selected from HFCs (such as: R134a, R245fa, R32, R23, R41, R125, R152a, R236fa, etc.), mixed Refrigerants (such as: R404A, R407C, R507A, R410A, etc.), HCs (such as: R116, R218, RC318, n-pentane, etc.), FCs (such as: butane, isobutene, propane, methane, etc.) one. In addition, the pump 400 is a variable flow pump or a constant flow pump with a variable frequency motor. The expander 200 is a turbine, a screw expander 200, a scroll expander 200, a displacement expander 200, a reciprocating expander 200, and the like.

在本实施例中,泵400为定流量泵。控制元件700通过一变频装置800来改变泵400的输出频率值或输出流量值。然此变频装置800非必要元件,在泵400选用变流量泵的实施例,则无需设置此变频装置800。In this embodiment, the pump 400 is a constant flow pump. The control element 700 changes the output frequency value or the output flow value of the pump 400 through a frequency conversion device 800 . However, the frequency conversion device 800 is not an essential component. If the pump 400 uses a variable flow pump, the frequency conversion device 800 does not need to be provided.

压力感测器510用以检测工作流体流过热源热交换器100后且进入膨胀机200入口前的一实际压力值PrThe pressure sensor 510 is used to detect an actual pressure value P r of the working fluid after passing through the heat source heat exchanger 100 and before entering the inlet of the expander 200 .

温度感测器520用以检测工作流体流过热源热交换器100后且进入膨胀机200入口前的一实际温度值TrThe temperature sensor 520 is used to detect an actual temperature value T r of the working fluid after passing through the heat source heat exchanger 100 and before entering the inlet of the expander 200 .

发电机600与膨胀机200相连。膨胀机200用以驱动发电机600运作而将机械能转换成电能。The generator 600 is connected to the expander 200 . The expander 200 is used to drive the generator 600 to convert mechanical energy into electrical energy.

控制元件700,用以判断工作流体的实际压力值Pr与临界压力值PC间的关系,若工作流体的实际压力值Pr大于临界压力值PC,则控制元件700控制有机朗肯循环系统10以一穿临界运转模式运转(穿临界运转模式下的有机朗肯循环系统10的温度-熵性能示意图为如图2所示)。若工作流体的实际压力值Pr小于临界压力值PC,则控制元件700控制有机朗肯循环系统10以一次临界运转模式运转(次临界运转模式下的有机朗肯循环系统10的温度-熵性能示意图为如图3所示)。The control element 700 is used to judge the relationship between the actual pressure value P r of the working fluid and the critical pressure value P C , if the actual pressure value P r of the working fluid is greater than the critical pressure value P C , the control element 700 controls the organic Rankine cycle The system 10 operates in a transcritical operation mode (the temperature-entropy performance diagram of the organic Rankine cycle system 10 in the transcritical operation mode is shown in FIG. 2 ). If the actual pressure value P r of the working fluid is less than the critical pressure value P C , the control element 700 controls the organic Rankine cycle system 10 to operate in the primary critical operation mode (the temperature-entropy of the organic Rankine cycle system 10 in the subcritical operation mode The performance diagram is shown in Figure 3).

有机朗肯循环系统10在装设时,可先依据热源历史数据和温度/流量变异情形以及有机朗肯循环系统10的运转参数来决定有机朗肯循环系统10在穿临界运转模式运转时每一压力值所对应的操作温度范围及在次临界运转模式运转时预设适合的过热度范围,并将上述资讯纪录于控制元件700的一超临界工作流体压力温度数据库及一过热度计算模组,以令控制元件700能够通过超临界工作流体压力温度数据库及过热度计算模组来自动调整泵400的输出频率值或输出流量值。When the organic Rankine cycle system 10 is installed, it can be determined according to the historical data of the heat source, the temperature/flow variation situation and the operating parameters of the organic Rankine cycle system 10. The operating temperature range corresponding to the pressure value and the preset suitable superheat range when operating in the subcritical operation mode, and record the above information in a supercritical working fluid pressure temperature database and a superheat calculation module of the control element 700, In order to enable the control element 700 to automatically adjust the output frequency value or the output flow value of the pump 400 through the supercritical working fluid pressure temperature database and the superheat calculation module.

超临界工作流体压力温度数据库具有有机朗肯循环系统10于次临界运转模式运转下的多组压力与工作温度范围数据,每一组压力与工作温度范围数据具有一个压力值与对应的一个工作温度范围。The supercritical working fluid pressure and temperature database has multiple sets of pressure and working temperature range data of the organic Rankine cycle system 10 operating in the subcritical operating mode, and each set of pressure and working temperature range data has a pressure value and a corresponding working temperature scope.

请参阅图4至图5。图4为图1的有机朗肯循环系统的次临界运转模式和穿临界运转模式的切换方法的流程图。图5为图1的有机朗肯循环系统于穿临界运转模式的操作流程图。See Figures 4 through 5. FIG. 4 is a flowchart of a method for switching between the subcritical operation mode and the transcritical operation mode of the organic Rankine cycle system in FIG. 1 . FIG. 5 is an operation flowchart of the organic Rankine cycle system in FIG. 1 in a transcritical operation mode.

如图4所示。首先,控制元件700会判断有机朗肯循环系统10的工作流体通过热源热交换器100后进入膨胀机200入口前的实际压力值Pr是否大于等于工作流体的一临界压力值PC(如步骤S100所示)。As shown in Figure 4. First, the control unit 700 will judge whether the actual pressure value P r of the working fluid of the organic Rankine cycle system 10 after passing through the heat source heat exchanger 100 before entering the inlet of the expander 200 is greater than or equal to a critical pressure value PC of the working fluid (such as step S100 shown).

若是,则控制元件700会令有机朗肯循环系统10以一穿临界运转模式运转(如步骤S200所示)。If yes, the control unit 700 will make the organic Rankine cycle system 10 operate in a transcritical operation mode (as shown in step S200 ).

若否,则控制元件700会令有机朗肯循环系统10以一次临界运转模式运转(如步骤S300所示)。If not, the control unit 700 will make the organic Rankine cycle system 10 operate in the primary critical operation mode (as shown in step S300 ).

如图5所示,穿临界运转模式的操作模式,首先,控制元件700会查找一超临界工作流体压力温度数据库,以获得实际压力值Pr所对应的一工作温度范围(如步骤S210所示)。As shown in FIG. 5 , in the operation mode of the critical operation mode, first, the control unit 700 will search a supercritical working fluid pressure and temperature database to obtain an operating temperature range corresponding to the actual pressure value Pr (as shown in step S210 ).

接着,控制元件700会判断工作流体通过热源热交换器100后进入膨胀机200入口前的一实际温度值Tr与工作温度范围TR的关系(如步骤S220所示)。Next, the control unit 700 judges the relationship between an actual temperature value T r of the working fluid before entering the inlet of the expander 200 after passing through the heat source heat exchanger 100 and the working temperature range T R (shown in step S220 ).

若温度感测器520测得进入膨胀机200入口前的工作流体的实际温度值Tr低于工作温度范围的下限值TR,MIN,则控制元件700会调降泵400的输出频率值或输出流量值(如步骤S230所示)。若压力感测器510测得膨胀机200入口前的工作流体的实际压力值Pr低于临界压力值PC时,则控制元件700会令有机朗肯循环系统10的运转模式由穿临界运转模式切换至次临界运转模式(如步骤S260所示),以令有机朗肯循环系统10能够持续发电而提高累积发电量。If the temperature sensor 520 detects that the actual temperature T r of the working fluid before entering the inlet of the expander 200 is lower than the lower limit T R ,MIN of the working temperature range, the control element 700 will lower the output frequency of the pump 400 Or output the flow value (as shown in step S230). If the pressure sensor 510 detects that the actual pressure value P r of the working fluid before the inlet of the expander 200 is lower than the critical pressure value PC, the control element 700 will change the operating mode of the organic Rankine cycle system 10 from the transcritical operating mode Switch to the sub-critical operation mode (as shown in step S260 ), so that the organic Rankine cycle system 10 can continue to generate power and increase the cumulative power generation.

若温度感测器520测得进入膨胀机200入口前的工作流体的实际温度值Tr落于工作温度范围内,则维持驱动工作流体的一泵400的输出频率值或输出流量值(如步骤S240所示)。If the temperature sensor 520 detects that the actual temperature value Tr of the working fluid entering the inlet of the expander 200 falls within the working temperature range, then maintain the output frequency value or the output flow value of a pump 400 that drives the working fluid (as in step shown in S240).

若温度感测器520测得进入膨胀机200入口前的工作流体的实际温度值Tr高于工作温度范围的上限值TR,MAX,则控制元件700会调升泵400的输出频率值或输出流量值(如步骤S250所示)。若压力感测器510测得进入膨胀机200入口前的工作流体的实际压力值Pr高于有机朗肯循环系统10的容许最大压力值PA,MAX时,则控制元件700会令有机朗肯循环系统10停止运转(如步骤S270所示),以避免有机朗肯循环系统10毁损。If the temperature sensor 520 detects that the actual temperature T r of the working fluid before entering the inlet of the expander 200 is higher than the upper limit T R ,MAX of the working temperature range, the control element 700 will increase the output frequency of the pump 400 Or output the flow value (as shown in step S250). If the pressure sensor 510 detects that the actual pressure value P r of the working fluid before entering the inlet of the expander 200 is higher than the allowable maximum pressure value P A,MAX of the organic Rankine cycle system 10, the control element 700 will make the organic Rankine cycle The Ken cycle system 10 is stopped (as shown in step S270 ), so as to avoid damage to the organic Rankine cycle system 10 .

以下举例说明有机朗肯循环系统10于穿临界模式下的操作状况。请参阅图6与图7。图6与图7为图1的供应有机朗肯循环系统的热源温度变动的温度-熵性能示意图。The following examples illustrate the operating conditions of the organic Rankine cycle system 10 in the transcritical mode. Please refer to Figure 6 and Figure 7. 6 and 7 are schematic diagrams of the temperature-entropy performance of the temperature variation of the heat source supplying the organic Rankine cycle system of FIG. 1 .

假设在一稳定热源(温度Ts1、流量Ms1)与冷源条件下,有机朗肯循环系统10在穿临界运转模式下稳定运转。工作流体在进入膨胀机200前,工作流体的压力、温度及质量流率分别为第一压力值P1、第一温度值T1及第一质量流率M1(与泵400的输出频率值或输出流量值成正比)。当冷源固定、热源流量固定、但温度升高时,热交换后的工作流体的第一温度值T1会升高至第一暂态温度值T1-1。此时,控制元件700可缓步调升泵400的输出频率值或输出流量值,进而将工作流体的压力由第一压力值P1增加至第二压力值P2(工作流体的质量流率亦会对应从第一质量流率M2增加至第二质量流率M2)。由于工作流体质量流率增加(M2>M1),而外界热源有限,将使进入膨胀机200入口前的工作流体的温度由第一暂态温度值T1-1下降至第二温度值T2。此时,控制元件700会判断此第二温度值T2是否落于此第二压力值P2的工作温度范围内,若不符合则继续调变泵400的输出频率值或输出流量值,直至工作流体的温度值落于工作温度范围内。此外,假设调整后的工作流体的第二压力值P2高于系统容许最大操作压力值PA,MAX,则控制元件700会令有机朗肯循环系统10停机。Assume that under the condition of a stable heat source (temperature Ts1, flow rate Ms1) and a heat sink, the ORC system 10 operates stably in a transcritical operation mode. Before the working fluid enters the expander 200, the pressure, temperature and mass flow rate of the working fluid are respectively the first pressure value P1, the first temperature value T1 and the first mass flow rate M1 (and the output frequency value or output flow rate of the pump 400 value is proportional to). When the cooling source is fixed and the flow rate of the heat source is fixed, but the temperature increases, the first temperature value T1 of the heat-exchanged working fluid will increase to the first transient temperature value T1-1. At this time, the control element 700 can gradually increase the output frequency value or output flow value of the pump 400, thereby increasing the pressure of the working fluid from the first pressure value P1 to the second pressure value P2 (the mass flow rate of the working fluid will also be corresponding from the first mass flow rate M2 to the second mass flow rate M2). Since the mass flow rate of the working fluid increases (M2>M1) and the external heat source is limited, the temperature of the working fluid before entering the inlet of the expander 200 will drop from the first transient temperature value T1-1 to the second temperature value T2. At this time, the control element 700 will judge whether the second temperature value T2 falls within the working temperature range of the second pressure value P2, and if not, continue to adjust the output frequency value or output flow value of the pump 400 until the working fluid The temperature value falls within the operating temperature range. In addition, assuming that the adjusted second pressure value P2 of the working fluid is higher than the allowable maximum operating pressure value PA,MAX of the system, the control element 700 will stop the organic Rankine cycle system 10 .

假设在一稳定热源(温度Ts1、流量Ms1)与冷源条件下,有机朗肯循环系统10在穿临界运转模式下稳定运转。工作流体在进入膨胀机200前,工作流体的压力、温度及质量流率分别为第一压力值P1、第一温度值T1及第一质量流率M1(与泵400的输出频率值或输出流量值成正比)。当冷源固定、热源流量固定、但温度降低时,热交换后的工作流体的第一温度值T1会降低至第二暂态温度值T1-2。此时,控制元件700可缓步调降泵400的输出频率值或输出流量值,进而将工作流体的压力由第一压力值P1降低至第三压力值P3(工作流体的质量流率亦会对应从第一质量流率M2减少至第三质量流率M3)。由于工作流体质量流率减少(M3<M1),而外界热源有限,将使进入膨胀机200入口前的工作流体的温度由第二暂态温度值T1-2上升至第三温度值T3。此时,控制元件700会判断此第二温度值T2是否落于此第二压力值P2的工作温度范围内,若不符合则继续调变泵400的输出频率值或输出流量值,直至工作流体的温度值落于工作温度范围内。此外,假设调整后的工作流体的第三压力值P3低于工作流体的临界压力值PC,则控制元件700会令有机朗肯循环系统10的运转模式由穿临界运转模式切换至次临界运转模式。假设调整后的工作流体的第三压力值P3低于系统容许最低操作压力值PA,MIN,则控制元件700会令有机朗肯循环系统10停机。Assume that under the condition of a stable heat source (temperature Ts1, flow rate Ms1) and a heat sink, the ORC system 10 operates stably in a transcritical operation mode. Before the working fluid enters the expander 200, the pressure, temperature and mass flow rate of the working fluid are respectively the first pressure value P1, the first temperature value T1 and the first mass flow rate M1 (and the output frequency value or output flow rate of the pump 400 value is proportional to). When the cooling source is fixed and the flow rate of the heat source is fixed, but the temperature decreases, the first temperature value T1 of the heat-exchanged working fluid will decrease to the second transient temperature value T1-2. At this time, the control element 700 can gradually lower the output frequency value or the output flow value of the pump 400, thereby reducing the pressure of the working fluid from the first pressure value P1 to the third pressure value P3 (the mass flow rate of the working fluid will also be corresponding from the first mass flow rate M2 to a third mass flow rate M3). Since the mass flow rate of the working fluid decreases (M3<M1) and the external heat source is limited, the temperature of the working fluid before entering the inlet of the expander 200 will rise from the second transient temperature value T1-2 to the third temperature value T3. At this time, the control element 700 will judge whether the second temperature value T2 falls within the working temperature range of the second pressure value P2, and if not, continue to adjust the output frequency value or output flow value of the pump 400 until the working fluid The temperature value falls within the operating temperature range. In addition, assuming that the adjusted third pressure value P3 of the working fluid is lower than the critical pressure value PC of the working fluid, the control element 700 will switch the operation mode of the organic Rankine cycle system 10 from the transcritical operation mode to the subcritical operation mode . Assuming that the adjusted third pressure value P3 of the working fluid is lower than the allowable minimum operating pressure value PA,MIN of the system, the control element 700 will stop the organic Rankine cycle system 10 .

此外,若热源温度固定而换成流量变动时,则有机朗肯循环系统10的操作程序亦与上述相同,故不再赘述。In addition, if the temperature of the heat source is fixed and the flow rate is changed, the operation procedure of the ORC system 10 is also the same as above, so it will not be repeated here.

上述,控制元件700调变泵400的输出频率值或输出流量值的方法可通过PID控制设定。As mentioned above, the method for the control element 700 to adjust the output frequency value or output flow value of the pump 400 can be set through PID control.

请参阅图8。图8为图1的有机朗肯循环系统于次临界运转模式的操作流程图。See Figure 8. FIG. 8 is a flowchart illustrating the operation of the ORC system in FIG. 1 in a subcritical operation mode.

如图8所示,次临界运转模式的操作模式,首先,控制元件700的过热度计算模组会依据工作流体进入膨胀机200入口前的实际压力值Pr及实际温度值Tr,计算出一实际过热度值OSr(如步骤S310所示)。As shown in Figure 8, in the operation mode of the subcritical operation mode, firstly, the superheat calculation module of the control element 700 will calculate the actual pressure value P r and the actual temperature value T r before the working fluid enters the inlet of the expander 200 An actual superheat value OS r (as shown in step S310).

接着,控制元件700会判断进入膨胀机200入口前的工作流体的实际过热度值OSr与一预设过热度范围OSR的关系(如步骤S320所示)。Next, the control unit 700 judges the relationship between the actual superheat value OS r of the working fluid before entering the inlet of the expander 200 and a preset superheat range OS R (shown in step S320 ).

若温度感测器520测得进入膨胀机200入口前的工作流体的实际过热度值OSr小于预设过热度范围的下限值OSR,MIN,则控制元件700会调降泵400的输出频率值或输出流量值(如步骤S330所示)。若压力感测器510测得进入膨胀机200入口前的实际压力值Pr低于有机朗肯循环系统10的容许最小压力值PA,MIN时,则控制元件700会令有机朗肯循环系统10停止运转(如步骤S360所示),以避免有机朗肯循环系统10毁损。If the temperature sensor 520 detects that the actual superheat value OS r of the working fluid before entering the inlet of the expander 200 is less than the lower limit value OS R,MIN of the preset superheat range, the control element 700 will lower the output of the pump 400 Frequency value or output flow value (as shown in step S330). If the pressure sensor 510 detects that the actual pressure value P r before entering the inlet of the expander 200 is lower than the allowable minimum pressure value PA,MIN of the organic Rankine cycle system 10, the control element 700 will make the organic Rankine cycle system 10 stops running (as shown in step S360 ), so as to avoid damage to the organic Rankine cycle system 10 .

若温度感测器520测得进入膨胀机200入口前的工作流体的实际温度值Tr落于工作温度范围TR内,则维持驱动工作流体的一泵400的一输出频率值或输出流量值(如步骤S340所示)。If the temperature sensor 520 detects that the actual temperature value T r of the working fluid entering the inlet of the expander 200 falls within the working temperature range T R , then maintain an output frequency value or an output flow value of a pump 400 that drives the working fluid (as shown in step S340).

若温度感测器520测得进入膨胀机200入口前的工作流体的若实际过热度值OSr大于预设过热度范围的上限值OSR,MAX,则控制元件700会调升泵400的输出频率值或输出流量值(如步骤S350所示)。若压力感测器510测得进入膨胀机200入口前的工作流体的实际压力值Pr高于临界压力值PC时,则控制元件700会令有机朗肯循环系统10的运转模式由次临界运转模式切换至穿临界运转模式(如步骤S370所示),以求获得较佳的发电效率。If the temperature sensor 520 detects that the actual superheat value OS r of the working fluid before entering the inlet of the expander 200 is greater than the upper limit value OS R,MAX of the preset superheat range, the control element 700 will increase the pump 400 Output frequency value or output flow value (as shown in step S350). If the pressure sensor 510 detects that the actual pressure value Pr of the working fluid before entering the inlet of the expander 200 is higher than the critical pressure value Pc , the control element 700 will make the operating mode of the organic Rankine cycle system 10 change from subcritical to The operation mode is switched to the transcritical operation mode (as shown in step S370 ), in order to obtain better power generation efficiency.

根据上述本发明所揭露的有机朗肯循环系统及其次临界运转模式和穿临界运转模式的切换方法,除通过压力条件外,还通过工作温度范围条件与过热度条件来切换有机朗肯循环系统的运转模式,使得外界冷热源的条件变动时,有机朗肯循环系统能够持续调整至合适运转模式,以求能够提升有机朗肯循环系统的可操作范围和使用率而增加其累积发电量,进而提升有机朗肯循环系统的经济效益。According to the organic Rankine cycle system and its subcritical operation mode and transcritical operation mode switching method disclosed in the present invention, in addition to the pressure condition, the organic Rankine cycle system is switched by the working temperature range condition and superheat condition. The operation mode enables the organic Rankine cycle system to continuously adjust to the appropriate operation mode when the conditions of the external cold and heat sources change, so as to improve the operable range and utilization rate of the organic Rankine cycle system and increase its cumulative power generation, and then Improving the economics of the Organic Rankine Cycle system.

Claims (20)

1.一种有机朗肯循环系统的运转模式的切换方法,其特征在于,包含下列步骤:1. A switching method of an operating mode of an organic Rankine cycle system, characterized in that, comprising the following steps: 判断一有机朗肯循环系统的一工作流体进入一膨胀机入口前的一实际压力值是否大于等于该工作流体的一临界压力值:Judging whether an actual pressure value of a working fluid in an organic Rankine cycle system before entering an expander inlet is greater than or equal to a critical pressure value of the working fluid: 若是,则令该有机朗肯循环系统以一穿临界运转模式运转;以及If so, operating the ORC system in a transcritical mode of operation; and 若否,则令该有机朗肯循环系统以一次临界运转模式运转。If not, the organic Rankine cycle system is operated in a primary critical operation mode. 2.如权利要求1所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,该穿临界运转模式的操作流程包含下列步骤:2. The switching method of the operating mode of the Organic Rankine cycle system as claimed in claim 1, wherein the operation process of the transcritical operating mode comprises the following steps: 查找一超临界工作流体压力温度数据库,以获得该实际压力值所对应的一工作温度范围;以及Searching a supercritical working fluid pressure and temperature database to obtain a working temperature range corresponding to the actual pressure value; and 判断该工作流体进入该膨胀机入口前的一实际温度值与该工作温度范围的关系:Judging the relationship between an actual temperature value of the working fluid before entering the inlet of the expander and the working temperature range: 若该实际温度值低于该工作温度范围的下限值,则调降驱动该工作流体的一泵的一输出频率值或一输出流量值;If the actual temperature value is lower than the lower limit of the working temperature range, lowering an output frequency value or an output flow value of a pump driving the working fluid; 若该实际温度值落于该工作温度范围内,则维持该泵的该输出频率值或该输出流量值;以及maintaining the output frequency value or the output flow value of the pump if the actual temperature value falls within the operating temperature range; and 若该实际温度值高于该工作温度范围的上限值,则调升该泵的该输出频率值或该输出流量值。If the actual temperature value is higher than the upper limit of the working temperature range, the output frequency value or the output flow value of the pump is increased. 3.如权利要求2所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,于若该实际温度值低于该工作温度范围的下限值,则调降该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值低于该临界压力值时,则令该有机朗肯循环系统的运转模式由该穿临界运转模式切换至该次临界运转模式。3. The method for switching the operation mode of the Organic Rankine cycle system as claimed in claim 2, wherein if the actual temperature value is lower than the lower limit of the working temperature range, the output of the pump is lowered After the step of determining the frequency value or the output flow value, if the actual pressure value before entering the expander inlet is lower than the critical pressure value, the operation mode of the organic Rankine cycle system is changed from the cross-critical operation mode Switch to the subcritical operating mode. 4.如权利要求2所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,该穿临界运转模式的操作流程中,于若该实际温度值高于该工作温度范围的上限值,则调升该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值高于该有机朗肯循环系统的容许最大压力值时,则令该有机朗肯循环系统停止运转。4. The method for switching the operation mode of the Organic Rankine cycle system as claimed in claim 2, wherein, in the operation process of the transcritical operation mode, if the actual temperature value is higher than the upper limit of the working temperature range value, then after the step of increasing the output frequency value or the output flow value of the pump, if the actual pressure value before entering the expander inlet is higher than the allowable maximum pressure value of the organic Rankine cycle system, Then the organic Rankine cycle system is stopped. 5.如权利要求2所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,该穿临界运转模式的操作流程中,该超临界工作流体压力温度数据库具有多组压力与工作温度范围数据,每一组压力与工作温度范围数据具有一个压力值与对应的一个工作温度范围。5. The switching method of the operating mode of the Organic Rankine cycle system as claimed in claim 2, characterized in that, in the operation process of the transcritical operating mode, the supercritical working fluid pressure temperature database has multiple sets of pressure and operating temperature Range data, each set of pressure and working temperature range data has a pressure value and a corresponding working temperature range. 6.如权利要求1所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,该次临界运转模式的操作流程包含下列步骤:6. The switching method of the operating mode of the Organic Rankine cycle system as claimed in claim 1, wherein the operation process of the subcritical operating mode comprises the following steps: 依据该实际压力值与该实际温度值计算出该工作流体的一实际过热度值;以及calculating an actual superheat value of the working fluid according to the actual pressure value and the actual temperature value; and 判断该工作流体进入该膨胀机入口前的该实际过热度值与一预设过热度范围的关系:Judging the relationship between the actual superheat value before the working fluid enters the expander inlet and a preset superheat range: 若该实际过热度值小于该预设过热度范围的下限值,则调降该泵的该输出频率值或该输出流量值;If the actual superheat value is less than the lower limit value of the preset superheat range, lower the output frequency value or the output flow value of the pump; 若该实际过热度值落于该预设过热度范围内,则维持驱动该泵的该输出频率值或该输出流量值;以及If the actual superheat value falls within the preset superheat range, maintaining the output frequency value or the output flow value for driving the pump; and 若该实际过热度值大于该预设过热度范围的上限值,则调升该泵的该输出频率值或该输出流量值。If the actual superheat value is greater than the upper limit of the preset superheat range, then increase the output frequency value or the output flow value of the pump. 7.如权利要求6所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,其中该次临界运转模式的操作流程中,于若该实际过热度值小于该预设过热度范围的下限值,则调降该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值低于该有机朗肯循环系统的容许最小压力值时,则令该有机朗肯循环系统停止运转。7. The method for switching the operation mode of the Organic Rankine cycle system as claimed in claim 6, wherein in the operation process of the subcritical operation mode, if the actual superheat value is less than the preset superheat range After the step of lowering the output frequency value or the output flow value of the pump, it also includes if the actual pressure value before entering the expander inlet is lower than the allowable minimum pressure of the organic Rankine cycle system When the value is reached, the organic Rankine cycle system is stopped. 8.如权利要求6所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,于若该实际过热度值大于该预设过热度范围的上限值,则调升该泵的该输出频率值或该输出流量值的步骤后,还包含若进入该膨胀机入口前的该实际压力值高于该临界压力值时,则令该有机朗肯循环系统的运转模式由该次临界运转模式切换至该穿临界运转模式。8. The method for switching the operation mode of the organic Rankine cycle system as claimed in claim 6, wherein if the actual superheat value is greater than the upper limit value of the preset superheat range, the pump is increased After the step of outputting the frequency value or the outputting flow value, if the actual pressure value before entering the expander inlet is higher than the critical pressure value, making the operation mode of the organic Rankine cycle system change from the subcritical The operation mode is switched to the transcritical operation mode. 9.如权利要求1所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,该泵为变流量泵或定流量泵搭配变频马达。9 . The method for switching the operating mode of an organic Rankine cycle system according to claim 1 , wherein the pump is a variable flow pump or a constant flow pump with a variable frequency motor. 10.如权利要求1所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,该膨胀机为涡轮机、螺旋式膨胀机、涡卷式膨胀机、容积式膨胀机或往复式膨胀机。10. The switching method of the operating mode of the Organic Rankine cycle system as claimed in claim 1, wherein the expander is a turbine, a screw expander, a scroll expander, a positive displacement expander or a reciprocating expander machine. 11.如权利要求1所述的有机朗肯循环系统的运转模式的切换方法,其特征在于,供应该有机朗肯循环系统的一热源或一冷源的温度或流量变动时,若该有机朗肯循环系统于该穿临界运转模式下,则执行判断该工作流体进入该膨胀机入口前的一实际温度值是否落于一工作温度范围内的步骤,若该有机朗肯循环系统于该次临界运转模式下,则执行判断该工作流体进入该膨胀机入口前的一实际过热度值是否落于一预设过热度范围内的步骤。11. The method for switching the operation mode of the Organic Rankine cycle system as claimed in claim 1, characterized in that, when the temperature or the flow rate of a heat source or a cold source supplied to the Organic Rankine cycle system changes, if the Organic Rankine cycle system If the organic Rankine cycle system is in the transcritical operation mode, then perform the step of judging whether an actual temperature value of the working fluid before entering the expander inlet falls within a working temperature range, if the organic Rankine cycle system is in the subcritical In the operation mode, a step of judging whether an actual superheat value of the working fluid before entering the expander inlet falls within a preset superheat range is executed. 12.一种有机朗肯循环系统,其特征在于,包含:12. An organic Rankine cycle system, characterized in that it comprises: 一热源热交换器;a heat source heat exchanger; 一膨胀机,通过管路与该热源热交换器相连;An expander connected to the heat source heat exchanger through pipelines; 一冷凝器,通过管路与该膨胀机相连;a condenser connected to the expander through pipelines; 一泵,通过管路与该冷凝器和该热源热交换器相连,该泵用以驱动一工作流体由该泵依序流过该热源热交换器、该膨胀机及该冷凝器而构成一有机朗肯循环,该工作流体具有一临界压力值;A pump is connected to the condenser and the heat source heat exchanger through pipelines, and the pump is used to drive a working fluid to flow through the heat source heat exchanger, the expander and the condenser in sequence to form an organic Rankine cycle, the working fluid has a critical pressure value; 一压力感测器,用以检测该工作流体进入膨胀机入口前的一实际压力值;以及a pressure sensor, used to detect an actual pressure value of the working fluid before entering the inlet of the expander; and 一控制元件,用以判断该工作流体的该实际压力值与该临界压力值间的关系,若该工作流体的该实际压力值大于该临界压力值,则该控制元件控制该有机朗肯循环系统以一穿临界运转模式运转,若该工作流体的该实际压力值小于该临界压力值,则该控制元件控制该有机朗肯循环系统以一次临界运转模式运转。A control element, used to judge the relationship between the actual pressure value of the working fluid and the critical pressure value, if the actual pressure value of the working fluid is greater than the critical pressure value, the control element controls the organic Rankine cycle system It operates in a transcritical operation mode, and if the actual pressure value of the working fluid is less than the critical pressure value, the control element controls the organic Rankine cycle system to operate in a primary critical operation mode. 13.如权利要求12所述的有机朗肯循环系统,其特征在于,还包含一温度感测器,用以检测该工作流体进入膨胀机入口前的一实际温度值,该控制元件内存有一超临界工作流体压力温度数据库,该超临界工作流体压力温度数据库具有多组压力与工作温度范围数据,每一组压力与工作温度范围数据具有一压力值及对应的一工作温度范围,该有机朗肯循环系统于该穿临界运转模式下时,若该实际温度值大于该工作温度范围的上限值,则该控制元件提高该泵的一输出频率值或一输出流量值,若实际温度值小于该工作温度范围的下限值,则该控制元件降低该泵的该输出频率值或该输出流量值。13. The organic Rankine cycle system as claimed in claim 12, further comprising a temperature sensor for detecting an actual temperature value of the working fluid before entering the inlet of the expander, and the control element stores a super Critical working fluid pressure and temperature database, the supercritical working fluid pressure and temperature database has multiple sets of pressure and working temperature range data, each set of pressure and working temperature range data has a pressure value and a corresponding working temperature range, the Organic Rankine When the circulation system is in the transcritical operation mode, if the actual temperature value is greater than the upper limit value of the working temperature range, the control element increases an output frequency value or an output flow value of the pump; if the actual temperature value is less than the If the lower limit of the working temperature range is reached, the control element reduces the output frequency value or the output flow value of the pump. 14.如权利要求13所述的有机朗肯循环系统,其特征在于,于该穿临界运转模式下,若该实际压力值大于该有机朗肯循环系统的容许最大压力值,则该控制元件令该有机朗肯循环系统停止运转,若该实际压力值小于该临界压力值,则该控制元件令该有机朗肯循环系统由该穿临界运转模式切换至该次临界运转模式。14. The organic Rankine cycle system according to claim 13, characterized in that, in the transcritical operation mode, if the actual pressure value is greater than the allowable maximum pressure value of the organic Rankine cycle system, the control element makes The organic Rankine cycle system stops running. If the actual pressure value is less than the critical pressure value, the control element switches the organic Rankine cycle system from the transcritical operation mode to the subcritical operation mode. 15.如权利要求13所述的有机朗肯循环系统,其特征在于,该控制元件内存有一过热度计算模组,该控制元件的该过热度计算模组依据该实际压力值与该实际温度值计算出该工作流体的一实际过热度值,该有机朗肯循环于该次临界运转模式下时,若该实际过热度值小于一预设过热度范围的下限值,则调降该泵的该输出频率值或该输出流量值,若该实际过热度值大于一预设过热度范围的上限值,则调高该泵的该输出频率值或该输出流量值。15. The organic Rankine cycle system as claimed in claim 13, characterized in that there is a superheat calculation module stored in the control element, and the superheat calculation module of the control element is based on the actual pressure value and the actual temperature value Calculate an actual superheat value of the working fluid, and when the organic Rankine cycle is in the subcritical operation mode, if the actual superheat value is less than a lower limit value of a preset superheat range, the pump’s If the output frequency value or the output flow value is greater than the upper limit of a preset superheat range, the output frequency value or the output flow value of the pump is increased. 16.如权利要求15所述的有机朗肯循环系统,其特征在于,于该次临界运转模式下,若该实际压力值小于该有机朗肯循环系统的容许最小压力值,则该控制元件令该有机朗肯循环系统停止运转,若该实际压力值大于该临界压力值,则该控制元件令该有机朗肯循环系统由该次临界运转模式切换至该穿临界运转模式。16. The organic Rankine cycle system according to claim 15, characterized in that, in the subcritical operation mode, if the actual pressure value is less than the allowable minimum pressure value of the organic Rankine cycle system, the control element makes The organic Rankine cycle system stops running, and if the actual pressure value is greater than the critical pressure value, the control element switches the organic Rankine cycle system from the subcritical operation mode to the transcritical operation mode. 17.如权利要求12所述的有机朗肯循环系统,其特征在于,该工作流体为一有机冷媒,该有机冷媒为选自由HFCs、混合冷媒、HCs、FCs所构成的群组的其中之一。17. The organic Rankine cycle system according to claim 12, wherein the working fluid is an organic refrigerant, and the organic refrigerant is selected from the group consisting of HFCs, mixed refrigerants, HCs, and FCs . 18.如权利要求12所述的有机朗肯循环系统,其特征在于,该泵为变流量泵或定流量泵搭配变频马达。18. The organic Rankine cycle system according to claim 12, wherein the pump is a variable flow pump or a constant flow pump with a variable frequency motor. 19.如权利要求12所述的有机朗肯循环系统,其特征在于,该膨胀机为涡轮机、螺旋式膨胀机、涡卷式膨胀机、容积式膨胀机或往复式膨胀机。19. The organic Rankine cycle system according to claim 12, wherein the expander is a turbine, a screw expander, a scroll expander, a positive displacement expander or a reciprocating expander. 20.如权利要求12所述的有机朗肯循环系统,其特征在于,还包含一发电机,与该膨胀机相连,将该膨胀机的旋转动能转换为电能输出。20 . The organic Rankine cycle system according to claim 12 , further comprising a generator connected to the expander to convert the rotational kinetic energy of the expander into electric energy for output. 21 .
CN201310722415.5A 2013-12-06 2013-12-24 Organic Rankine cycle system and method for switching operation modes thereof Active CN104696029B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102144906 2013-12-06
TW102144906A TWI548807B (en) 2013-12-06 2013-12-06 Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle

Publications (2)

Publication Number Publication Date
CN104696029A true CN104696029A (en) 2015-06-10
CN104696029B CN104696029B (en) 2016-06-15

Family

ID=53343523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310722415.5A Active CN104696029B (en) 2013-12-06 2013-12-24 Organic Rankine cycle system and method for switching operation modes thereof

Country Status (2)

Country Link
CN (1) CN104696029B (en)
TW (1) TWI548807B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545880A (en) * 2015-12-29 2016-05-04 太原理工大学 Hydraulic system cooling loop

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805965B (en) * 2020-11-18 2023-06-21 財團法人金屬工業研究發展中心 Thermal energy conversion system and method for controlling a working fluid thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146876A (en) * 2003-11-11 2005-06-09 Toshiba Corp Combined cycle power plant and method for starting the same
CN101413407A (en) * 2008-11-28 2009-04-22 北京理工大学 Supercritical organic Rankine double-circulation waste heat recovery system
CN101815903A (en) * 2007-05-29 2010-08-25 Utc电力公司 Rankine cycle power plant heat source control
US20110072820A1 (en) * 2009-09-30 2011-03-31 General Electric Company Heat engine and method for operating the same
CN102713168A (en) * 2009-11-30 2012-10-03 诺沃皮尼奥内有限公司 Direct evaporator system and method for organic rankine cycle systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146876A (en) * 2003-11-11 2005-06-09 Toshiba Corp Combined cycle power plant and method for starting the same
CN101815903A (en) * 2007-05-29 2010-08-25 Utc电力公司 Rankine cycle power plant heat source control
CN101413407A (en) * 2008-11-28 2009-04-22 北京理工大学 Supercritical organic Rankine double-circulation waste heat recovery system
US20110072820A1 (en) * 2009-09-30 2011-03-31 General Electric Company Heat engine and method for operating the same
CN102713168A (en) * 2009-11-30 2012-10-03 诺沃皮尼奥内有限公司 Direct evaporator system and method for organic rankine cycle systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545880A (en) * 2015-12-29 2016-05-04 太原理工大学 Hydraulic system cooling loop

Also Published As

Publication number Publication date
TWI548807B (en) 2016-09-11
CN104696029B (en) 2016-06-15
TW201522766A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
US10472994B2 (en) Systems and methods for controlling the pressure of a working fluid at an inlet of a pressurization device of a heat engine system
US9752460B2 (en) Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
Kang Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid
Miao et al. Operation and performance of a low temperature organic Rankine cycle
JP6132214B2 (en) Rankine cycle apparatus, combined heat and power system, and operation method of Rankine cycle apparatus
EP3631173A1 (en) Systems and methods for controlling the pressure of a working fluid at an inlet of a pressurization device of a heat engine system
CN104075443A (en) Heat pump hot water supply device
US20130186088A1 (en) Adaptive heat exchange architecture for optimum energy recovery in a waste heat recovery architecture
JP6621251B2 (en) Rankine cycle device, control device, power generation device, and control method
CN104696029B (en) Organic Rankine cycle system and method for switching operation modes thereof
CN103343734A (en) Single-screw expander medium and low temperature geothermal power generating system with added lubricating oil cycle loop
CN103527268A (en) Double-stage full-flow screw expander organic Rankine cycle system
JP6406583B2 (en) Rankine cycle equipment
US10677101B2 (en) Combined heat and power system and operating method of combined heat and power system
JP2013181456A (en) Binary power generator and method for controlling the same
CN107976095B (en) A thermal energy utilization system, method and device
Kaczmarczyk et al. Experimental investigation on a rotodynamic pump operating in the cogeneration system with a low-boiling working medium
JP2013181457A (en) Binary power generator and method for controlling the same
JP2008275209A (en) Refrigeration cycle equipment using an expander
CN111677570A (en) A Feasible Thermodynamic Cycle System Approaching Triangular Cycle
JP7684115B2 (en) Waste heat power generation system
JP2012251516A (en) Waste heat recovery apparatus
KR102179759B1 (en) Heat energy recovery device and operation method thereof
JP2019056348A (en) Rankine cycle device
JP2022155391A (en) RANKINE CYCLE DEVICE, THERMAL GENERATOR SYSTEM AND STOPPING METHOD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant